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1 Mathematical preliminaries

1.1 Review of differential geometry from GR I & notation

A smooth manifold M of dimension n is a topological space M (second countable, Hausdorff)
together with a collection (U;, ¢;) of homeomorphisms’ wi: M 2D U; = V; CR"™ U, V,; open sets, such
that

1. every point p € M is contained in some U;
2. ifU;NU; # 0, then ¢; o <pj_1 c @i (UiNU;) = ¢;(U; N Uy) is a smooth diffeomorphism?

Each (U;, ;) is called a chart for the manifold M.

A function f: M — R is called smooth iff for all charts (U, ;) we have that fop; ! :U; — R
is smooth. We denote the space of all smooth functions on M with C*°(M).
A derivation X at p € M is a linear map X : C°°(M) — R which satisfies Leibniz’s rule

X(fg)=X(f)-9+1-X(9) for all f,g € C*(M) .

The tangent space T, M at the point p € M is the linear space of all derivations X at p.

Given a chart (U, ¢) for M with 27 coordinates and p € U, the coordinate derivations
0 0 -1
907 1, = g (e (o)
form a basis for T,M. Given X € T,M we can thus write X = X"%, where the X* € R are the

components of the vector X in the chart ¢.
Change of coordinates: Let (W, 1) be another chart with p € M with y* coordinates.

1.e. a continuous map with a continuous inverse.
2I.e. a smooth map with a smooth inverse.



We compute using the chain rule3

0,0 1 1 _ 0 1 Aoty 0 oy’
o ‘pf = o5 (fov o (@eor™) () = oy (foy ™) (¥p) =57 () = AR
This gives the transformation rule
0 oyt o
oxi — dxI Oyt (L.1)
The cotangent space T); M is the dual space of T;, M with coordinate basis dz?, ie., dxi(%) = 6;

Given a € Ty M we can write o = a;dz?, where the a; € R are the components of the covector « in

the chart . Using (1.1) we compute

.0 - oxk 9 Oz’
da? =) = da? - ——) = — .
o (8yl) * (8yz 8xk) Oyt
This gives the transformation rule
o 0T
dr’) = —dy" . 1.2
o= oW (1.2)

The (k,l)-tensor space T,Sk’l)M consists of all multilinear maps

T:TyM x...xTyMxT,M x...xT,M —R.

k—times l—times

Note that a (0, 1)-tensor is just a covector and a (1,0)-tensor is a vector (use here that (7, M)* =

T,M)). Define the elements ag%@...@ ag?ik ®de ®@ ... ®dx" with 1 <41,...,i%,J1,...,5 < n by

) 0 o
Bt g =

9 _ _
®R...0 Qdr' @ ... dx? (dx™, ... dz*

L gaR gL L s
5 O B SRR A

They form a basis of Tlgk’l)M. Given T € Tlgk’l)M we can thus write

r=1" kj1...jz Orit e ® Oir Rdr!" @ ... dx’
Fai...a a b b
= 21...1;[@@...@(%%®dy1®...®dyl,

3We are using the Einstein summation convention of summing over repeated indices.



with
0 0

7ayb17...,w).

Using (1.1) and (1.2) in the right hand side we obtain the transformation rule for the components of

Talmalg)y..bl = T(dya17 T dyak

a general (k,!)-tensor

oarai _ i y» Gy dalr  Oalt
bi..by — JiJv §gin Oxin 3yb1 aybl :

(1.3)

A smooth (k,l)-tensor field T is a map M > p — T(p) € T,gk’l)M for all p € M such that in
local coordinates ¢ : M 2 U — V C R" the components Til"'ikjlmjl : V' — R are smooth functions.

We denote by X>°(M) the space of smooth vector fields on M and by Q!(M) the space of
smooth 1-covector fields (1-forms) on M.

Given f € C*°(M) we define the derivative of f, df € Q'(M), by df (X) = X (f) for X € X>°(M).
In coordinates we have df = 9; fdx® (easy exercise).?

A Lorentzian metric g on M is a smooth (0,2)-tensor field such that at every point p € M
g(p) : T,M x T,M — R is a non-degenerate® symmetric bilinear form of signature (—,+,...,+). In
local coordinates we have g = g, dz" ® dz¥ and by convention we write for the inverse metric, a
smooth (2,0)-tensor field, g=! = g9, ® 0,.

Tensor operations:

e Contraction of contravariant (upper) and covariant (lower) indices (trace). For example let

T =T%,0; ® dz7 @ dz* be a (1,2)-tensor. Contract i and j to get trT = T%; dz*, a (0, 1)-tensor.

¢ Raising/lowering index with the metric. For example let X = X"0, be a vector, then

Xb:=g(X,-) is a covector with (X*), = X*g,,,. We also often write just X, for (X°),.

Similarly, let « be a covector. Then af := g~!(a,-) is a vector with (o) = g"a,,. Again, we

often write just a* for (af)*.

e Tensor product. For example let & = oydz?, = Bjdxj be covectors, then a®f8 = «;0; dz'®
~—~—
_ =(a®p)i;
dx? is a (0, 2)-tensor.
Given two vector fields X,Y we define their Lie bracket [X,Y]f := X(Yf) — Y(Xf) for f €
C>*(M). Clearly [X,Y]: C®(M) — C>°(M) is linear. We show that [X,Y] also satisfies the Leibniz

6 -
ozt

4Note that we also write 9; for if we use generic coordinates or if no confusion can arise which coordinates we

are using.
5Recall that non-degenerate means that gp(X,Y) =0 for all Y € T, M implies X = 0.



rule, from which it then follows that it is a vector field:

[(X,Y](fg) = XY (fg) - YX(fg)
=X((Yf)-g+f (Yg9)-Y((X[f) g+ [ (Xg))
=XY[)- g+ (Yf) (Xg)+(Xf) - (Yg)+f (XYg) - (YXf)-9g—(Xf) (Yg)
—_——

- (Y[)-(Xg)—f-(YXg)
= (X Y]f) g+ f- (X, Y]g) -
In coordinates X = X*9,, Y =Y"d,, and thus®
[(X,Y]f = XF0, (Y70, f) = Y"0,(X"Ouf) = X0, Y") - Ouf =YV (0, X") - Ouf -
Thus we obtain [X,Y] = [X,Y]"d, with
(X, Y] =XX")-Y(X"). (1.4)

The Lie bracket satisfies the following properties (exercise):

o Antisymmetric: [X,Y] = —[Y, X]

o Bilinear over R: [X,aY + bZ] = a[X, Y] + b[X, Z] for a,b € R

e Jacobi identity: [X,[Y, Z]] + [V, [Z, X]] + [Z,[X,Y]] = 0

e For f € C(M) we have [X, fY] = f[X,Y] + (Xf)-Y.

An affine connection (covariant derivative) is a map V : X*° (M) x X*>°(M) — X°°(M) such that
for X,Y,Z € X>°(M)

e C°°(M)-linear in first entry: VyixyovZ = fVxZ + gVy Z for f,g € C®(M).
e R-linear in second entry: Vx(aY +bZ) =aVxY +bVxZ for a,b € R
e Leibniz rule: Vx(fY) = fVxY + X(f) Y for f € C(M).

Given local coordinates we call the quantities dz"(Vy,0,) =: T'};, the Christoffel symbols of the

connection. Using the above defining properties of an affine connection we then obtain
VxY = (X'0,Y" + T}, X"Y"™)0, . (1.5)

It follows from the C'°°(M)-linearity in the first argument that VY is a (1, 1)-tensor field (problem
sheet 1). For the components in local coordinates we thus obtain from (1.5) V,Y" = dz¥(Vs,Y) =
DYV T, Y™,

We can extend the affine connection in a unique way to all tensor fields by requiring

1) Vxf=X(f)  for feC=(M).

61t also follows directly from the coordinate expression that [X,Y] is a derivation.



2) Vx(a®f)=(Vxa)® B+ a® (Vxp), the Leibniz rule, where «, 8 are arbitrary tensor fields.
3) Vx commutes with all contractions: tr(Vxa) = Vx(tra).

Example 1.6. We compute the covariant derivative of a 1-form: Let a € QY (M), X,Y € X*°(M).
Then

(Vxa)(¥) = (Vxa® Y)
=tr(Vx(a®Y)—a® VxY) using 2)
=X(aY)) —a(VxY) using 3) and 1).

This gives in coordinates V,a, = (Vg,a)(0,) = Ou(aw) — a, L'},

For a general (n,m)-tensor field T we obtain in coordinates (see GR I)

by...by _ by...by by dbs...by, b by...bp,—1d
VGT Cl...Crm 8(1(T c1...cm) + Fad -T C1...Cm + .+ F(;i -T C1...Cm
d bi...bn d pbiebe
- Facl T des...Com T 1—‘acm T c1...Cm—1d *

The torsion tensor T of an affine connection V is defined by T'(X,Y) := VxY — Vy X — [X,Y],
where X, Y € X*°(M). (Exercise: Check that T is indeed a (1,2)-tensor field.)

0,,0,]=0
The affine connection V is called symmetric : <= T =0 o re, =ry,.

Theorem 1.7. Let (M,g) be a Lorentzian manifold. There exists exactly one affine connection V
which is

1. metric: Vg=20

2. symmetric: T =0 .

V is called the Levi-Civita connection. The Christoffel symbols are given in coordinates by

1
Fﬁn = 59#0 (aﬁgvo + augarf, - 3ogm) .

From now on we will always use the Levi-Civita connection.

A vector field X is parallel along a curve v : I — M iff V45X = 0. A curve vy : I — M is an
affinely parametrised geodesic iff V54 = 0. For more details on parallel transport see GR L.

We define the Riemann curvature tensor as the map R(:,-)- : X*°(M) x X*°(M) x X*°(M) —
X (M),

R(X,Y)Z = Vx(VYZ) - Vy(VXZ) - V[X_’y]Z R XY 7 e :{OO(M) .

One can show (GR I) that R is indeed a (1, 3)-tensor field. The coordinate components are given by
R(0y,0,)0, = R%,,,0, with

Ry

R, = 8,1, — 8,1, +T9 0 —T7 1"

KV pupt VK Vot pK

We can lower the first index with the metric: Ry = gopRf,,,. The curvature tensor satisfies the

following symmetries:



Rmi,ul/ *Rna,uu
L4 RO’I{/,LI/ = _Ranu#
R

oRUY R,ul/(rn

Rowpr + Ropwr + Rovip =0 (first Bianchi identity)

VoBRoruw +VeRepu + ViRpop =0 (second Bianchi identity) .

Recall the interpretation of curvature via geodesic deviation from GR I. On problem sheet 1 you find
another interpretation of curvature as determining parallel transport around an infinitesimal loop.
We define the Ricci tensor R, = R° the scalar curvature R = ¢"”R,,, and the Einstein

ROV

tensor G, = R, — %gl“,R. The Einstein equations in geometrised units (G = ¢ =1) are
GW/ = SWZLV ’

where T),,, is the stress-energy tensor of matter.

1.2 Smooth maps between manifolds

Let M, N be smooth manifolds. A map F': M — N is smooth iff it is smooth in coordinates, i.e.,
if o: M DU — V CR"is a chart for M and ¢ : N DU — V C R™ a chart for N with F(U) C U,
then o Fop™:V — V is smooth.

N/
M F
—_—
q . 1
ver| ¥ Y= Feoy” TeR™

— >

>

?( v

Let X € T, M. Define the pushforward F. X € Tp(,)N of X via F by

(FX)(g) =X(goF ), for g € C*(N) .
—
eC>(M)




Thus a smooth map F': M — N induces a map F\ : T,M — Tp,) N for all p € M.

Ezercise: Check that F.X is indeed a derivation, i.e., that F.X € Tr N, and also that F, :
TyM — Tp)N is a linear map.

We compute the coordinate expression. Let x* be local coordinates around p € M and y” be local

coordinates around F(p) € N. Then
0 0 0 OF"

(F*m)yﬁ(p) = (F*@NF(p)(yy) = @(yu © )|p = @\p :

Thus for X = X "% we obtain by linearity

oFY 0

F.X =XV . .
oxH Oy

(1.8)

F, is also often denoted by DF' (or df in case f is scalar valued), the derivative of F. It generalises

the derivative of a map F : R® — R™.

Example 1.9. Let v : R — M be a smooth curve. Then % is a tangent vector in R and we have

’y*(%) = ag: %, which is the tangent vector of the curve v in M.

Consider a covector a € T;i(p)N. Then define F*a € T; M, the pullback of a via F, by
(F*a)]p(X) == a|p@p) (FiX) for X e T,M .

We compute in local coordinates

0 0 OF” 0 oF”
@) = a(F =—q,. (1.10)

(F*a) = (F*a)( o) = (G ) = G

1.3 Diffeomorphisms & Einstein’s hole argument

A smooth map F : M — N is a diffeomorphism iff F is bijective and F~! : N — M is also smooth.
(Exercise: Show that dimM = dimN.)

In general, if F: M — N is a smooth map, then we can only push forward vectors and pull back
covectors. If F' is a diffeomorphism, however, we can pull back a vector Y € Tr,)N by pushing it
forward with F'~!. Similarly, we can push forward covectors by pulling them back with F~1.

Let now (M, g) be a Lorentzian manifold and let F': M — M be a diffeomorphism. We can define
another Lorentzian metric F*g on M by (F*g)|,(X,Y) = g|pp) (F: X, F.Y), where X,Y € T,M. In

coordinates we have
B OF* QFF
= 908 un Gzv

is an invertible matrix, it is clear that F"*g is indeed a Lorentzian metric. Also note

(F"9) (1.11)

OF<
Oxk

Note that since
that (1.11) looks formally like a coordinate transformation, cf. (1.3). Indeed, there are two different,

but closely related viewpoints on diffeomorphisms:

i) Active viewpoint: F~! maps point F(p) to p, F'* maps tensors from F(p) to tensors at p. In

particular, starting with metric g we obtain new metric F*g on M.

This is the viewpoint we took above and which we will also usually take.



ii) Passive viewpoint: Diffeomorphism induces a change of coordinates. If z* are coordinates on
Uy € M, y* are coordinates on Uy C M (see below diagram), and F(U;) = Us, then we can

introduce a new coordinate chart v = ¢1 o F~!: Uy = Vi on Uy. The transition function is

paoth t=paoFop Vi =V,

A(p2oFop ) _ op™

oxH T Oxm
. o gpB A .
coordinate system 1 the components of g are g,, = ga[g%%7 which is the same as the right

hand side of (1.11)!

which is a smooth diffeomorphism. Moreover, we have Thus, in this new

We see that although the two viewpoints are philosophically very different, computationally they are

equivalent.

