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The story of the film so far...
We have been studying stochastic processes; i.e.,
systems whose time evolution has an element of chance
In particular, Markov processes, whose future only
depends on the present and not on how we got there
Particularly tractable examples are the Markov chains,
which are discrete both in “time” and “space”:

random walks
branching processes

It is interesting to consider also Markov processes
{X(t) | t > 0} which are continuous in time
We will only consider those where the X(t) are discrete
random variables; e.g., integer-valued
Main examples will be:

Poisson processes
Birth and death process, such as queues
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Continuous-time Markov processes
We will be considering continuous-time stochastic
processes {X(t) | t > 0}, where each X(t) is a discrete
random variable taking integer values
Such a stochastic process has the Markov property if for
all i, j,k ∈ Z and real numbers 0 6 r < s < t,

P (X(t) = j | X(s) = i,X(r) = k) = P (X(t) = j | X(s) = i)

If, in addition, for any s, t > 0,

P (X(t+ s) = j | X(s) = i)

is independent of s, we say {X(t) | t > 0} is (temporally)
homogeneous
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Counting processes
A stochastic process {N(t) | t > 0} is a counting process,
if N(t) represents the total number of events that have
occurred up to time t; that is,

N(t) ∈ {0, 1, 2, . . . }
If s < t, N(s) 6 N(t)

For s < t, N(t) −N(s) is the number of events which have
taken place in (s, t].

{N(t) | t > 0} has independent increments if the number
of events taking place in disjoint time intervals are
independent; that is,

the number N(t) of events in [0, t], and
the number N(t+ s) −N(t) of events in (t, t+ s]

are independent
{N(t) | t > 0} is (temporally) homogeneous if the
distribution of events occurring in any interval of time
depends only on the length of the interval:
N(t2 + s) −N(t1 + s) has the same distribution as
N(t2) −N(t1), for all t1 < t2 and s > 0
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Poisson processes

Definition
{N(t) | t > 0} is Poisson with rate
λ > 0 if

N(0) = 0
it has independent increments
for all s, t > 0 and n ∈ N,

P(N(s+t)−N(s) = n) = e−λt
(λt)n

n!

Since P(N(s+ t) −N(s) = n) does not depend on s,
Poisson process are (temporally) homogeneous
Hence, taking s = 0, one sees that N(t) is Poisson
distributed with mean E(N(t)) = λt
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Inter-arrival times
Let {N(t) | t > 0} be a Poisson process with rate λ > 0
Let T1 be the time of the first event
Let Tn>1 be the time between the (n− 1)st and the nth
events
{T1, T2, . . . } is the sequence of inter-arrival times
P(T1 > t) = P(N(t) = 0) = e−λt, whence T1 is exponentially
distributed with mean 1

λ

The same is true for the other Tn, e.g.,
P(T2 > t | T1 = s) = P(0 events in (s, s+ t] | T1 = s)

= P(0 events in (s, s+ t])(indep. incr.)
= P(0 events in (0, t])(homogeneity)
= e−λt

The {Tn} for n > 1 are i.i.d. exponential random variables
with mean 1

λ
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Waiting times
The waiting time until the nth event (n > 1) is
Sn =

∑n
i=1 Ti

Sn 6 t if and only if N(t) > n, whence

P(Sn 6 t) = P(N(t) > n) =
∞∑
j=n

P(N(t) = j) =

∞∑
j=n

e−λt
(λt)j

j!

Differentiating with respect to t, we get the probability
density function

fSn(t) = λe
−λt (λt)

n−1

(n− 1)!

which is a “gamma” distribution
E(Sn) =

∑
i E(Ti) =

n
λ
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Example
Suppose that trains arrive at a station at a Poisson rate λ = 1
per hour.

1 What is the expected time until the 6th train arrives?
2 What is the probability that the elapsed time between the

6th and 7th trains exceeds 1 hour?

1 We are asked for E(S6) where S6 is the waiting time until
the 6th train, hence E(S6) = 6

λ = 6 hours.
2 We are asked for P(T7 > 1) = e−λ = e−1 ' 37%
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Time of occurrence is uniformly distributed
If we know that exactly one event has occurred by time t,
how is the time of occurrence distributed?
For s 6 t,

P(T1 < s | N(t) = 1) = P(T1 < s and N(t) = 1)
P(N(t) = 1)

=
P(N(s) = 1 and N(t) −N(s) = 0)

P(N(t) = 1)

=
P(N(s) = 1)P(N(t) −N(s) = 0)

P(N(t) = 1)(indep. incr.)

=
λse−λse−λ(t−s)

λte−λt
(homogeneity)

=
s

t

i.e., it is uniformly distributed
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Example (Stopping game)
Events occur according to a Poisson process {N(t) | t > 0} with
rate λ. Each time an event occurs we must decide whether or
not to stop, with our objective being to stop at the last event to
occur prior to some specified time τ. That is, if an event occurs
at time t, 0 < t < τ and we decide to stop, then we lose if there
are any events in the interval (t, τ], and win otherwise. If we do
not stop when an event occurs, and no additional events occur
by time τ, then we also lose. Consider the strategy that stops at
the first event that occurs after some specified time s, 0 < s < τ.
What should s be to maximise the probability of winning?
We win if and only if there is precisely one event in (s, τ], hence

P(,) = P(N(τ) −N(s) = 1) = e−λ(τ−s)λ(τ− s)

