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Further properties of exponential r.v.s (1)

@ Because of the important réle played by exponential
random variables in continuous-time Markov process, we
record here some further properties

@ In the previous lecture we showed that if a continuous
random variable is memoryless, then it is exponential

@ In Lecture 13 we showed that the sum of two i.i.d.
exponential variables is a “gamma” distribution, and in
Lecture 14 we saw this held for any number of i.i.d.
exponential variables

@ The sum Z = X+ Y of two independent exponential
variables with different rates is hypoexponential:
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The story of the film so far...

We are studying continuous-time Markov processes,
particularly those which are (temporally) homogeneous

Examples are the counting processes {N(t) | t > 0}, of
which an important special case are the Poisson
processes, where N(t) is Poisson distributed with mean At

Inter-arrival times in a Poisson process are exponential,
waiting times are “gamma” distributed and time of
occurrence is uniformly distributed
Continuous-time Markov chains are characterised by
@ a transition matrix [py;], which for all i obeys
@ pi; =0
> ipy=1
@ the exponential transition rates v;
Poisson process: states {0, 1,2, ...}, p;j =0forj#1i+1and
piir1 = 1, and all states have equal transition rates
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Further properties of exponential r.v.s (Il)

@ The sum Z = X4 +--- + X;, of independent exponential

variables with different rates is also hypoexponential, but
the expression gets increasingly complicated

@ However the minimum min(Xy, ..., X;;) of independent

exponential variables is again exponential with rate equal
to the sum of the rates of the X;

@ By induction, it is enough to show prove it for n = 2, so let

X,Y be independent exponential variables with rates A, u

@ WithuU=min(X,Y),P(U<u)=1-P(U > u), but

PU>u)=PX>uw,Y>u)= JOO JOO f(x,y)dx dy
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Further properties of exponential r.v.s (lll)

@ The final calculation we will need is P(X < Y) for X, Y
exponential with rates A,
@ We calculate it by conditioning on X:

OO

PX<Y)=| PX<Y|X=x)fx(x)dx

0
o0
= | P(X<Y|X=x)Ae Mdx
0
el

P(x < Y)Ae Mdx
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Birth and death processes (ll)

@ The transition probabilities are given by pg; = 1 and

An P _ HUn
n,n—1 An + HUn

Pnnt+t = A (Tl = 1)

n T Un

@ We argue as follows: p,, ., 1 is the probability that in a
population of n a birth occurs before a death, i.e.,
P(Bn < Dn), where B,, and D,, are the exponential
variables corresponding to a birth and death, respectively,
when the population is n.

@ Since B,, hasrate A\,, and D,, has rate u,,, the results
follows from the earlier discussion

@ The transition rates are

Vo = Ag and Vn =AM+ Hn (Mm2=1)

since the time to any transition at population n is
min(B,,, Dy), which is exponential with rate A, + un
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Birth and death processes ()

@ The only allowed transitions in a counting process are
those which increase the “population” n — n + 1

@ They are thus said to be “pure birth” processes
@ In a “birth and death” process {N(t) | t > 0} we allow

transitions n — n + 1 (called births) and n —+ n — 1 (called
deaths), but of course n > 0

@ Births and deaths are independent and exponentially
distributed with rates A,, and pn,,, respectively, when the
population is n

@ The parameters {A,, | n € N} and {u,, | n € N} are called the
birth rates and death rates, respectively

@ A birth and death process is a continuous-time Markov
process with states N ={0,1,2,...} for which the allowed
transitionsaren - n+1andn —-n—1

Birth and death processes (lll)
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Examples (Pure birth processes)

@ pure birth: u,, =0foralln >0

@ Poisson: py, =0and A, =Aforalln>0

@ Yule: u, =0 and A, =nA for all n > 0, corresponding to a
Markov process {N(t) | t > 0} where N(t) is the size at time
t of a population whose members cannot die, and they give
birth to new members independently in an exponentially
distributed amount of time with rate A
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Example (Linear growth with immigration)
@ Thisis a model in which p,, =npand A, =nA+6,forn >0

@ Each individual is assumed to give birth at an exponential
rate A

@ In addition there is an exponential rate of increase 6 of the
population due to immigration, so if there are n individuals
in the system the total birth rate is nA + 6

@ Deaths occur at an exponential rate u for each member of
the population, hence the total death rate for a population
of size n is np.

A typical question in a birth and death process might be to
determine the expectation value E(N(t)) of the size of the
population at time t.

Usually one derives a differential equation that E(N(t)) obeys
and solves it to determine E(N(t)).