™M

AV f v, = R”
Vv oe?
1 Kr/s \/Ok
~

Assume now that we have a solution (M, g) to the vacuum Einstein equations R,,(g) = 0. Let
F : M — M be a diffeomorphism. Consider the new metric F*g on M. By the above the coordinate
components of F*g are the same as those of g in a different chart. We note that since the Ricci
curvature R, (g) is a tensor, it does not depend on in which coordinate system one computes it. We

thus infer that we also have R, (F*g) = 0.

Theorem 1.12. Let (M, g) be a solution of the vacuum Finstein equations Ric(g) =0 and F : M — M

a diffeomorphism. Then (M, F*g) is also a solution of the vacuum Finstein equations.

Ezercise: Show more generally that if (M, g, T) satisfies the Einstein equations G = 87T, and if
F: M — M is a diffeomorphism, then (M, F*g, F*T) is also a solution.

This shows that Einstein’s equations are diffeomorphism invariant. This has the following
implication:

FEinstein’s hole argument: If one gives reality to spacetime points p € M, then the following prob-

lem occurs: Let (M, g) be a solution of the vacuum Einstein equations, and let H C M be a compact

set (the “hole”).



(Ma)
W

Choose a diffemorphism F' : M — M such that F|M\H = id|pp m, but which scrambles the points
inside H. Then we get a new solution F*g, which agrees with g on M \ H, but is different in H.

It follows that the physical configuration of the gravitational field in M \ H does not determine the
gravitational field inside H. Thus, if one gives reality to spacetime points p € M, Einstein’s equations

are not deterministic, so that their content is truly vacuous.

Einstein’s resolution: Spacetime points p in the manifold M do not have physical reality
that is independent of the metric g. Only in conjunction with the metric do spacetime points
acquire physical reality.

= (M, g) and (M, F*g) are physically the same. The group of diffeomorphisms forms
the gauge group in general relativity.

1.4 One-parameter groups of diffeomorphisms

A one-parameter group of diffeomorphisms on a smooth manifold M is a smooth map
FRxM-—M
(t,z) = Fi(x)
such that
1. Vvt e R F,: M — M is a diffeomorphism
2. Fy =idyy
3. FsoF, =Fqyy Vs, t € R (group action)
A one-parameter group of diffeomorphisms is also called a global flow.

Example 1.13. Consider S? C R3 with standard coordinates (0, ), i.e., x = cos psin @, y = sin psin 6,

z = cosf.

10



Then F : R x S? — S?, F,(0,9) = (0,0 +t) is a one-parameter group of diffeomorphisms, where for
fivred t € R, F; : S — S? is the rotation around the z-axis by an angle Ap = t.
Also note that for fized (0, ) € S?, t = Fy(0, ) = (0, p+t) is a curve with tangent % F,(0, ) = %.

Let V be a smooth vector field on M. An integral curve of V is a curve v : R — M such that
4(s) = V(v(s)), i.e., such that V is tangent to the curve.
Example 1.14. a) In the above example if V = %, then t — (6, +t) are integral curves of V.
b) M = (—1,1)2, V = %. Integral curve s — (x(s),y(s)) has to satisfy z(s) = 1, y(s) = 0. Thus
s+ (z +s,y) are the integral curves.”

Given a one-parameter group of diffeomorphisms F' : R x M — M, we obtain smooth curves

~(t) = Fy(p) for each p € M. Define a smooth vector field V on M by

V(p) = lemoFilp) = 4(0)

The vector field V' is called the infinitesimal generator of F for the following reason: t — F}(p) are

integral curves of V.

Proof.
d

Sl mw =S| A ) = T R ) = V(E,G)

s=0

Theorem 1.15 (Relation between one-parameter groups of diffeomorphisms and vector fields).

"Note that they are not defined for all t € R. For the sake of simplicity of the following presentation we will always

assume that integral curves are defined on all of R. The general case is, however, not much more complicated.

11



i) Given a one-parameter group of diffeomorphisms F : R x M — M, we associate the smooth vector

field V(z) == & OFt(x) and its integral curves are given by t — Fy(x).
t=

it) Given a smooth vector field V€ X°°(M) (whose integral curves are defined on all of R), there exists

a unique one-parameter group of diffeomorphisms F: R x M — M with V(x) := % Fi(x).
t=0

Sketch of proof: We have already proven 4). For i) choose local coordinates z* around p € M. We
then consider the ODE 4#(s) = V#(~(s)) with initial condition v(0) = p. By the fundamental theorem
on ODEs, there exists a unique solution in this chart which depends smoothly on the initial data. Now

cover M with charts and repeat.

In this way we obtain a foliation of M by integral curves of V, i.e., a family of integral curves of V

such that through every p € M there passes exactly one such integral curve.

M

?tLT'S"?’) * D

For t € R define F; : M — M by flowing points for time ¢ along the integral curves. Clearly
Fiis(p) = Fi(Fs(p)). Inverse of F} is given by F_;. By smooth dependence of integral curves on
initial data the map F' : R x M — M is smooth and thus is the wanted one-parameter group of

diffeomorphisms. O

Example 1.16. M =R?\ {0}, V = 29, — y0,.

12



Use polar coordinates x = rcosp, y =rsingp. Then O, = x0y — y0y = V.
The integral curves solve ¢(s) =1 and 7(s) = 0, which gives s — (¢ + s,7). Thus the associated
one-parameter group of diffeomorphisms F : R x M — M is given in polar coordinates by (s, (p,1)) —

(¢ + s,7). V is the infinitesimal generator of rotations around the origin.

Proposition 1.17 (Coordinates adapted to a non-vanishing vector field).
Let M be a smooth manifold, X € X*°(M), and X(p) # 0. Then there exists smooth coordinates

" on a neighbourhood of p such that X = 8%0.

Proof. Take a coordinate chart ¢ : U — R™ such that the coordinates y” are centred at p (i.e.

y”(p) = 0), and without loss of generality such that the hypersurface {y° = 0} is not tangent to X at
p (thus X°(p) #0).

” )”)"il. 1= o)

Define a map

1\ T _
(2% 2, .. 2" S Fro(0,2t, ... 2" 1),

i.e., we flow the point (0,z',...,2"71) on {y° = 0} for time 2° along the integral curve of X. Then
by Theorem 1.15 % = X. It remains to show that ¢ is a local diffeomorphism, then we can choose

U~ oy as a new coordinate chart in a neighbourhood of p. We compute

X(p) 0 -+ 0
1

DU(0) = Xi(p) 1 0
X"p) 0 - 1

and since XY(p) # 0 this matrix is invertible. By the inverse function theorem there exists a small

neighbourhood of 0 on which U~! exists and is smooth. O

1.5 Lie derivative

Let V be a smooth vector field on M, F : R x M — M the associated one-parameter group of
diffeomorphisms, and W another smooth vector field on M. We want to take the derivative of W
along V' in a way which does not resort to a metric but only depends on the smooth structure of the
manifold.

Problem: W(p) and W (F;(p)) lie in different tangent spaces which we cannot compare.

13



'\V\\‘Larc\ cwfve QS; v

Solution: Recall that F} is diffeomorphism with inverse (F;)~! = F_,. We have F_;(F;(p)) = p, thus
(F_¢)« : Tp,(pyM — T, M gives identification of tangent spaces depending on the flow of V. Define the
Lie derivative Ly W of W with respect to V by

d Def d *
LoW ()= 2| (F).(Wrp) (=2 (F) W)
dtlt=o0 dt lt=0 (1.18)
F_).W -W, '
_ i F) W) =W T,M .

t—0 t

Recall from (1.8) that in local coordinates we have
aFﬁt v a
(F_)«Wg,p) = W(Ft(p)) -WY(Fy(p)) D
smooth expression in t,x
Thus we see that p
d oF",
P =_ F - WY (F, 1.1
(Cowy = 2| (SSHE) - W ED)) (1.19)

depends smoothly on x and thus Ly W is a smooth vector field.
Let now R C M be the open set of all p € M such that V(p) # 0. By Proposition 1.17 we can

find local coordinates z* such that V = %. Then Fy(z°, ... 2" ) = (2% +¢,2%, ..., 2" 1) and thus
aF",
oxv

= ¢ . Equation (1.19) simplifies to
d
(LyW)H (0, 2" 1) = %’ O(W“(xo ot 2 = (B W) (@, ... 2" |
t=

Moreover, note that in these coordinates we have [V, W]* = [0y, W]* = (9yWH"), see (1.4), and thus
we have shown that Ly W = [V, W] on R. By continuity this also holds on the closure of R in M, and on
M\R, where V = 0, it is easy to see that both expressions vanish. We thus conclude that £y W = [V, W].

This gives us another interpretation of the Lie bracket. The Jacobi identity [X, [V, Z]] + [V, [Z, X]] +
[Z,[X,Y]] = 0 directly gives
LxLyZ — LyLxZ = LixyiZ .

The definition (1.18) of the Lie derivative can easily be extended to general (k,)-tensor fields T' by

d

(LvT)(p) = |,

(ET)(p)
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where the pullback of 7' is defined as follows: for as,...,ap € Ty M, X1,...,X; € T,)M we set

(FYT)(p) (al, e o, X1, ,Xl) D= T(Ft(p))((Ft)*al, v (F)sag, (Fy) o X1, - - (Ft)*Xl)
=T

(Ft(p))<(F,t>*Oé1, ey (F,t>*0ék, (Ft)*Xla ey (Ft)*Xl)

If f € C2(M), then we define Ly f(p) i= | _(F/£)n) = %| _ (Fo F)m) =VI,(f).

We summarise the properties of the Lie derivative in the following

Proposition 1.20 (Properties of the Lie derivative).
i) Lvf=Vf  for feC™(M)
it) Ly (aT +bS) =aLlyT +bLyS fora,b € R and T, S tensor fields (linearity over R)
i) Ly(T®S)=(LyT)®S+T® (LyS) (Leibniz rule)
i) Ly (trT) = tr(LyT) (commutes with contractions)
v) LyW = [V, W] for W a vector field
vi) Ly (df) =d(Ly f)=d(V[) for f e C=(M)
vii) Ly LwT — Lw LvT = Ly, T for T a tensor field
viii) For a (k,l)-tensor field T in local coordinates we have

aj...ak __y/c aj...ap casz...ap
(‘CVT) bi...by — 4 acT by...by T b

1

u-bl N acval el T 1—@1“.0116_1C bl.--b[ * 3cVak
F T Oy VO L T O, VE.

bl...blflc

i) In adapted coordinates such that V' = 0y we have
(LyT)* % b, =0 (Talmalil...bl) .

Proof. 1) is by definition, ii) is an easy exercise. For iii) we compute

FTeS)p-To S|,

Lyv(T®8)|p,= 7H)r(l)

t
t—0 t
i BT OF Sy =R T@S|,  (FT)@ S|, ~T® S,
t—0 t t—0 t

=TRLyS|,+LyT®S|,.

15



For iv) consider first o € Q'(M) and X € X*°(M). Then

tr(Ly(a® X)), :tr( Fr( a@X))(

dt‘t 0 p

:“(dt\ Fa)ly ® (F_).Xly)
o O(ZF L) (B - O (E) - X7 (R()

(aw(Fy(p)) - X7 (Fi(p)))

= o
=24 R (a),
=Ly (trla® X))lp

Here we used the coordinate expression for the pushforward (1.8) and pullback (1.10) in the third line

— and we used F_; o F; = id and thus ﬁ(Ft( ) - oF; (p) = 6;; in the fourth line. The general case

OxH

follows from this together with iii).

We have already shown v) and for vi) we compute with X € X°°(M)

(Lv(d))(X) = (L df © X)

= Ly (df(X)) — df (L X) using iii), iv)
=V(X(f)) - [V.X]f using v)

= X(V(f))

=d(V)(X).

Note that this in particular implies for the differentials of local coordinates
Lydzt =dVF =0, VHdz" . (1.21)
vii) is an exercise, and for viii) we compute

(LyT) ey = (LvT)(dz™, ... dz™, Op,, ..., Op)
=tr(LyT ®dz™ ®...Qdx™ @ 0p, ® ... R 0p,)

= Ev(Tal'“a%lmbl) — T(Evdxal, e 7da:a’“78b1, ce 8bl) — ... T(dwal,. RN £Vd$ak7abl, ce
—T(d:c“l,...,d:c“k,ﬁvab“...,é)bl) —...—T(dx“l,...,dxak,ab“...,Evc?bl)
Vca Ta1 abl by TCaQ.--(lk by.by . acval - = Tal'“ak_lcbl_“bl . acvak

FTO Oy VA T O VE

b1-~~bl—1c

where we used iii), iv) in the third line and i), (1.21), and (1.4) in the fourth line.
Finally ix) follows directly from viii). O

1.6 Killing vector fields & isometries

Let (M, g) be a Lorentzian (Riemannian) manifold. A diffeomorphism F : M — M is an isometry iff
Frg=g.

16
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Now let F': R x M — M be a one-parameter group of isometries, i.e., F; : M — M is an isometry for

every t € R. Let V € X*°(M) denote the infinitesimal generator. We then have
d d
= —|4— F* = — |t= = .
Lvg= S l=0Fy 9=~ le=0g =0

A vector field V on (M, g) satisfying L g = 0 is called a Killing vector field.

Vice versa, let V be a Killing vector field (assuming also that its integral curves are defined on all
of R) and let F' : R x M — M be the associated one-parameter group of diffeomorphisms. Thus we
have %\t:oFt*g = Lyg = 0. Fix a point p € M and consider the curve ¢ AN Fygl,. We have

d . d - «(d .
Y (to) = £|t:toFt glp = %|t:toFtoFt—tog|p = F, (%h:OFt g|Ft0(p))

= th ('CVQ‘FtU(p) ) =0.
—_———
=0
It follows that 1 is a constant curve and since 1(0) = g|, it follows that ¢ (t) = g|, for all t € R. Thus

we have F}g = g for all £ € R. Hence, we have shown the following

Proposition 1.22. Let (M, g) be a Lorentzian (Riemannian) manifold and F : R x M — M a one-
parameter group of diffeomorphisms. Then F is a one-parameter group of isometries if, and only if,

the infinitesimal generator V is a Killing vector field.

Let us also remark that by Proposition 1.20 ix) a vector field V' is a Killing vector field if, and only
if, in adapted coordinates z* such that V = 0y we have dyg,, = 0, i.e., iff the metric components in

these adapted coordinates are independent of z°.

Example 1.23. Consider example 1.13, the sphere S* with local coordinates (0,¢) and metric g =
df? + sin? 6 dp?.

17



Let V. = 0, be the infinitesimal generator of the rotations F' : R x M — M around the z-awis:
F(t,(6,¢)) = (0,0 +1t). Since the components of g in the coordinates (6, ) are independent of ¢, it

follows that V' = 0, is a Killing vector field and F' is a one-parameter group of isometries.