We differentiate with respect to s to find that the maximum
occurs for s = τ− 1

λ , for which P(,) = e−1 ' 37%
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Example (Bus or walk?)
Buses arrive to a stop according to a Poisson process
{N(t) | t > 0} with rate λ. Your bus trip home takes b minutes
from the time you get on the bus until you reach home. You can
also walk home from the bus stop, the trip taking you w
minutes. You adopt the following strategy: upon arriving at the
bus stop, you wait for at most s minutes and start walking if no
bus has arrived by that time. (Otherwise you catch the first bus
that comes.) Is there an optimal s which minimises the duration
of your trip home?
Let T denote the duration of the trip home from the time you
arrive at the bus stop. Conditioning on the mode of transport,

E(T) = E(T | N(s) = 0)P(N(s) = 0) + E(T | N(s) > 0)P(N(s) > 0)
= (s+w)e−λs + (E(T1) + b)(1− e−λs)

where T1 is the first arrival time. Recall E(T1) = 1
λ .
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Example (Bus or walk? — continued)
Therefore,

E(T) = (s+w)e−λs + ( 1λ + b)(1− e−λs)

= 1
λ + b+

(
s+w− 1

λ − b
)
e−λs

whose behaviour (as a function of s) depends on the sign of
w− 1

λ − b.

w− 1
λ − b < 0 w− 1

λ − b = 0 w− 1
λ − b > 0

The minimum is either at s = 0 (walk without waiting) or at
s = ∞ (wait for the bus no matter how long)
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Poisson processes as Markov processes I
A Poisson process {N(t) | t > 0} is an example of a
continuous-time homogeneous Markov process
The states are the natural numbers N = {0, 1, 2, . . . }
The possible transitions are between states n and n+ 1
The transition probabilities are for 0 6 s < t,

P(N(t) = n+ 1 | N(s) = n) =
P(N(t) = n+ 1 and N(s) = n)

P(N(s) = n)

=
P(N(s) = n and N(t) −N(s) = 1)

P(N(s) = n)

=
P(N(s) = n)P(N(t) −N(s) = 1)

P(N(s) = n)
(indep. incr.)

= P(N(t− s) = 1)(homogeneity)
= λ(t− s)e−λ(t−s)
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Poisson processes as Markov processes II
The inter-arrival time Tn is the time the system spends in
state (n− 1) before making a transition to n
They are exponentially distributed with mean 1

λ

Now let us consider a general continuous-time Markov
process, not necessarily Poisson
Let Tn denote the time the system spends in state n before
making a transition to a different state
The Markov property says that for s, t > 0,

P(Tn > s+ t | Tn > s) = P(Tn > t)

i.e., P(Tn > s+ t | Tn > s) cannot depend on s, since how
long the system has been in state n cannot matter
Thus Tn is memoryless and this means that Tn is
exponentially distributed
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Continuous and memoryless = exponential (I)
Let X be a continuous random variable taking non-negative
values
We say that X is memoryless if for all s, t > 0,

P(X > s+ t | X > s) = P(X > t)

This is equivalent to

P(X > t) =
P(X > s+ t and X > s)

P(X > s)
=

P(X > s+ t)
P(X > s)

or to P(X > s+ t) = P(X > t)P(X > s)
Letting F(s) = P(X > s), this is equivalent to the functional
equation

F(s+ t) = F(s)F(t)
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Continuous and memoryless = exponential (II)
Theorem
The only (nontrivial) continuous functions F(s) obeying

F(s+ t) = F(s)F(t) ∀ s, t > 0

are F(s) = e−sλ, for some λ > 0.

Proof.
F(0) = F(0)2 implies that either F(0) = 0 or F(0) = 1
F(s) = F(s)F(0) implies F(0) = 1 since F(s) is nontrivial
For all n ∈ N, F(n+ 1) = F(n)F(1), whence F(n) = F(1)n
Since 0 < F(1) < 1, we can write F(1) = e−λ for some λ > 0
F( kn)

n = F(k) = F(1)k = e−kλ, whence F( kn) = e−kλ/n
Two continuous functions agreeing on the (non-negative)
rationals agree on the (non-negative) reals, so F(s) = e−sλ
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Warning
Continuity is essential! There are discrete distributions (e.g.,
geometric) which are also memoryless. Of course, exponential
distribution is the “continuous” limit of the geometric distribution.

We conclude with the observation that a continuous-time
Markov chain is a stochastic process such that each time the
system enters state i

1 the amount of time it spends in that state before making a
transition into a different state is exponentially distributed
with mean, say, 1

λi
, and

2 when the process leaves state i is enters states j with
some probability pij, where the pij satisfy

1 pii = 0 for all i, and
2

∑
j pij = 1 for all i.

In a Poisson process all the λi are equal.
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Summary
We have introduced continuous-time Markov processes
{X(t) | t > 0}, satisfying the Markov property that for
0 6 r < s < t,

P(X(t) = j | X(s) = i,X(r) = k) = P(X(t) = j | X(s) = i)

We focussed on homogeneous processes, for which
P(X(t+ s) = j | X(s) = i) does not depend on s
Examples are the counting processes {N(t) | t > 0}, of
which an important special case are the Poisson
processes, where N(t) is Poisson distributed with mean λt
Inter-arrival times in a Poisson process are exponential,
waiting times are “gamma” distributed and time of
occurrence is uniformly distributed
Continuous-time Markov chains are defined by

1 a transition matrix [pij] (as in the discrete case)
2 the exponential transition rates λi
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