@ Let {N(1) | t > 0} be a continuous-time Markov chain

@ Let n > 0 and consider a small time increment 5t:

@ We compute 7, (t + 6t) = P(N(t + 6t) = n) by conditioning
on N(t):

Tn(t+0t) =P(N(t+ 0t) =n | N(t) =n)P(N(t) =n)
+P(N(t+6t)=n|N({t)=n+1)P(N(t)=n+1)
+P(N(t+6t)=n|N({t)=n—1)P(N(t)=n—1)

@ Let us focus on one of the conditional probabilities, say,
P(N(t+6t) =n|N(t)=n+1)

@ This is the probability that a death occurred in (t, t + 5t]
when the population at time tis n + 1

@ At that population, deaths are exponentially distributed with
rate u,, 1, SO we want the probability of a death in a time
interval of length 6t at that rate
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Steady-state distribution

@ Recall that regular discrete-time Markov chains have a
unique steady-state distribution T = (7, ), obeying ™ = ©tP,
where P is the transition matrix which evolves the system
one time step.

@ In other words, 7t is invariant under (discrete) time
translations.

@ Some continuous-time Markov chains also have a unique
steady-state distribution which is invariant under time
translation.

@ In other words, @ = (7, ), where 7, (t +s) = o (1), so that is
constant in time.

@ We will not be concerned with the conditions which
guarantee the existence and uniqueness of the
steady-state distribution.

@ We will assume it exists and is unique and we will show
how to find it.
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@ For 6t small, this is given by
ot
JO M1 eptheldE=N== e_unHét = Hn ot
@ Similarly,

P(N(t + 5t) = n | N(t)
P(N(t+5t) = n | N(t)

Tl—1) 27\n_16t
n) ~1— (An + pn)dt

@ Therefore,

Tin (t 4 0t) = (1 — 8t(An + pn))7tn (1) + 1 0t7T, 14 (1)
+ )\n71 6J£7Tnf1 (t)

@ or, said differently,
T (T + 0t) — 71 (t)
ot

~ U 1T 1 (D) A 170 1 (B) = (An+n )7 (t)
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In the steady state, m,, (t + 6t) = 7, (t), whence @ We need to pay particular attention to the the zeroth state:

e
171 FAn 1704 = AnTin + HnTin (m>1) @/‘\@ AQTlo = Hq7T4
~_ 7
Ao

probability flow = probability x transition rate
the above equation is the condition for zero net flow

@ we rewrite the zero net flow condition forn > 1 as

K41 An—1Tlh—1 — KnTn = AnTin — Mo 17T 41

Hn
oW OWRe
An—1 An @ which says that the quantity A,_{7t,_1 — un7mn is

independent of n

the “inflow” into state nis w,, 17,41 +A_17,,_1, Whereas _ _ ) _ _
the “outflow” is An 7ty + Ln7in @ since it vanishes for n = 1, it vanishes for all n, hence the

steady state obeys

therefore the steady state is characterised by zero net flow

across every state ATl =ty 4700 1 (n>0)
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@ Assuming u,, # 0, we can solve recursively for the 7, in
terms of 7y: Example (Single server queue)
@ Customers arrive at a server according to a Poisson
= A—Oﬂo, o = ﬁm _ MM Ty, ... process with rate A
H1 H2 H1k2 @ Customers are served in exponential time with rate n
— 1, = Mﬁo @ If the server is idle, customers get served upon arrival,
Hi- " Hn otherwise they join a queue
@ The states are labelled by the number n € {0,1,2,...} of
@ Finally, we solve for 7y from the normalisation condition customers in the queue (including anyone being served)
2 T =1, Nnamely @ This is a birth and death process with A, =A and p,, = p
@ If A > p customers arrive faster than they are served and
|1+ Z Ao An | _ 1 the queue keeps growing —> there is no steady state
n>1 HHn @ If A < u, there is a steady state with distribution
. e AT
@ For processes with an infinite number of states, the above T = —
series is infinite and convergence is not guaranteed e
@ Convergence imposes constraints on the birth and death
rates for the existence of a steady state
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Example (Single server queue — continued)
@ The normalisation condition is

00 AT
n=0

@ As expected, the geometric series converges precisely
when A < u, and

1 A
7o 1_A :1:>7T0:1—a
n

@ Finally, foralln > 1,

()R
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Summary

@ We have discussed birth and death processes
{N(t) | t > 0}, with state space N={0,1,2,...} and two
kinds of transitions:

© birth: n — n+ 1 with rate A,
@ death: n — n — 1 with rate p,

@ transition probabilities: py; = 1 and

_ M __Mn
Pnn+i }\n + Hn Pnn—1 A

V" 21
n T Kn (n )

@ transition rates: vy = Ay and v, = A, + u, forn > 1

@ “Nice” birth and death processes have steady states with
probabilities (7;,) satisfying the zero net flow condition
AnTn = W, 17,1 and the normalisation condition

P T — 1
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Example (Single server queue — continued)
@ The steady-state probability generating function is

U8 1— L — sA

n - nn A 1_% "’L_)\
G(s):Zs ﬂn:Zs—n 1—-2) = b =
n n=0 H m

provided that s < &

@ The mean length of the queue is the expectation E(N),
given by

which grows as % — 1
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