Proposition 1.24 (Properties of Killing vector fields).
Let (M, g) be a Lorentzian (Riemannian) manifold.

i) Killing vector fields form a Lie algebra: if V, K are Killing vector fields, then so is [V, K].
it) V is a Killing vector field if, and only if, V,V, +V,V, = 0.
iii) If V is a Killing vector field, then V,VyV, = —RaapcV <.

iv) Let V' be a Killing vector field and v : I — M an affinely parametrised geodesic (V+7 =0). Then
9(V,%) is constant along .

Note that iv) shows that Killing vector fields give rise to first integrals/conserved quantities for

geodesics.

Proof. i) follows from Ly k19 = LvLixg — Lx Ly g = 0, where we used Proposition 1.20 vii).
To see ii) we compute
(Lvg)(0u,00) =V (gu) —g([V,04],00) — 9(0u, [V, 0,]) using Proposition 1.20 iii), iv), v)
=V(gw) —9(VvO,,0,) — g(0u, VvO,) using V is symmetric
+9(Vo,V,0,) +9(9, Vo, V)

= (Vvg)(0u,0,) +9(Va,V,0,) +9(9,,Va, V) using Leibnizrule for V
——
=0
=V, +V,V, using V is metric .

For iii) recall from first problem sheet that V,V,V. — V,V, V. = ReiatVE = —RyeapVE. Also recall
the first Bianchi identity Rgcep + Raabe + Rapea = 0. Together this gives
0=V,VoVe = VpV Ve + ViV V, = V.V Vo + V.V V, — V. V.V,
DV VoVe + VoVoVi + Vi VoV — VoV Vi — VoV Vi + VoV Ve
= 2(vavb‘/c + vbch;J, - chbVa) )

and thus V,VpV, = —Raan. Ve

For iv) we compute:
Y9V, 9) = V5 (9(V,9)) = 9(V5V.9) +9(V, V49)
=0 =0

where the first term is zero by ii), which says that V,V, is antisymmetric, and the last term is zero

by virtue of the geodesic equation. O
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Example 1.25. Consider Minkowski spacetime M = R*, g = —dt*> + dx? + dx3 +dz3. ThenV = 9, is
a Killing vector field, since the metric components are independent of t. It generates the one-parameter
group of isometries F : R x R* = R*, F, (t,x) = (t + to,x), the time translations.

Let U € R* be a unite timelike vector. Then s = s-U € R* is an affinely parametrised timelike

geodesic with i = U. Then —g(0y,U) = U is the conserved energy of the particle.

1.7 Submanifolds

Let M be an n-dimensional smooth manifold. A subset S C M is called a k-dimensional embedded
submanifold of M (k < n), iff for all p € S there exists a coordinate chart ¢ : M DU — V C R»
with p € U such that

SNU = {(z',...,a% " 2"y | oM = =2 =0} .
A hypersurface S C M is an (n — 1)-dimensional embedded submanifold.

Proposition 1.26. Let f : M — R be a smooth function such that df|, # 0 for all p € f~1(0). Then
f71(0) =: S € M is a hypersurface in M.

Proof. Let p € S and (x!,...,2™) a coordinate system centred at p and let without loss of generality
881]; (0) # 0. Consider the map

Then
1 0 0
0 .0
Dy =
: 0 1 0
of ... ... Of
ozl ox™

is invertible at x = 0 and thus ¢ is a diffeomorphism in a neighbourhood of 0 and thus gives rise to a

new coordinate system (y',...,y") in which S is locally the level set y™ = 0. O

Example 1.27. 1. Let M = R", then S = {zFt! = ... = 2" = 0} ~ R* is a k-dimensional

submanifold. Indeed, all submanifolds are locally modelled on this one.

2. Let M = R"™ and let f(z) = 23 + ... + 22 — 1. Then f~1(0) = S"1, and since df(x) =
2(xrdry+. . .+ xpday,) # 0 forx # 0, it follows from Proposition 1.26 that S*~1 is a hypersurface.

3. Let M be an n-dimensional manifold, V a vector field with V (p) # 0 for allp € M. Let vy be the
family of integral curves of V.. Then each ~y is locally® a 1-dimensional embedded submanifold,
since one can choose locally adapted coordinates {zt,... x"} such that V = 0y and thus locally

y={2?=...=2" =0}.

8In general each integral curve is only an immersed submanifold — a notion we do not discuss in this course. By
‘locally’ we mean here that if v : I — M, then for each sg € I there is € > 0 such that v((so — €, s0 +¢)) is an embedded

submanifold.
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One way to think about the last example is that we prescribed one dimensional tangent spaces
at each point of M by prescribing a non-vanishing vector field V' and then we showed that one can
‘integrate’ them, i.e., find one dimensional submanifolds which have the prescribed tangent spaces. In

the next section we generalise this to higher dimensions.

1.8 Integral manifolds

Give now two smooth vector fields V, W on M such that at every point p € M V(p) and W (p) are
linearly independent. Then span{V, W} is called a 2-dimensional distribution of the tangent bundle
TM. Tt is called integrable if there exists locally a family of 2-dimensional submanifolds which have
span{V, W} as their tangent spaces.

Assume there exists such a submanifold S. Then V,W restrict to vector fields on S and thus
[V, W] is also tangent to S, i.e., [V, W] C span{V,W}. This shows that [V, W] C span{V, W} is a
necessary condition for the integrability of the distribution. We show in the following that it

is also a sufficient condition. But before we do so we look at some heuristics:

Heuristics: Geometric interpretation of [V, W1.
Let VW € X°(M), F; : Rx M — M the one-parameter group of diffeomorphisms generated by V/
and Gy : R x M — M that generated by W. Let {z!,..., 2"} be a local coordinate chart. We compute

in those coordinates F¥(Gs(z)) and G5 (F.-(x)) to second order in the small parameters €, > 0.

v T, (Ggte)

Qgc*). ___T-> )
® G (F w))
U/S \,J Al ) &
s
XO Z > e
Fz(ﬂ

Taylor expanding around § = 0 and using %‘ :OGg(y) = W¥(y) we obtain G§(y) = y* + dW*H(y) +
O(6?). Using this with y = F.(x) we get

G5 (Fe(x)) = F¥(x) + 0WH(Fe(x))
~ gt + eVH(z) + SWH(x) + deV¥ ()0, WH(x) ,

where in the last line we have analogously Taylor expanded F!(z) and W#(F.(x)) around & = 0.

Analogously we obtain
FIGs(x)) =~ at + 0WH(x) + eVH(x) + oW (2)0, V¥ (x) .
Subtracting we obtain
G (Fu()) — F¥(Gy(x)) = b(VY0,WH — WYO,VH)(x) = 6V, W (x) (1.28)

We see that [V, W] measures the lack of commutation of the associated flows F; and G.°

90ne can show indeed rigorously that Fs o Gy = Gy o Fs if, and only if, V,w]=o0.
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If [V, W] = 0 the idea is now to sweep out the integral manifold through a point p by flowing along
the flows starting from p. The heuristics suggest that if [V, W] = 0 we should obtain a 2-dimensional

surface.

Proposition 1.29. Let M be an n-dimensional manifold, V. W smooth vector fields which are point-
wise linearly independent and satisfy [V,W] = 0. Then, locally, there are coordinates (v, w,x>,... z")

for M such that V = 8— and W = 8w

Proof. Let p € M, then we can find local coordinates (y!,...,y") centred at p such that Biyl =V,
P

and 8%2 ) = W], (exercise). Let F' denote the one-parameter group of diffeomorphisms generated by

V and G that generated by W. Define

(v,w, 3, ... 2™) A Gu(F,(0,0,2%,...,2™)) .

A J

/////c,(‘;(

v F(oo#‘ ")

0, r - 1:.,\))

Then

Dylo = ;
0 1
thus ¢ is a local diffeomorphism around p and (v, w, 3, ...,2") form new coordinates on M. Clearly
we have W = 2, but in general we only have V = a(v, w, z") 2 +b(v, w,2") 2 + > 1_s ¢/ (v, w,2") 35

with a(v,0,2) = 1, b(v,0,2) = 0 = ¢/ (v,0,2%) for j = 3,...n. Now we compute

O:[W,V]zai( —+b—+zc’ )—( ﬁ+b—+chaxj>ai

0 0 .0
= O0wa + — + Opb - — O+ — .
“ + ow + Jz:; oxJ
Since %, %, %, j = 3,...,n are linearly independent we obtain Oya = Oub = J,¢/ = 0 for

j = 3,...,n. With the initial conditions of a,b,c¢’ for w = 0 this gives a = 1 and b = 0 = ¢/,
j=3,...,n, from which V = % follows. O

In particular if [V,W] = 0, then there exist locally 2-dimensional submanifolds S := {2% =
3 2" = "} with T'S = span{V,W}. The following lemma reduces the general case to this

yoeeey
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Lemma 1.30. Let M be a smooth manifold and V,W € X*°(M) pointwise linearly independent
with [V, W] C span{V,W}. Then there exist V,W € X°°(M) with span{V, W} = span{V,W} and
[V, W] =o0.

Proof. Let V.=X-V and W = p- W with X\, u € C°°(M). We compute with f € C°°(M)
! A A
0=[V,W]f =[A\V,uW]f
= AV, uW1f = W) - (Vf)
= AV, W+ AV () - (W) = pW(A) - (V)
= ApaV (f) + ApbW (f) + AV () - (W f) =W (A) - (Vf)
where we have used [V, W] =a -V +b-W with a,b € C°°(M) in the last line. We choose u such that
b+ V() =0 = V(np)=-b
by integrating along the integral curves of V, and similarly we choose A such that
Aa—W(A)=0 = W(nX) =a
by integrating along the integral curves of W. This then gives [V, W] =0. O

Theorem 1.31 (Frobenius). Let M be an n-dimensional smooth manifold, Vi,..., Vi € X>°(M),
k < n, pointwise linearly independent with [V;,V;] C span{V1,...,Vi} for all 1 < i,j5 < k. Then

span{Vy, ..., Vi} is integrable, i.e., locally there exists coordinates {v1,...,Vk, Tpt1,...,Tn} such that
span{Vy,...,Vi} are the tangent spaces of the family of submanifolds {xk11 = Cpt1,.--,Tn = Cn},
c; € R.

Proof. For k = 1 this is Proposition 1.17, for k = 2 this follows from Proposition 1.29 and Lemma

1.30. The general case is by induction (not examinable). O

1.8.1 k-forms and dual version of Frobenius

Recall that a (0, k)-tensor field w is at every point p € M a multilinear map w|, : T,M X ... x T,M —

k—times
R. If wl, is totally antisymmetric for every p € M then we say w is a k-form. If « is a (0, k)-tensor

field, then

1 ) +1 for even permutations
Alay...ap] = 7 ngn(a)%(al)...a(ak) with sgn(o) =
o —1  for odd permutations

is the total antisymmetrisation of «, a k-form. Given a k-form « and an [-form (3, we define their

wedge product a A 8, a (k + [)-form, by

(k +1)!
(CY A 5)@1...ak+l = Wa[al...akﬂak+1...ak+l] 3

the total antisymmetrisation of their tensor product with a normalising factor.
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Example 1.32. Let o, 8 € QY (M). Then for X,Y € X°°(M) we have
(aAB)X,)Y) =a(X)B(Y) - B(X)a(Y) .
Also note that a AN a = 0.

Given a k-form «, then Vo is a (0,k + 1)-tensor field. We define the exterior derivative da, a
(k + 1)-form, by
(da)al---ak+1 = (k =+ 1)V[U«1aa2~~ak+l] .

Note that

_ b b
v[alaag...ak+1] - a[alaag...ak_H] - F[a1a2aba3...ak+1] T ee e T F[alak+1aa2...akb]
= a[alaag...ak+1] k)

where we have used the symmetry of the connection. We thus obtain an operator d : k-forms —
(k + 1)-forms which is independent of the metric g (and V). It only depends on the smooth manifold
structure.

Exercise: Show that dod = 0.
Proposition 1.33. Let w € QY (M) and X,Y € X°°(M). Then
do(X,¥) = X (V) = ¥ (w(X)) — w((X.V])
Proof. We compute

dw(X,Y) = (dw)p XY
28[awb]X“Yb

wy) - Y? — Y (wp) X

X(
X(wpY?) —wp - X(Y?) = Y(wp XP) +wp - Y(XP)
X(w(Y)) = Y(w(X)) —w([X,Y]),

where we have used in the last line [X, Y]’ = X(Y?) — Y/(X?). O

Let M be a an n-dimensional smooth manifold and o € Q!(M) non-vanishing. For p € M,
alp : TyM — Ris linear, so ker o, is (n—1)-dimensional. It follows that there are locally (n—1)-smooth

pointwise linearly independent vector fields Vi, ..., V,_; such that ker & = span{Vi,...,V,_1}. Vice

versa, given an (n — 1)-dimensional distribution span{Vy,...,V,,_1}, there is locally a 1-form a with
ker o = span{Vy,...,V,,_1}. We conclude that 1-forms are an easy way to specify (n — 1)-dimensional
distributions.

Proposition 1.34. Let M be an n-dimensional smooth manifold and o € Q*(M) pointwise non-

vanishing. Then the following are equivalent:

i) For V,W &€ ker o smooth vector fields we have [V, W] € ker o (<= ker « is integrable by Theorem
1.31)
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ZZ) da|kcm =0
i) aNda=0 .
Proof. By Proposition 1.33 for V., W € ker @ we have

da(V,W) =V (a(W)) =W (a(V)) —a([V,W]) = —a([V,W]) .
—— ~——
=0 =0

We thus obtain da(V, W) = 0 iff [V, W] € ker a, which shows the equivalence of i) and ii).

To see ii) <= iii), let p € M and let ai,...,q, be a basis of Ty M with a; = a(p). Then
a; ANy, 1 <i<j<mnisa basis for all antisymmetric (0,2)-tensors at p (exercise). Thus dal, =
Zl§i<j§n fijai aye? with f@j eR.

Now, if dafyera = 0, then daf, = 37, o,y Aoy and thus andal, =30, <, f1i; ¢ Ao Aa; = 0.

=0
Vice versa, if 0 = a A dov = v A di<icj<n fiji A o, then it follows that da =37, ., fija Aoy

and thus da|gero = 0. O

Corollary 1.35. Let a € QY(M) pointwise non-vanishing with o A dae = 0. Then there exist local

coordinates {x',... 2"} and a local function f such that o = f - dx™.

Proof. By Proposition 1.34 and Theorem 1.31 ker « is integrable, thus there exist local coordinates
{zt,...,2"} such that {z" = ¢, }, ¢, € R, are integral manifolds of ker a. Thus dx™ is proportional to

Q. O

Let now (M, g) be a Lorentzian manifold and let V' € X*°(M) be nowhere vanishing. We say that V'
is hypersurface orthogonal iff the distribution orthogonal to it, i.e., V+ = {X € X (M) | g¢(V, X) =
0}, is integrable. Note that V1 = ker VV’. Proposition 1.34 shows that V' is hypersurface orthogonal
if VP AdV® =0 (<= V[0,V = 0).

Corollary 1.36. Let (M,g) be a Lorentzian manifold and let V€ X°°(M) be hypersurface orthogonal
and nowhere null. Then there exist local coordinates {z°, ..., 2" 1} such that Oy ~V and
g = goodxj + Z gijdr; ® duj .
1<i,j<n—1
Proof. Let p € M. By the Frobenius theorem we can choose local coordinates {y°,...,y" "'} such
that {y° = ¢y} are integral manifolds of V*, and without loss of generality assume they are centred

at p.

\‘ t\/o: *DJ

° A A -A-4_ “A
(x ‘x Y l...l7< =Y )
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Pick {y° = 0}, on which we have coordinates {y!,...,y" '}. Note that 0 # g(V,V) = V*(V), and
thus V ¢ ker V?, i.e., V is transverse and orthogonal for {y° = 0}. Consider the family of integral
curves of V and let (2%, 2%, ... 2" 1)

of V through {y° = 0,y" = 2'} with {y°* = 2°}. In a small enough neighbourhood {z°,...,2""1}

refer to the point that is the intersection of the integral curve

form coordinates (exercise) and since z;, i = 1,...,n — 1 are constant along the integral curves of V
we have V ~ 0. Moreover, we clearly have 9; C V' by construction. This shows that go; = 0 for

i=1,...,n—1. O

Example 1.37. Consider the FLRW cosmologies from GR I, where M = I x M, g = —dt* + a(t)*g.
Here, (M,q) is a Riemannian manifold of constant curvature. It is clear from the form of the metric

that O; is hypersurface orthogonal with orthogonal hypersurfaces {t = to}.

We call a spacetime (M, g) static iff there is a timelike and hypersurface orthogonal Killing vector
field V. In such a spacetime one can locally introduce coordinates {x°,... 2" 1} such that V = 9,

and g = goodzg + 321 <; j<n_1 9ijdT; © dxj with g, being independent of z° (problem sheet).

Example 1.38. The Schwarzschild spacetime is static, which is easily seen from the form of the metric

2M 1 .
g=—(1- T)dt2 + [ dr? + r2(d6? + sin® 0 dp?) .
T

Forr >2M, 0; is a timelike and hypersurface orthogonal Killing vector field.

We call a spacetime (M, g) stationary iff there exists a timlike Killing vector field (which is not
necessarily hypersurface orthogonal).!® The Kerr spacetime, which we encounter later, is stationary

but not static.

2 Linearised general relativity

2.1 Einstein equations with matter

A continuum of matter has an associated stress-energy tensor Ty, a symmetric (0, 2)-tensor field. In
flat spacetime 9°Ty,;, = 0 expresses the conservation laws (of energy, momentum, ...), see the second
problem sheet. In curved spacetime the local conservation laws are expressed by V®T,; = 0.

Recall that G4 = Rap — % gap R and the second Bianchi equations give V¢G4, = 0. So Einstein tried

Gap = A Typ with X\ being a constant which will be determined by comparison with the Newtonian

881G

oo in

theory. We will find in Section 2.3 that A = 87 in geometrised units where G =c =1, or A =

non-geometrised units.
Example 2.1. 1. Perfect fluid: A perfect fluid is described by

o 4-velocity u of a fluid element, a unit timelike vector field

10Usually one does not require that the Killing vector field is timelike throughout the whole spacetime, but only in
an asymptotic region. This remark also applies to the notion of a static spacetime. In the Schwarzschild interior the

Killing vector field 0 is spacelike.
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o the mass-enerqy density p in the rest frame (scalar)
e the pressure p in the rest frame (scalar)

e equation of state p = p(p)

The stress-energy tensor is given by Ty = (p 4+ p)uaup + pgap. Choosing an orthonormal frame

field eg, . .., e3 with eg = u (<= rest frame), then in this frame
p 0
p
T(Lb = )
p
0 P

from which we see that the interpretation of p and p is as given above. A direct computation
shows
u'Vep+ (p+p)V3u, =0
VT =0 <— ( )
(p + p)uavaub + (gab + uaub)vap =0 )

which, together with the equation of state, give the equations of motion for the fluid.
2. Dust: This is a perfect fluid with p = 0. Thus Tap = puguyp.

3. Electromagnetic field: Described by the Faraday tensor Fup, a 2-form. The stress-energy
tensor is given by Top = ﬁ(Fach ¢ — %gadeeFde). A direct computation gives'! (see problem
sheet)

dF =0
VaTab =0 <
Ve, =0.

Rewriting the Einstein equations: Taking the trace of Ry, — % gap R = XT3 yields R—2R = AT and

thus R = —AT. We thus see that the Einstein equations are equivalent to

1
Rab = )\(Tab — §gabT) . (2.2)

In vacuum this reduces to Ry, = 0.

2.2 Linearising the Einstein equations around Minkowski spacetime

We start out with Minkowski spacetime (R%,7) in inertial (Cartesian) coordinates z*. In the follow-
ing the Greek indices p, v, k,... will not be abstract indices but will always refer to this
chosen coordinate system on R*.

We look for an approximate solution (R* g = 7+ eh,T = 5(111)), where h is a symmetric (0, 2)-
tensor field on R*, 0 < ¢ < 1 a small parameter. We require that g satisfies the Einstein equations

Rop = MTup — %gabT) to order e, ignoring higher orders of . This is a good approximation if the

11Tn general V@T,; = 0 does not imply the Maxwell equtions.
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gravitational field is weak, the mass-energy density and the material stresses are small. In this way
we obtain a theory for a symmetric (0,2)-tensor field h on Minkowski spacetime. We now compute

R, (n +¢€h) to order e:

e Inverse of g,,: Ansatz (g7!)"* = 5" — es¥", with s a symmetric (2,0)-tensor field. Then
guu(g_l)w{ = (UW + 6hw)(77w - gsyﬁ) = 6}{” - 677WSM + 5h;w77UK + 0(52) )

whence 1,,,5"" = h,,n"" and thus s = h,,n""n*.
Note that we have the two Lorentzian metrics 7 and g, so we now make the convention that we
raise and lower all indices with the Minkowski metric 7,,, i.e., A" = h,,n""n*’. We thus

obtain
(g—l)w-; — num S + 0(52) .

e Christoffel symbols:

1
Fﬁjn = §gﬂa(81/gna + 8/191/0 - 80.91/&)

1
— €§n#0(8yh,w + O0hye — aahlm) + 0(62) ,

where we have used in the last line that the z# are Cartesian coordinates.

e Curvature:

R*_, =0,l —9,I% +Th T T T7

Kpv po VK Vot pk

=0(e?)

1
= Ein“”(ap&,hm + 0,0k hye — 0,05huk)

1
_ 5§nlw(8,/8ph,w + ayamhpg — 8V80hpﬁ) + 0(62)

(2.3)

_ sénﬂa(apamhyg 0,05l — ByOhp + DyBohip) + O()

e Ricci curvature:

R. =R',,, = s%(@“@,{hw — Ohy — 0,0sh + 0,0"h,,,) + O(?)

where h = h,,n"? (the trace) and 00 = n#?0,0, (the wave operator on Minkowski spacetime).

We now introduce EW = huy — %nwh, the trace reversed metric perturbations, and compute
0 (0" hy) + 0y (0" hyys) = 00" by — %8,{3,,/1 + 0, 0" by — %aya,{h
= 0:0"hyu + 0,0"hyy — 0.0, N .
Thus
Riv(n+eh) = %e( — Ohure + 0, (0" hyw) + au(aﬂﬁw)) +0(e?) .
We thus obtain that the field equations (2.2) to order € are

1 — _ (1) 1 @
= ( — Ohyye + 00" By + 8,,8“h,m) = MLy = 500 T) - (2.4)
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We next simplify these equations by choosing a suitable gauge.
Recall from Section 1.3 that if ® : R* — R? is a diffeomorphism and g is a solution of R, (g) =
MTy — 39,0 T), then ®*g is a solution of

Ry (®7g) = ((I)*R(g)),w = )‘(((I)*T)/w - %(‘p*g)/w ‘ (I)*T) .

The solutions (R*, g, T') and (R*, ®*g, ®*T) are regarded as physically equivalent.
Now, let £ € X*°(R*) and let ®; denote the associated one-parameter group of diffeomorphisms.

Then
((I):g)w = (q):n)/w + 5((1):h)/w
d

= T + £ | _ (@I + O(?) + el + O(?)

=N + E(h/w + (EEU)/LV) + 0(52)

and
€)) (1) )
(T )y = (2T ) =Ty + O(7) -

(We see that since T is already of order € it is gauge invariant to order ¢.)
€))
Thus if (9, + €hpv,eT ) satisfy the Einstein equations (2.2) to order e, then so does (1, +
—_———
=9uv
(1)
e(huy + (Len)yw),eT 1) for any € € X°(R*Y). The vector field ¢ is often called an infinitesimal

diffeomorphism in this context. We summarise our finding in the following!?

e
Proposition 2.5. If for given T ., we have that hy,, satisfies (2.4), then so does

hyuw = Ty + (L) = Py + Op&y + 0v&y
for any € € X*°(R%).
We now choose a gauge ¢ by solving!?
0, = —0°T,, . (2.6)

The gauge (2.6) is called the wave gauge or harmonic gauge. The gauge condition (2.6) determines
€ up to the addition of a solution y € X¥*°(R*) of the homogeneous wave equation Ox, = 0. We thus
have a residual gauge freedom.

We now compute
0" Py = 0" (i — %mwﬁ)
= 0"(hyw + Oy + 00€u) — %au(h +201¢,,)
= 0" hyy + 08, + 0,0"¢, — %&,h — 9,0"¢,

= 0"y, +0&,
=0

12The proposition could have also been verified by direct computation.
13The linear wave equation with a right hand side can be easily solved in Minkowski spacetime. There remains the

freedom to prescribe, for example, £#|t—o and 9:&H|1=0.
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where we used (2.6) in the last line. Thus h,,, satisfies

~ (1) 1 (1) (1)
Dh#” = 72)‘(TAW - in,uI/T) = 72>‘Tp‘u

Mhyy =0,
the linearised Einstein equations around Minkowski spacetime in the wave gauge.

Remark 2.8. It will be convenient later to rephrase the first equation in (2.7) also in terms of Z/w =

hyuw — %nﬂuﬁ to obtain

(2.9)

= - (1)
Note that hy, = hy. Also note that if 0* T ,, = 0, then
= (1)
00 hy, = =200 T, =0,

1.€., 8‘LZW satisfies the homogeneous wave equation. If we solve the first equation in (2.9) using for
example the retarded solution of O then it follows automatically that the second equation in (2.9) is
also satisfied.'* Note that solving the first equation of (2.9) using the retarded solution to obtain il,u,,

and then computing Z;w = izW from it, gives the same result as solving the first equation of (2.7) using

(1)
the retarded solution. Thus we infer that if O*T ,,, = 0 holds, solving the first equation of (2.7) using

the retarded solution again ensures that the second equation of (2.7) is satisfied.

Remark 2.10 (Why is it called wave gauge?).
Let (M, g) be a Lorentzian manifold and let Oy¢ := gP*V ,V v be the wave operator on (M, g),

where 1 € C*°(M).1> Let x* be local coordinate functions on M. Then we have
Ogat = —g"Thy = —T*.

We define I', := g,,I'*. Then the set of coordinates x* satisfy the wave equation if, and only if, I', =0
for all v.
Going back to linearised gravity with Cartesian coordinates z# we see that they satisfy the wave

equation associated with g = n+ €h to first order, i.e.,

Oy2" =0+ 0(e?) ,

140ne should emphasise that the first equation in (2.9) ensures that the linearised Einstein equations (2.4) hold only

if the second equation in (2.9) also holds!
15With this terminology we have O = 0,,.
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if, and only if
O(?) £ T, = guug” T,
= nyunp/\&t%n“g(apﬁg,\ + oy — Dehpy) + O(e?)
. %(MM + s — DR + O(2)
= 0 (hy — %myﬁ) + O(£%)
= 0 hyy + 0%,
i.e., if, and only if, 8)%” =0.

Remark 2.11 (Analogy with gauge freedom in Maxwell’s equations).
Consider Mazwell’s equations in Minkowski spacetime:
dF =0
(2.12)
O'Fy,, =4nJ, ,
where J, is the source. The first equation implies that we can write F = dA for a one-form A (then
dF = ddA = 0 is trivially satisfied). The second equation in terms of the electromagnetic potential
A becomes 4nJ, = O"F),, = 0*0, A, — O0"0,A,. Thus we can rewrite Mazwell’s equations in terms of
the potential as

OA, — 8,0" A, = 4xJ,, . (2.13)

Now consider & € C(R*) and let A= A+d¢. Note that F = dA = dA + dd¢ = F. It thus follows
—

=0
immediately from (2.12) that if A solves (2.13) then so does A.'S The addition of dé to A represents

the gauge freedom for Mazwell’s equations.
We can also fix the gauge here. Let us choose the Lorentz gauge 8“121“ = 0, which can be arranged
by solving 0§ = —0" A, Since then we have
A, =0"(A, +0,8) =0"A, +0E=0.
17

In the Lorentz gauge (2.13) becomes

OA4, = 4rnJ,
MA,=0.

Note that we also have the residual gauge freedom Au = flu +dx with x € C®(R*) satisfying Ox = 0.

(1)
Remark 2.14. FEquations (2.7) with T =0 describe a massless spin-2 field on Minkowski spacetime.

16 This is analogous to Proposition 2.5 and can again be alternatively verified by direct computation.
17CE. (2.7).
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2.3 Newtonian limit
The Newtonian theory is well-verified if

i) gravity is weak = linearised theory
. L &)
Consider as a matter source a perfect fluid with stress energy tensor T ., = (p + p)uuuy + P

ii) the relative motion of sources is much slower than the speed of light c=1 = u~ 9,

iii) the material stresses are much smaller than the mass-energy density — p ~ 0.

(1)
Under these assumptions we obtain T ~ pdt ® dt, the stress-energy tensor of dust. We furthermore

assume that the spacetime geometry (gravity) is slowly varying, i.e.,
iv) Ohyy ~ 0 82h,, ,
which is compatible with the assumption of slowly varying matter sources ii), but is not implied by

it.18
1)

Under these assumptions we obtain from (2.7), using T = —p,
~ 1
Ahgo = —2X(p — 5,0) =-\p (2.15)
Ahg; =0

- 1
Ahj = —2A(0 + imjp) = —NijAp ,

which can be uniquely solved with the boundary conditions h,, — 0 for r — 00.'® The only non-

vanishing components are hoo = iL“-, which satisfy
Ail()o = —)\p .

We thus see that the whole content of gravity in this limit is encoded in just one scalar function.
Also note that ZW satisfies AZW =0 for (u,v) # (0,0) and AZOO = —2Mp. From this it directly
follows that Zoo is the only non-vanishing component of the trace-reversed metric perturbations. As-
sumption ii) implies dyp = 0 to first approximation, such that ﬁoo is independent of time. This is
self-consistent with assumptions iv) and also implies that the wave gauge 8"2,“, = 0 is satisfied, cf.
Remark 2.8.
To make contact with the Newtonian theory, we consider the gravitational force on a test body,
which moves on a timelike geodesic
A2zt e di" dz?
dr? Pe dr dr

Here, 7 is the proper time. We consider non-relativistic motion such that
dxt dt
dr dr —

18F.g. there could be high frequency gravitational waves, see Section 2.5
19Here, A denotes the Laplacian A = 3% + 8% + (9?%.

1.
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We can thus take 7 ~ ¢ and to leading order the geodesic equation becomes

d*zt  d%a i
e ~ 7 ~ —Tgo (27 (7)) .

We compute
1 . - L+
00 = 51" (200hoo = Dohoo) = =5 0ihao ,

so that we obtain

d?xt 1 -
dt2 ~ iaihoo . (216)
Recall the Newtonian theory
Ad = 4mp Poisson’s equation with G = 1 (2.17)
d?x?
F-_Vo — S =0 (2.18)

Comparing (2.16) with (2.18) gives ® = —L1hgo. Using this we obtain from (2.15) —Ap = Ahgy =

—2A®, which we can now compare with (2.17) to obtain
A=8m.

Having derived the proportionality constant, the Einstein field equations now take the form G, =

87TTab.

Remark 2.19. 1. We consider the ezample of the gravitational field of the sun. Recall that we work
in geometrised units in which G = ¢ = 1. The metric (length element) ds* = g = g, da" @ dz”
has units km?. Here, let us give units of km to the background coordinates’® x* so that the
metric components g,, are dimensionless. The mass of the sun is Mg ~ 2 - 103%kg ~ 1.5km.
Solving (2.15) for a spherical mass distribution with \ = 87 we obtain hoy = % forr > Rg,
where 1? = 2% 4+ 23 + 2% and R ~ 700000km is the radius of the sun. Considering for example
the effect on the orbits of planets we thus see that il;w 1s of order much less than Wlooo <1, so

that the linearised theory is well justified.

2. Note that the right hand side of (2.16) is of order e; a small effect. It is, however, not negligible

for determining the orbits of planets, where this small force acts over a very long time.

3. We did the comparison of the Newtonian limit of general relativity with the actual Newtonian
theory in coordinates. However, coordinates themselves do not have any a priori physical mean-
ing in general relativity (c.f. the instructive example in Section 2.5.1). This is a subtle point.
In general relativity distances have to be determined geometrically via, for example, the radar
method, measuring the time of flight of a photon. The coordinates x* are, however, such that the

geometric determination of length and time is very close to the one given by the coordinates in

20Note, however, that this does not mean that the points (0,0,0,0) € R* and (1,0,0,0) are 1km ~ ms apart.
The proper time, which is accessible to measurement, has to be computed using the metric! In the linearised theory,

and for short coordinate distances, these two values are, however, very close to each other.
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comparison with the length scale of the orbit of a planet.2! This is because the time of flight of

a photon across the solar system is small compared to the period of the planets.

2.4 Far-field of stationary isolated gravitational body in linear approxima-
tion
We recall from (2.7) the linearised Einstein equations in the wave gauge

. 1)
Ohpy = =167 T (2.20)

Ry =0 (2.21)

In this section we are looking for solutions with

)
i) T, =0

—~

1)
ii) T ,.(t,-) is compactly supported in R? for all ¢ € R (i.e., isolated gravitational body)

(1) -
iii) 0;T 1 = 0 = Othy, (ie., time-independent solution).

Equation (2.20) thus becomes

. (1)
Ahyy = —167T ,,, . (2.22)

We are imposing the asymptotically flat boundary conditions iLW(g) — 0 for |z| — oo, where z =

= = (1)
(z!,22,2%). As before it follows directly that 0/h,, satisfies Ad*h,, = —1670"T ,, =0, so that the
boundary conditions imply 9*h,, = 0. It thus suffices to solve (2.22). We obtain??

/
—P=da (2.23)

1)
In general this depends heavily on the exact form of 7. Here, we are only interested in the far field.

For this we will expand (2.23) in powers of % We use the following identities, which have been derived

on problem sheet 2:

1)

3=

lz—2] + Bz z' + (’)(%) as a function of x, uniformly for bounded z’
2) fR3 T (@&) dz =0
3) Jas TY(t,z)dz =0
4) fgs T%(t, z)dz = 0

5) fps(T%2F + TO%3)(t, ) dz =0

21Tn Section 2.5.1 the accuracy of the coordinates giving proper distances and proper times is of the same order as the
effect one tries to measure.

22Recall that if Ap = f with f € C°(R?) and ¢(z) — 0 for |z| — oo, then p(z) = — [ 47;7%_/) dz’.
RS T

z’|
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6) fps T%(t, z)2? dz = 0.

e hgo(x): We first compute

L e P C ) R S R IR O
Too = T00+§T = T00+§(—T00+T i)zi(TOO‘f‘T i) -

We then obtain from (2.23)

. 1 1 (COINCY) ,
hoo(l):‘l/;(l — ( )>§(T00+TZ i) (') dz’ using 1)

R3

2 (1) (12 x»(m’)j (1) () 1

= T/(Too-f- T T(Too@/)-f'T i@/))—i—o(ﬁ)) dz’

R3 use 4) use 7) use 6)

2M

— + (9( )

(1)
where M = fR3 T go(z') dz’ is the total mass, and we have used

)
7) oo (') T oo(2') da’ = 0

by choosing the Cartesian coordinates x* such that the origin is the centre of mass, i.e., such that

7) vanishes.

- oW
o hpi(z): We have T o; = T ;. Thus (2.23) gives

- 1 z-z 1.@
ho¢(£)=4/;(1+ 2 +O(ﬁ))T0i(£/)d£/

R3
4 (1)
:r—gmj/x T oi(z') dz’ —l—(’)( =) using 3)
RS
=4l“j/(Tl) 'xl-div'-i-(’)(i) usin (Tl)-’-:(ll’) ~’-—|—(T1) s’y and )
r3 0[i-j) AL r3 g Ozx] O(ij) o[z.’E]] an .
RS

We define the total angular momentum around the z*-axis
1)
Ji = /amk(x’)lTom(g/) dz’ .
R3

This gives
1)

(1) O (1)
ik = / (@) T (@) = (@) T ()] da’ = 2 / T oy da’
R3 R3

Hence, we obtain

2 ; 1 2 1
hoile) = Seunal J*+ O(=) = 5 (T x 1)+ 0(5) .
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. ) (1) (1) (1)
e hij(z): We compute T ;; = T ;; — in;j(—T oo + T%1) Thus (2.23) gives

r r

- 1 1. W1 m @ .
hus(a) =4 [ L0+ OG5 = (- Ton + 1) ) d

R3
4 [ 1 ) 1
=2 [ [ L) +5mi(Too - T )@)] o’ + O(5)
R3 use 2) use 4)

2 1
=—-Mn;; + O(—=) .
, Nij + (7,_2)

Collating all the terms gives the asymptotic form of the metric

92~ (N + Eﬁw)dm“ ® dx”

2e M 1 2 . 1 ) .
= —(1 - +(’)(T—3)) dt* + (T—gaijk:vjsJk—l—(’)(r—g))(dt@dxz—l-dﬂ@dt) (2.24)
2eM 1 i ;
+ ((1 +— )1ij +(9(T—2))d:s ®dz? .

After a rotation of the Cartesian coordinate system we can assume that 7 = J0O,3. We then introduce
spherical polar coordinates (r,6, ) on R? in the standard way by 2! = rcos ¢siné, x? = rsin¢sin,

23 =rcosf. A simple computation then yields

eira’ JPdat = J(2?dat — xdx?) = —Jr?sin? 0 dyp .

We can thus rewrite (2.24) in spherical coordinates as

2e M
r

1 2 1
g~ —(1 - + O(T—3)> dt* — ;erin2 O(dt @ dp + dp @ dt) + O(T—g)(dt ® dz + dz ® dt)

9% M 1 (2.25)
+ (1+ =) (dr* +r*(d0” + sin* 0 dp?)) + O(—Q)(dmi ® do? + da? @ dxt)
r r
where e M is the total mass and eJ the total angular momentum of the body.
Remark 2.26. 1. Comparing with Section 2.3 on the Newtonian limit we see that ® = —%Boo =
—%Bn = —#, which is the Newtonian gravitational potential of a body with mass eM .

2. In contrast with Section 2.3 we allowed the relative motion of the sources to be compatible with

(1) -
the speed of light (T o; # 0), which gives the ho; terms. Note that the timelike Killing vector field
O¢ is not hypersurface orthogonal (exercise) if the total angular momentum J is non-vanishing.

Thus, in this case the solutions are only stationary — while in the case J = 0 they are static.

1)
3. We allowed the material stresses to be comparable with the mass energy density (T ;; % 0).

4. The same asymptotic form of the metric can be derived for a stationary strongly gravitating
isolated body in the fully non-linear theory. There, however, it does not hold any more that the

mass parameter e M in the asymptotic expansion (2.25) is given by the integral ng Too dz> of the
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mass-enerqy density of the matter®® — and similarly for the angular momentum parameter J. But
we still define the parameters eM and eJ appearing in the asymptotic expansion of the metric

for a strongly gravitating body to be the total mass and angular momentum of the spacetime.?*

5. The total mass can be measured by looking at the trajectory of test particles: As in Section 2.3

we find

2.
dd; ~ %@'iloo = 31(#) + O(%) .
For large r Newton’s laws are thus valid and one can measure M for example from Kepler’s third
law M = w?a®, where w is the angular frequency and a is the semi-major azis of the elliptical
orbit. This shows that our definition of the total mass as the parameter M appearing in the

asymptotic expansion (2.24) is compatible with the Newtonian concept of mass in the far field.

6. Similarly one can measure the total angular momentum from the precession of gyroscopes, see

the textbook by Misner-Thorne- Wheeler, page 451.

Example 2.27. We bring the Schwarzschild metric

—(1- %)dﬁ
r

sar dr® +77(d9* +sin® 0 dp?)

p
into the form (2.25) to see that, with the above definitions, it indeed describes the spacetime of an
1solated body with mass M and vanishing angular momentum.

We look for a coordinate transformation p(r) such that the metric becomes

g=—A(p)*dt* + B(p)*[dp® + p*(d6” + sin® 0dy?) | . (2.28)

=dz2+dy?+dz?

This gives us the conditions

B(p)?p® =r? (2.:29)
1

B(p)*dp* = T dr? (2.30)

Alp)? =1- ¥ (2.31)

We obtain from (2.29) and (2.30) (%)2 = %’ which gives

(1

b,
dT 1 _ 2?]”\4’ .
and thus
1
logp==4 | ————dr
&P / vr2 —2Mr
We use

dy =log(y + Vy? — a?) +
| == v

23This is because the gravitational field itself carries energy which contributes to the overall mass of the isolated body.
24 Another approach of arriving at the definitions of the total mass and angular momentum of a strongly gravitating

body is given by the ADM formalism using the Hamiltonian formulation of general relativity.
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which can be obtained by trigonometric substitution, to get

1
1 =+ d
8p /\/(T—M)2—M2 '
=dlog(r— M+ +/(r—M)?—-M?)+C

2M
:ilog(r—M—l—m/l—T)—l—C.

We use the positive sign so that p — oo for r — oo, and so

2M

Solving for r, we obtain

P CM .,

= — ]_ _—
r=oa0+ 5 )7

which, together with (2.29) gives

2 1 CM

Blp)=1 == (1+25).
(p) e Tzl 5 )

We now choose C' = % such that B(p)? — 1 for p — oo, which is necessary to ensure that the metric

(2.28) agrees with (2.25) to leading order. Using also (2.31) we now obtain

r= ol 5
B = (14 5,)"
(1- My

(p)? = Ay

which finally gives the metric

(1*%)2 2 M4 2 2 2 ) 2
g:_mdt +(1+2—p) (dp® + p*(d6* + sin® 0 dp?) )
2p
oM 1 2M 1
=—(1- s + O(p—2)) dt* + (1+ e + O(ﬁ))(d:f +dy? + d2?)

where we have Taylor expanded in the second line. Comparison with (2.24) shows that M is the
total mass and that 7 = 0. The coordinates (t,p,0,p) we have constructed are called isotropic

coordinates for Schwarzschild.

2.5 Gravitational waves

We now consider small vacuum perturbations of Minkowski spacetime, i.e., T}, = 0. Recall from (2.7)

the linearised Einstein equations in the wave gauge

Ohy, =0
Oy = 0.
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Also recall from Section 2.2 that we have the residual gauge freedom of choosing an infinitesimal

diffeomorphism y € X>°(R*) which satisfies Oxyu = 0. We can then go over to
iL,uV = iL;w + a,uXu + 8VX[L

which is physically equivalent to the perturbation fzw, and still in wave gauge 8"EW =0.
We show: One can choose x (depending on le“,) such that fzo# =0 =h for w=20,1,2,3. This is

called the radiation gauge and, as we will see, it can only be imposed in vacuum.

Idea illustrated by Maxwell’s equations: Recall from Remark 2.11 that the vacuum Maxwell equa-

tions in Lorentz gauge are

and also recall the residual gauge freedom Au = zzlu + 0ux with Oy = 0. We can use this freedom to
set Ag = 0, which is called the Coulomb or radiation gauge:

Let x be a solution of Oy = 0 for which we will specify initial data at {¢ = 0}. Then Ay satisfies
OAg = 0. If we can arrange for

AO’t:o =0= a“Zlo‘tzo J

then we obtain Ay = 0 by the uniqueness of solutions to the linear wave equation. We have

AO’t:O - AO‘t:O + 6tx‘t:0

and

a15‘40’:::0 = at;l0|t:0 + 6t2x‘t:0 = ai‘zli|t:0 + AX|t:0 :
We can now solve Poisson’s equation Axg = faiflih:o on {t = 0} to obtain the initial data x|;=o0 = Xxo-
Solving then the linear wave equation Oy = 0 with initial data x|i—o = xo and d;x|i—o = —Ao|i—o

gives the wanted gauge function y which puts A into the radiation gauge.

We now carry out this strategy for linearised gravity: The conditions h=8,h = fLOi = Othg; = 0
on {t =0} are given by

(—Oixo + 0'xi) = —h (2.32)
2(—Axo + 8 0pxi) = —0ih (2.33)
Oixi + Oixo = —hoi (2.34)

Axi + 0010 = —0ihoi - (2.35)

We show that we can solve this on {t = 0} to obtain x,|t=0 and O;x,|t=0: Combining (2.34) and (2.33)
gives 2(—2Axo — (9%02») = —d,h. Solving Poisson’s equation gives xg|t=o in terms of iLW. Using (2.34)

then gives 0yx;|t=o. Similarly, combining (2.32) and (2.35) gives a Poisson equation for x;|;=o with a
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right hand side which only depends on iLW. Solving it gives x;|i=o0, and together with (2.32) this also
determines 9;xo|t=o-

We now solve Oy, = 0 with the determined initial data on {t = 0} to obtain the infinitesimal
diffeomorphim x € X*°(R*) and set }ALW, = Py + Ouxy + Buxu. Since hy, is still in wave gauge, it
satisfies the linearised vacuum Einstein equations (2.5), i.e.,

Ohyw =0
By construction of y we have
il\t:o =0= atil|t:0
hoili=0 = 0 = dyhoili=o
and thus h = 0 = hg;.2

Since we assumed that T}, vanishes throughout the spacetime, we also obtain hoo as a consequence:

Since h = 0, we have Bm/ = ZW, and thus, by the wave gauge property
0= 0"hyue = "o = hoo ,
where we used iLOi = 0 in the last equality. It thus follows that atﬁoo = 0 and thus the wave part of

the linearised Einstein equations for floo becomes
0 = Ohgo = Ahgo -
Since we use the boundary condition iLW — 0 for |z| — oo, the unique solution is hoo = 0.

Example 2.36. We consider plane wave solutions huu (x) = Re(ﬁw(k)eikﬂp), where k = (ko, k1, k2, k3) €
R*.26 Then

Dﬁ,w =0 = 0k,ks =0 hence k has to be a null vector

h=0 < H", (k)=0 (1 condition)

iLuo =0 — Ho,(k)=0 (4 conditions)

Ol = Phyy =0 = KH,u,(k) =0 (KPH,i(k) =0, k"H,o(k) = 0 implied by above.)
|y —

3 conditions
Since I:Il“,(k) is symmetric, it has 10 degrees of freedom. The above impose 1 + 4 + 3 = 8 constraints
on IA{W(kJ), thus a gravitational plane wave has 2 degrees of freedom. For example if we consider a

gravitational plane wave propagating in x3 direction, i.e., k = w(0; + 03), then

0 O 0 O
. 0 A B 0
Huu(k) =

0 B —-A 0

0 O 0 0

with A, B € R. Note that the distortion of the spacetime geometry is transverse to the direction of

propagation.

25Note that this argument only works in vacuum regions.

26Note that fzuy does not satisfy the boundary conditions fluy — 0 for |z| — oo. However, as usual, physical solutions

can be expressed as a superposition of such plane wave solutions.
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2.5.1 Detection of gravitational waves via gravitational tidal forces

We measure the variation of “distance” between two nearby freely falling objects A & B which are
initially at rest with respect to the locally inertial frame in which we conduct the measurement. Here,
“distance” is measured via the radar method in terms of how long a light ray, emitted from A and
reflected by B, takes to reach back to A. In this way very precise measurements are possible with

interferometers. We present two ways of computing this effect:

First method: Recall that g, = 1., + dALW, where the perturbation is in the radiation gauge, i.e.,
iLOH =0 for p =0,1,2,3 and h = 0. The worldlines of A and B are given by affinely parametrised
P

timelike geodesics 7 = (v#(7)) which have small velocities compared to the speed of light, i.e.,
‘%’ ~ 1. We thus obtain

= ~Th 474" o Tl .
The radiation gauge implies that
H L o 7 7
FOO = 577” (280hgo — 8gh00) = 0 s

and thus we obtain that in the radiation gauge test particles, which are initially at rest, remain at rest

in the coordinates z*.

X
R

&/ 7)('1, <
7 7 A

But recall that coordinates themselves (spacetime points themselves) do not have physical reality,
but only in conjunction with the metric. So this result by no means implies that the particles remain
at rest in any physical sense. Merely our choice of gauge (the shifting of the metric by an infinitesimal
diffeomorphism) has been chosen such that in the a* coordinates test particles remain at rest. We
infer the physical result from the geometry:

Since the 0-components of iALl“, vanish, we obtain that i, reduces to a bilinear form A on R3. We

can thus write

g = —da? + dz? + da3 + dz? +eh
| —

I
3|

=l

=—dr+ (+e

)

=: fd:v% +97,
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where g is a xo-dependent Riemannian metric on R3. Up to corrections of order O(e?) the affinely
parametrised timelike geodesic tracing out the worldline of A can be taken to be 7 +— (7,0,0,0); and
7= (1, YL Y2 Y3) for B, with Y € R3. Let s +% (0°(s),5(s)) be the unique future directed null
geodesic connecting (79, 0,0,0) on A with B.

XO
ETA T &
L'Lqu\,'Ll'LO]‘O\B\D) q
7 & 3
(Tt AX°C1°\Io\oIo) 4/
(.-LO\O\OIO) % Yeﬁ{%
>.0a

‘We now assume that the time of flight of the photon is small compared to the charac-
teristic period of the gravitational wave, i.e., we can neglect the 2°-dependence of § and replace
g by glgo—r,. Thus, o becomes the future directed null geodesic with respect to the Lorentzian metric

Gleo—r, = —dz? 4+ Glpo—r, Then 0 = g(6,6) = —(6°)? + G|po—r, (7,7) and thus

Az (1) f_v/(;—o ds:/ Glao—ry (7,7) ds . (2.37)

By Problem 8 on Sheet 2 s — & (s) is a Riemannian geodesic in (R?,g|,0—,), connecting 0 and Y. Up
to parametrisation it is thus a small perturbation of [0,1] > s+— s-Y.
x° A

a ()

ql
_<
—~
%
n
rl
0
—
“w
)

Since the right hand side of (2.37)%7 is independent of the parametrisation of @, we can reparametrise
it such that
[0,1]>s5—0(s) =Y + O(e)Yt(s) ,

orthogonal perturbation

27Indeed, it is not difficult to see that the right hand side of (2.37) is the proper distance between 0 and Y in
(R37§|1:0:7'0)'
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where (Y, Y1) = 0. Then

Gloo=r (7,7) = (Y, Y) +20(e) - (Y, Y1) +eh(Y,Y) + O(?) .
=0

Thus,

/ w0 (,5) ds = / VALY ) + 2l o (Y V) ds + O(2)
=AY, Y) / \/1+st+0(52)
7(

/0 ;L|(7-0,E(s))(ya Y) ds + 0(82) R

YY)
+2\/ Y,Y)

where in the last step we have expanded the square root 1+ x =1+ %z + O(2?).
Assuming now that the separation of the particles A and B is small compared to the

wavelength of the gravitational wave we obtain

— S — € 7
/\/ Glao=ry(7,0) ds ~ /(YY) + W’ﬂ(mo,o,o)(x Y) +0(e?). (2.38)

Taking into account also the reflected light ray and also that, by virtue of the radiation gauge, coor-

dinate time along the worldline of A is proper time, we finally obtain

£ N
A1(79) = 2A2°%(79) = 2/ (Y, Y) + —(——=h)| 70,0,0,0) (Y, Y)
n,y) oo

which can be measured.

In the LIGO interferometers the test masses are 4km = \/W apart. A typical frequency of
an observed gravitational wave is of order f ~ 100H z, so that the first assumption we made, namely
that the time of flight of the photon is small compared to the characteristic period of the gravitational
wave, is satisfied. We obtain for the wavelength of such a gravitational wave A ~ 1000km, so that
the second assumption we made, namely that the separation of the test masses is small compared to
the wavelength of the gravitational wave, is also satisfied. The gravitational waves observed by LIGO

induce a change of proper distance of order x (diameter of proton) = 10~18m in the interferometer

1900
arms of 4km length.

Second method: We change the coordinates x*, which are not directly associated with measure-
ments, to locally inertial coordinates y* along A’s worldline, which are locally associated to our familiar
special relativistic measurements. We choose ey = 8%0 and e; = % + O(e) as an orthonormal frame

field along A’s worldline, which induces locally inertial coordinates y® in a small neighbourhood with

g o0 0

ot a0 920
g 5 (2.39)
@:%4‘0(5)
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along the worldline of A, see Problem 7 on Problem sheet 1.

Assuming that the distance of A and B is sufficiently small we can use the Jacobi equation
D?Y = R(9,,Y)0,

along A to describe the spatial separation of A and B, where Y is the geodesic deviation vector along

A. Using that we have Fgfya = 0 along A we obtain in the locally inertial coordinates

&

Bl —RY, .YV
dt? yoyryY
Because of Ryzoyoyy =0 and Ry;()yoyo = 0 this reduces to
2
j—QYyO =0
t
. | | (2.40)
i oyt j
a2y = By

yOyOyd
easily integrated. Using (2.39) we obtain

We now compute RY and show that if the tensor & is in the radiation gauge, then (2.40) can be

— R*

202027

RV

Oy0y +0(?) . (2.41)
In other words, if the change of coordinates is the identity up to order e, then the components of the
Riemann curvature tensor are invariant in linearised gravity, since they are already of order €.

Recall from (2.3) that in the fixed background coordinates z* we have

1o, ) A .
R#Kpl/ = 5577“ (aoamhl/cf - 8paahwi - 81/8;-1]7//)0 + 61180'th) .

In the radiation gauge we have Euo = 0, and thus we obtain
, 1 . . . . .
R’ 005 =~ 657710 (8080}1]-0 — 8080hj0 - 8jaohog + 3j8gh00)
1 ~
= €§8anhji .

Using again (2.39) we thus obtain R*

2005 5%8$0810]/:L1jzi ~ €%ay08y0ilyjyi, so that (2.40) becomes

d2

Tyyo -0
dt (2.42)
? 1 9% ¥
" =5 gphvw)Y
We now assume that the geodesic deviation vector Y satisfies initially
0 d 0
YY(0)=0 and %Yy (0)=0, (2.43)

i.e., the internal clocks of the two test bodies A and B are initially synchronised in the locally inertial

frame of A28, and
d

dtwf 0)=0, (2.44)

28This is not an important point.

43



i.e., the test body B is initially at rest in the locally inertial frame of A. (2.43) and (2.42) together
directly give Y? = 0. Since the right hand side of (2.42) is of order e and is integrated over a finite
time, and by (2.44), we obtain yv' (t) = yv' (0) + O(e). Inserting this into (2.42) we obtain to leading
order ) ,

%Yyi = %5(%3yiyj)yyj ().
Integrating and using (2.44) we finally obtain

YV () = YV (0) + %;}yiyj (t,0,0,0)Y" (0) . (2.45)

Note that this formula is only valid if the metric perturbation h is in the radiation gauge. Also note

that the distance to B in the locally inertial coordinate system of A is given by

V(Y (1), Y (1) = Va(Y (1), Y (1))

which agrees with (2.38) from method 1. Again we can measure the distance using the radar method
— and using that the speed of light in the locally inertial coordinate system can be taken to be equal
to 1 for small distances we obtain the same result as before if we again make the assumption that the

time of flight of the photon is small compared to the period of the gravitational wave.

Example 2.46. We evaluate (2.45) for the gravitational plane wave travelling in x3-direction from

Ezxample 2.56, i.e., for

0 0 0 O 00 0 O

. 0 A B 0 , 0 A B O

hﬂy(t7£) — . Re(e—lw(t—$3)> — - COS (w(t — wg)) .
0 B -A 0 0 B -A 0
0 0 0 O 0 0 0 O

We distinguish the following two linear polarisations:
i) B =0, the “+” polarisation. Then
Yi(t) ~ Y(0) + gA - cos (w(t — z3)) Y1(0)
Y2(t) = Y2(0) = SA- cos (w(t = 23)) Y*(0)

Y3(t) ~ Y3(0) .

Note that the coordinate components are here with respect to the locally inertial coordinates y*

and that x3 is constant along the worldline of A.
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it) A =0, the “x” polarisation. Then
Yi(t) ~Y(0) + gB - cos (w(t — 3))Y2(0)
Y2(t) ~ Y3(0) + %B - cos (w(t — x3))Y'(0)

Y3(t) ~Y3(0) .

R/
\/,\ Y,‘/\ X'A 4A
A A%
Ay ®
1Yy K ® e
719, Db Y .
o N/ R L3 / # ap s 3 o A
@\ 9 P ) S—
° o’ s > ® 2 [
° > b L 1 °
e b\ K ’f s t ° f ® / 9 RS
4 o
/' . * o o Y v ° & ! 2 ¢

For circular polarisations see Misner-Thorne- Wheeler p.952.

2.5.2 Generation of gravitational waves

The gravitational waves produced in the collision of two black holes is outside the validity of linearised
gravity. Here, we derive the quadrupole formula, which describes the generation of gravitational

waves under the following assumptions:

1) The assumptions of linearised gravity are met, i.e., the gravitational field is weak, the mass-energy

density and the material stresses are small.

(1)
2) The system is isolated i.e., T ,,(t,2) is compactly supported for all ¢t € R.

1)
3) The €% terms in V,T* = £9,T" + O(e?) are indeed negligible, i.e., the system is non-self-

gravitating.?® Examples are spinning rods and rotating (inhomogeneous) stars.

29Note that this assumption is not compatible with, for example, a binary system where the two objects move on
curved trajectories due to the influence of each other’s gravity. If 9,7 = 0 held, they would be moving on straight
lines (problem sheet 2). Nevertheless, there is evidence that the quadrupole formula is still a good approximation in

those cases. However, those cases cannot be dealt with within linearised gravity.
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4) The system has a characteristic frequency of change w. If Ry is the radius of its support, then

Ry - w < 1 holds.30
5) We restrict to the far field.

It follows from 3) together with problem sheet 2 that the total momentum P* = [ T% (¢, z) dx is con-
3

served and, after a boost of the background coordinates, can be assumed to vanish. After a translation

of the background coordinates we can assume that the centre of mass D'(t) = [ T%(t,z)z* dz is at
R3

the origin.

Recall the linearised Einstein equations in wave gauge, (2.9):

- &)
Ohpy = =167 T L1y

=

— T v t_ ! _ , /
By (1, ) :4/ = |2 —ahz) 0 (2.47)
R3
Recall from Remark 2.8 that the second equation is then automatically satisfied by our assumption 3).
Firstly, we only set out to describe the far field, so we expand —~— in powers of % To leading

2"~z
L~ % As will transpire, the gravitational wave part is visible at this order already

order we have —— ~
|z’ —z]

so that we can neglect all higher order corrections.
(1)
Secondly, the dependency on t — |z’ — z| in the first argument of T, still prevents an evaluation of
_ (1) .
huw(t, z) in terms of the moments of the stress-energy tensor. Thus we expand T, (t — r|% — £, 2')

for y' := = small, which is justified since |z| is large and |z'| < Ro.

s
-
Let f(y') :=t—r|y’ — £|. We begin by computing

[y — %]
fly) =—r |yj, —z = O(r) 9;f(0) = z;
E Iy, — Zlyh — =] -
0 f(y') = — | ,J_’“x‘ + o 5‘3 =0O(r) Ok0; f(0) = —rbjp + = b

(1)
We now Taylor-expand T ,,,,(f(y'),2’) in y' around 0. We compute

1) (€))
6]' T/LV (f(yl)vll) = a0 T/u/ (f(gl),ll) . ajf(gl)

) / / 2(1) / / / / @) / / /
05 Ty (F(y),2") = BT o (f(¥)s2) - 05 f(¥) - O f(Y) + 00T (F(y),2") 005 f(y)

30Note that this assumption is equivalent to the typical wavelength of the radiation being much larger than the extent

of the source.
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which gives

(1) P Y , (1) , ,
T (fy),2') = T (£(0),2") + 80T 1 (£(0),2) - 8;£(0) - ]

1)
+ l[agT;w(f(O)ag’) .8kf(0) . 8jf(()) “"aOT;w(f(O),g’) 'akajf(o)} ) y;y;c
2 NG NG TS

=0(r?) =0(r) =0(L)

+ %[GS’TW (F&),2) -0, (&) - O f(E)-Duf(E) +o<r2)} Yl
H/—/

=0(r3) =0(%)

for some £’ = ay’ with o € (0, 1).

(1) (1)
The system having a characteristic frequency w implies [05 T .| ~ w*| T .. |. Reinstating y =%

in the above Taylor expansion and noticing that |wz’| < w - Ry, we keep the terms of order 0 in the

small value of % and terms of order up to 2 in the small value of wRy, c.f. assumption 4):

1) , , 1) , (1) , x;
T/JI/(t_|£ _£‘>§):Tuu(t_ryg)"’_aOTuy(t_ng)'xj7
o) (2.48)
1., T} ) 1 '
+ iagTW(t T, )x]xk—% —|—O( )+ O((wRo)?) .

=0((who)?)

Using (2.48) in (2.47) together with 1+ 0(4), we compute the trace-reversed metric pertur-

I/rl

bations:
= 4 @ n
hij(t,z) = ;/ T;j(t—rz")dz’ + h.ot.
R3
2 d? )
where Q f Too (t, 2"zl Adg’ is the quadrupole moment. Here we have used Problem 6 on
problem sheet 2
= 4 Q)
hoi(t, z) = ;/ Toi(t—r,z')dz’ —I—f—/ﬁoTol —r,z')z} dz’ + h.o.t.
R3
:—éPi(t—r)ZO
4 T 1)
el /8kal -, x)x dz' + h.o.t. (using 0,T"" = 0)
4. [
=--4 T it —ra")dz’ + h.o.t.
ror
R3
2x; d®> )
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And finally

_ 4 [ 4 [0
hoo(ﬁ&):*/Too(t—ﬁx dz’ +**/30T00 (t —r 2] dz’
T
RS

=4 Di(t—r)=Pi(t—r)=0
4 1z (1)
2T Tk / (93 T oot — 1, g’)x;xz dz' + h.o.t.

r 27 7

AM  2x,x% d2 1
- 7+T@Qlk(t77ﬂ)+h0t y

where we used the definition of the total mass M in the linearised theory and again Problem 6 on prob-
lem sheet 2. Note that the first term is time-independent, it is a non-radiating contribution. Collating

the expressions for the trace reversed metric perturbations we obtain the quadrupole formula:

=AM 2z, &Y

hoo =~ " Tﬁ@ik(t—r)
= 2z 2@

.~ _ 2.49
hOZ - T2 dt2 Q (t T) ( )
= 2 d2 ()

l

hij = ;EQij(t_r)'

Remark 2.50. 1. Note that the wave gauge is indeed satisfied to highest order in .: Using O;r = 7+

T

we have
T 2x; d® () 0T 2x; d3 (D)
8’7,1']'2 ;T‘dt‘?’ 13( ) 8;10]27672%@1(1577”)
2z; x; d> (1) oF 2335 d (1)
8]h0]— pey Tﬁ@i]’(t—ﬂ 0 hoo ~ — 3 dt3Q (t—r).

€
2. Note that the monopole moment [ T oo(t,z")dz’ = M, i.e. the mass, is independent of time in
R3
€ .
linearised gravity. Also the dipole moment [ T o(t,z')x}ds’ = D', i.e. the centre of mass, is
R3
independent of time due to our choice of coordinates® . Thus, the lowest moment that radiates in

linearised general relativity is the quadrupole moment. This is in contrast to electromagnetism,

where the dipole moment gives the leading order of radiation, see problem sheet 3.

Using fLW = EW — %nl“,; we can now compute iLW from (2.49) and then the components R 005
of the curvature tensor of §., = Mu, + Eﬁm, to leading order in € and % We find (see Problem 2 on

problem sheet 3)

i 13 miTn 1 mn d4 (1)
ROOJ‘Z;[H A7 — 7L %an(t*ﬂa (2.51)

where II"™"(z) := §™" — £oZm_ Note that I(z) : T,R® — T,S?

izl is the orthogonal projection in R3

from the tangent space at z onto the tangent space of the sphere of radius |z| at the point z.

31Recall that we chose the background coordinates x* such that the total momentum vanishes. Otherwise the dipole

moment would be a linear function of time.
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As in the second method in Section 2.5.1 for computing the gravitational tidal effects of gravitational

waves we can set up a locally inertial coordinate system y* for a freely falling observer such that

0 0 0 0
_— = — = — o = —_— O
or T a0~ owo T O = 5 06
(2.52)
0o _ 9 + O(e)
oyt O '
holds along the worldline of the freely falling observer. As in the second method, using (2.52), we
obtain®?
d2 7 7 7 € myn 1 mn d4 @) 7
SV R Y ;[H I — 5T Hij}ﬁan(t(T) —r(r)Y7, (2.53)

where the indices here and below are now with respect to the locally inertial coordinates y*. Assuming

again the initial condition -£Y*(0) = 0 we obtain again Y'(r) = Y*(0) + O(c) which we insert into
(2.53). Using that %xi = O(e), we can pull the total derivatives on the right hand side past the

projections and then integrate to obtain our final result

4z )

Y (r) ~ Y (0) + ;[H”;H”j - %Hmnnij 773 Qun (t(r) = (7)Y (0) . (2.54)

Note that r is constant up to O(e) in 7 and that we have ¢(7) = 7 4+ O(e). Also note that the
gravitational waves described by the quadrupole formula (2.49) propagate radially. It follows directly
from II;;(z)x? = 0 (coordinates with respect to /) and (2.54) that test masses experience only an
acceleration in the locally inertial coordinate system if they are in spatial directions orthogonal to the

propagation direction of the wave.

32Note that the metric perturbation is not in radiation gauge, so the wordline is not of constant spatial coordinates x.
However, (2.52) is sufficient for following the argument in the second method up to (2.41). Then, the radiation gauge

was used crucially to integrate the Jacobi equation. Here, we will integrate the Jacobi equation directly.
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Example 2.55 (Laboratory gravitational wave generator). Consider two masses mq on elastic springs

3V

oscillating with angular frequency w and amplitude A around positions £ly on the x-axis.

w |/
a B 20I90999ARLII B~ 2

[~}

Mo

o

— —
-8 -%4A 6-A A
The positions are x1(t) = —lg — Acos(wt) and xo(t) = ly + Acos(wt). Assuming that the velocities are

small compared to the speed of light, the only non-negligible component of the stress energy tensor is
Too(t, z,y, z) = mod® (& — 1 () + med®(x — z(t)) .
Thus

Quz(t) = /Too(t, 2y, a2 da' dy'dZ
R3
= mo [21(t) + 23()]
= 2my [lo + A cos(wt)] 2
= 2mg [I§ + 2l A cos(wt) + A cos®(wt)] .
All other components of the quadrupole moment are zero. First note that it then follows from 11'*(x,0,0) =

0 and (2.51) (or (2.54)) that there is no radiation in the x-direction (but of course in the y and z-
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directions). We now estimate the strength of the gravitational radiation: we have

d2
@me(t) ~ moloAUJQ + m0A2w2 . (256)
Take

mo = 10%g ~ 0.75 - 10~%2cm
lo = 10%cm
A=10"tem

w=10%"1~0.3-10"%m™".

Note that the system is non-self-gravitating and that we have indeed ly - w < 1, so that the quadrupole
formula is valid. Since we have lo > A the first term in (2.56) is dominant. We obtain %Qm(t) ~
6.75 - 10735¢m, and thus if we set up test masses at distance r away from the gravitational wave

generator we obtain from (2.54)
i1 —35 i
AY* ~ —6.75-107°° - Y*(0)em .
T

If the test masses are 1km = 10%cm apart and r = 10km = 10%cm, then the displacement of the test
masses is of order

AY' =6.75-10"3em

which is far too small to be detectable (recall that the displacement measured with LIGO is about

10~ 16¢em).

Remark 2.57. Recall that the derivation of the quadrupole formula was only valid for mon-self-
gravitating systems, but that is is expected to be still a good approzimation for example for orbiting
binaries. Indeed, Hulse and Taylor observed in 1975 the increase of orbiting frequency of a binary
system which contains a pulsar at a rate compatible with the loss of energy due to emission of gravita-
tional waves predicted by the quadrupole formula. This first indirect observation of gravitational waves

received the Nobel prize in physics in 1993.

Remark 2.58. Finstein, who derived the quadrupole formula, noted that one would expect that on
small scales (quantum scales) one has to modify general relativity because otherwise the hydrogen
atom would be unstable (even if over extremely large time-scales) due to the emission of gravitational

radiation.
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3 Causality & Penrose diagrams

3.1 Lorentzian causality

Let (M, g) be a Lorentzian manifold, let p € M and X € T,M a tangent vector. We then classify X

according to the sign of its Lorentzian inner product:

<0 <——: X timelike
9(X, X)=49=0 <~ : X null (or lightlike) -
>0 <~ : X spacelike

We also refer to X being causal iff it is timelike or null. We can choose local coordinates z* such that

at p € M the metric takes the Minkowski form g, |, = diag(—1,1,1,1).

X TM
A X Hmalike

X V\v\“ / X .sffaca_&'\\é(_
>X "

The set of timelike vectors in T,,M forms the disconnected double cone

Cp={X=X"0, | X°> /(X2 +.. .+ (X")2JU{X | X < —/(X1)2 +... + (X")?}.

If we can single out one of those components throughout M in a continuous way, then we say that (M, g)
is time-orientable. This is equivalent to the existence of a continuous timelike vector field on (M, g).
Making such a continuous choice determines a time-orientation. Timelike vectors in this component
are called future-directed, timelike vectors in the other component are called past-directed. These
notions extend by continuity to non-vanishing null vectors. A time-oriented Lorentzian manifold is

also called a spacetime.

Example 3.1.

M =R*, n=diag(—1,1,1,1). Then 9, provides a time-orientation.

M =Rx (2m,00) xS?, g = —(1 — 22) dt? + —5 dr? + 1% (df? +sin® 0 dp?). Then 0, provides a time

1—2m
orientation.
M = (—1,1) x [-10, 10] with the identification (t,—10) ~ (—t,10) (i.e., the Mdbius strip), g = —dt* +

~— ~——
>t Sx

dz? is not time-orientable.
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A smooth curve y : I — M in a Lorentzian manifold (M, g) is called timelike /null/causal /spacelike
iff its tangent vector +(s) is timelike/null /causal /spacelike for all s € I. If (M, g) is time-oriented, then
7y is called future directed timelike/null/causal iff 4(s) is future directed timelike/null/causal for
all s € I. Similarly for past directed.

As in special relativity, massive particles can only move along timelike curves, light rays follow null
geodesics, and nothing moves along spacelike curves.

Let (M, g) be a spacetime and A C M. We define the timelike future of A in M

I (A, M) :={q € M| there exists a future directed timelike curve from some point p € A to ¢}
and the causal future of A in M

JT(A, M) :={q € M | there exists a future directed causal curve from some point p € A to ¢} .

The timelike past of A in M, I~ (A, M), and the causal past of A in M, J~ (A, M), are defined

analogously.

Example 3.2. Consider the Minkowski spacetime M = R* and g = diag(—1,1,1,1).
4
X A .
J (?IM)

The sets J*(A, M) are of fundamental importance since they determine the causal relations:
JT(A, M) is the set of all points which can be causally influenced from A, and J~ (A, M) is the
set of all points which can causally influence A.

Penrose diagrams are an easy way to visualise the causal structure of (spherically symmetric)

spacetimes, i.e., to visualise sets of the form J*(A, M).

3.2 Penrose diagrams

Let (M, g) be a Lorentzian manifold. Another Lorentzian metric § on M is called conformal to g iff

there exists a smooth (positive) function Q € C°°(M) such that § = Q? - g. Note that for X € T,M
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we have §(X,X) = Q% . g(X,X). Thus, X is g-timelike/null/causal/spacelike if, and only if, X is

g-timelike/null/causal /spacelike. Hence, we obtain
+ _ 7*
J5 (A M) = J5 (A, M)

and similarly for the timelike future/past. Thus, conformal metrics have the same causal structure.

Idea of Penrose diagrams:

1) We want to understand the global structure of a spacetime (M, g). By a suitable coordinate trans-
formation we bring in the infinities of (M, g) to a finite coordinate range. As a consequence the

metric components g,,,, blow up in these coordinates at the infinites.
2) Choose a conformal factor €2 to make g, = 02 guv regular at the infinities.
3) We can add the infinities as boundaries to the spacetime to create a conformal compactification.

4) If needed we drop some (spherically symmetric) dimensions and draw a 2-dimensional diagram with

the causality of 1 + 1-dimensional Minkowski spacetime.

1 + 1-dimensional Minkowski spacetime: M = R? with g = —dt? + da?.

1) We introduce null coordinates v := t 4+ x, u := t — z, which have the range u,v € R. The metric
becomes g = f% (dv ®du+ du ® dv). We now bring the infinities to finite coordinate range by setting

o := arctanu and v := arctanv.

A
B ¢
arctan (x)
>
x
- - — — ’1L:,;: — —_— - =
2
We have u = tanu = % and thus du = ﬁdﬁ. Hence the metric becomes
g=——~1 —(dv @ di + du © do)
2c0s2 4 - cos2 D

with the coordinate range u,? € (—g, 7). Note that the metric diverges at the infinities @, v — £7.

2

2) We choose the conformal factor Q2 = cos? @ - cos? 9. Then

1
ngQ-g:—i(dT;@da—&-dﬁ@dﬁ)

is regular for @, v — £7.
3) We can now add the boundaries to create the conformal compactification § = —%(df) ® du +

di ® dv) on the manifold (a,7) € [-5, 5]
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4) Set ¢ := (o + @) and & := (0 — @). Then the coordinate range is

- T - ™ T - ™ ~
L) eR?| — = <i+i<—, ——<t—-zg<=)l=M
{@3) er?| s ==y 2—\4-”5—2}
and the metric takes on the standard form § = —dt? + d#? of 1 + 1-dimensional Minkowski spacetime.

We now draw the resulting compact spacetime, which is the Penrose diagram of 1+ 1-dimensional

Minkowski spacetime:

The shape of the level sets of ¢ and « in terms of the ¢, # coordinates follows directly from

t= %(v—i—u) = %(tanf)—&—tanﬂ) = %(tan(f—i— ) + tan(t — )
1 1 . . 1 -~ ;-
x = 5(1} —u) = i(tanv —tana) = i(tan(t—i—w) — tan(t — 7))

Note that since § and g are conformal, we have J; (p) = J;‘ (p). So the global causality of (M, g) can

be easily read off from the Penrose diagram.

We have labelled the following infinities:

e 7 /I, are called right/left future null infinity. They form the asymptotic endpoints of all
future directed right/left going null geodesics.

e 7. /I, are called right/left past null infinity. They form the asymptotic endpoints of all past
directed right/left going null geodesics.

e it is called future timelike infinity. It is the endpoint of all future directed timelike geodesics.
e i~ is called past timelike infinity. It is the endpoint of all past directed timelike geodesics.

e i/i? are called right/left spacelike infinity. They form the endpoints of all right/left going

spacelike geodesics.

Note that there are timelike and spacelike curves going to Iff/l — but they are not geodesics.
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3 + 1-dimensional Minkowski spacetime: M = R* with g = —dt? + dr? 4 r?do?, where do? =
d6? + sin? 6 dp? is the standard metric on S.

1) We introduce spherically symmetric null coordinates v := ¢t + r and v := t — r. We have
r>0 <= v —wu >0 and thus the domain of the new coordinates is oo > v > u > —oo. The metric
becomes

1 1
g= —§(dv®du+du®dv) + Z(v—u)zda2 .

We compactify again by setting @ := arctanu and v := arctanv. The new coordinate range is

5 >0 >4 > —75 and the metric becomes??
g= ;(— Lo ®da+ diw o)+~ sin(5 a)da2)
cos? 4 cos2 ¥ 2 4 ’

2

2) We choose the conformal factor Q? = 4 cos? iicos? 9 and make the coordinate transformation
=17

t + % and ¥ := ¥ — 4. The domain of the new coordinates is
and >z >0
and the conformal metric is

§g=0% g=—di* + di® +sin® 2 do? .

3) Observe that di? + sin® Zdo? is the standard metric on S*, where # = 0, 7 are the poles of S?

and & = const # 0,7 are 2-spheres of radius sin Z.

X=0

The spacetime (M, §) with M =R xS? §=—di®2+di? +sin® # do? is known as the Einstein static
universe. We have thus mapped 3 4+ 1-dimensional Minkowski spacetime conformally into a portion

of the Einstein static universe!

33Here we use
5 ~ sin ¥ sin @ sin ¥ cos @ — sin @ cos ¥ sin(? — a)
v—u=tanv —tanu = -~ — - = = po = p ol
cosV  cost cos U cos U Ccos U cos U
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We can now add future/past timelike infinity i* /i~ and spacelike infinity i, which are all points
in M, and future/past null infinity Z*/Z~, which have topology (0,7) x S?, to create a conformal
compactification of 3 + 1-dimensional Minkowski spacetime.

4) We quotient out the spheres of symmetry and then draw the quotient, the Penrose diagram

of 3 + 1-dimensional Minkowski spacetime:

o

t

X1

Note that
e Every point corresponds to an S? except {r = 0}, i, i~, and 4°.
e The form of the level sets of ¢ and r follows from ¢t = 1(v+u) = 1 (tan(f + Z) + tan(f — Z)) and

r= 3= = ban(E ) - tan(i - 2).
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e iT is the future/past endpoint of all future/past directed timelike geodesics.

e 7Y is the endpoint of all spacelike geodesics.

e 7% are the future/past endpoints of all future/past directed null geodesics.

For example, radial null geodesics in 3 + 1-dimensional Minkowski spacetime are lines of 45 degrees in
the above Penrose diagram and ¢ — (¢, 79,00, o) are the lines of constant r.

Maximal analytic Schwarzschild spacetime: Recall the Kruskal coordinates (U,V,8,¢) for
maximal analytic Schwarzschild, where {(U,V) € R? | U - V < 1}, and the metric takes the form

16M°3

g= e 2 (dU @ dV +dV @ dU) + 12 do® .
,

Here, r is implicitly defined by U -V = (1 — ﬁ)eﬁ and the Schwarzschild coordinate t is given by
% = —eﬁ_

-~

SR TRVAY R

N

1) Let @ := arctan U and @ := arctan V. The range of the new coordinates is then®*

S T T . .
{(U,U)E(—§,§)| —§<U+U<§}
and the metric takes the form

1 16M3
=—5—= 2~<— e_W(dﬂ®d6+d@®dﬂ)+r2-cos2ﬂ-cos2f)d02)
cos? i - cos? ¥ T

2) We choose the conformal factor Q2 = cos? i - cos? ¥ so that the metric becomes

1603

g=- e~ 2 (dit @ div + dv @ dit) 4 1% - cos? @i - cos® ¥ do?
r

3& 4) Let t := 0+ @ and ¥ := ¥ — 4. We again quotient out the spheres of symmetry and draw

the quotient, the Penrose diagram of the maximal analytic Schwarzschild spacetime:

34This follows from tand -tan® = U -V < 1 <= sind -sin® < cosi -cos® <= cos(@ + ) > 0.
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Note that
e Atr=0 <« U-V =1 <= u+9==+7 we have a curvature singularity.
e The form of the level sets of ¢ and r is left as an exercise.

e The metric g extends continuously to future/past null infinity Z+/Z~ and to spacelike infinity
i%; so these infinities can again be added as conformal boundaries. However, the metric does not

extend continuously to future/past timelike infinity i+ /i~.3°
e Timelike geodesics asymptote either to {r = 0} or to ™ /i™.

e Null geodesics asymptote to {r = 0}, to it /i~ (if they asymptote towards the photon sphere at
{r =3M} or towards the horizons {r = 2M}), or to Z+/Z .

4 Black holes

4.1 The concept of a black hole

Let (M, g) be the maximal analytic Schwarzschild spacetime. We now define the black hole region
Bby B:=M\ J™(Z"), where we use the right Z*.36

By definition this is the set of spacetime points from which one cannot send future directed signals

to ZT. The boundary HT := 0(J~(ZT)) of J=(ZT) in M is called the (future) event horizon.

35Think: because they meet the singularity at {r = 0} in the Penrose diagram.
36The scribbled regions in the Penrose diagram, i.e., regions III and IV, are non-physical.
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The region J"(Z7)NJ~(Z1) is called the domain of outer communications. The event horizon
separates the black hole region from the domain of outer communications.

The maximal analytic Schwarzschild black hole is not a realistic model for a black hole arising from
the gravitational collapse of a star: it has two asymptotic flat ends and also the white hole region III.
A better model is given by the collapse of a spherically symmetric homogeneous dust cloud (the star)
in an asymptotically flat spacetime with only one end.?” The Penrose diagram is depicted below. The
white vacuum region outside the star is given by the corresponding region in the maximal analytic

Schwarzschild spacetime.

okom'\ﬂ os; om\'U

Cowrmwnicaliong
etar

4.2 Hypersurfaces

Let (M, g) be a n + 1-dimensional Lorentzian manifold and ¥ C M a hypersurface. Recall that this
means that for every p € 3 there exists local coordinates (z°,...,2") on a neighbourhood U C M of
p such that XNU = {2° = 0}. The tangent space TS of ¥ is locally given by span{ds,...,0,} CTM
in these coordinates, i.e., for all p € 3, T},¥ is an n-dimensional subspace of T}, M.

spacelike hypersurface :<= g|r,x is positive definite (Riemannian) for all p € X
We say that ¥ is a { timelike hypersurface :<= g|T,x is Lorentzian for all p € ¥

null hypersurface : <= g|r,x is degenerate for all p € ¥
Since T}, is an n-dimensional subspace of 7}, M there exists a covector n € T;; M such that ker n = T},3.

This covector is unique up to multiplication by A # 0 and is called a normal covector to X at p. We
have n(X) = 0 for all X € T,%. In the local coordinates we have n = Adz?, A # 0. We can also define
N :=nf, a normal vector to ¥ at p. We have g(N, X) =0 for all X € T,%. Again, N is unique up
to multiplication by A # 0.

Proposition 4.1.

spacelike hypersurface = <= N is timelike Vp € ¥
Yisa timelike hypersurface <= N is spacelike Vp € &
null hypersurface < NisnullVpe X.

Proof. Let 3 be a hypersurface and let N be a normal vector at p. We distinguish the two cases that
NeT,X and N ¢ T, X.

37This model has been constructed by Oppenheimer and Snyder in 1939, in ‘On Continued Gravitational Contraction’.
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i) N ¢ T,X. Then let E,...,E, (e.g. E; = 0;) be a basis of T,,2. Thus {N, E1,..., E,} is a basis
of T, M. With respect to this basis g has the matrix

g(N,N) 0 0
0 9(Ey, Er) g(Er, En)
0 g(EnaEl) g(EnaEn)

It thus follows that g(N, N) # 0, since otherwise g|7, s would be degenerate. It also follows that

g|r,= is non-degenerate.

ii) N € T,¥. Thus VX € T,% we have g|7, (N, X) = 0, i.e., g|7,x is degenerate and choosing X = N
gives g(N,N) = 0.

The proof now follows easily from this. For example let ¥ be a spacelike hypersurface. Then g|r,x is
non-degenerate and thus we are in case i). Using that g|r, 5 is Lorentzian and g|7, v is Riemannian
gives g(N, N) < 0. For the reverse let N be timelike. Then we must be in case i) and g|r,x is positive

definite. Similarly for the other cases. O

In particular we have seen that if ¥ is a null hypersurface, then the normal vector field NV is tangent
to X.

Proposition 4.2. Let ¥ be a null hypersurface and N a normal vector field. Then the integral curves
of N are null geodesics, but not necessarily affinely parametrised. They are called the generators of

the null hypersurface.

Proof. Let N be a normal vector field. Locally X is given as the level set of a function f (e.g. the
zY-coordinate). Then df = n is a normal covector field on ¥ and we have N = \(df)*, A # 0. Since the
integral curves of N and A™!N are the same up to parametrisation, we can without loss of generality
assume N = (df)*. Now using that the second covariant derivative of a scalar function is symmetric
we compute

1
(Vnn)e = NPV Vof = NV, Vyf = N*Vany = 5aa(me,) .

But N°n, = g(N, N) is constant on ¥ (equal to zero) and thus d(N®n;) = p - n with 4 a smooth
function. This implies (Vyn), = 3un,, which, after raising the index, reads VyN = $uN. This

shows the claim. O
Example 4.3. Consider 3 + 1-dimensional Minkowski spacetime.

a) t = const are spacelike hypersurfaces, since n~t(dt,dt) = —1.

b) x; = const are timelike hypersurfaces, since n~'(dx;,dw;) =1

¢) Let ¥ be the future light cone of the origin in Minkowski spacetime with the origin removed, i.e.,
S =JH0)\ {I*(0)U{0}}
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Then 0y + 0, and Oy, O, span the tangent space. Clearly 0y + 0, is null and it is orthogonal to O,
0p. This shows that 0; + O, is the normal of X. Thus ¥ is a null hypersurface. It is generated by

the null geodesics which are the straight lines in the cone.

Example 4.4. Consider the Schwarzschild spacetime in (t,7,0, @) coordinates with metric

g=—(1—2)d? + —ur dr? + 12 do.

spacelike hypersurfaces for r > 2M
a) t = const are

timelike hypersurfaces for r < 2M .

<0 forr>2M

This follows from g=1(dt,dt) = — 17121\4 =

r

>0 forr<2M.

timelike hypersurfaces for r > 2M
b) r = const are

spacelike hypersurfaces for r < 2M .

>0 forr>2M
This follows from g~ (dr,dr) =1 — 2M —

T

<0 forr<2M.

¢) Letv=t+r* withr* =r+2Mlog (“52L) forr > 2M. Then (v,r,0,¢) are ingoing Eddington-
Finkelstein coordinates, they cover regions I and I1 in the Penrose diagram of mazximal analytic

Schwarzschild. The metric becomes

2M
g=—-(1-")dv* +dv@dr+dr @ dv +r®do?
T
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and the inverse metric 1is

1 1
- — - 0,®0,) .

2M
9 =000, 40,00, +(1-"=)0, @0+ (0 ® 06 + —
r sin” 6
We thus have g=(dr,dr)|,—apr = 0 and hence the event horizon {r = 2M} = H* is a null

hypersurface.

A choice of normal vector field is N = 0, = (dr)*. Thus the integral curves of 8, are null geodesics
by Proposition 4.2. Indeed, we have

1, 1 2M 1

F5y|r:2M = 29 (_argv'u)‘r:2M = §8r(1 - T)|r:2M = m )

and T, |r—ap = ng|r:2M =T%, |r—anm = 0 as is easily seen from the form of the metric and its

inverse above. Thus

1
Vavav — m&v . (45)

Hence, the integral curves of 9,, the null geodesics, are not affinely parametrised. But let Oy :=

e’ﬁ“&,. Then

1 1 1 ]. 1
Vo, 0y = e TM"Vy, (e‘W”&)) =e M Vy, 0, — me_mv&j =0.

Thus, the integral curves of Oy are affinely parametrised. Note/recall that Oy is exactly the coordi-

nate vector field in Kruskal coordinates (V,U, 0, p).

4.3 Killing horizons & surface gravity

Let (M, g) be a Lorentzian manifold with Killing vector field 7. A null hypersurface ¥ is a Killing
horizon of T'iff T is normal to ¥ on ¥. Since T is a normal to ¥, Proposition 4.2 implies VT |s, = kT|x
for some function k on X. k is called the surface gravity of ¥ with respect to the Killing vector field

T.

Remark 4.6. 1) If ¥ is a Killing horizon of T, then it is also a Killing horizon of T := ¢T with
¢ € R\ {0}. Then V;T|s = kT|s with & = ck. Hence, the surface gravity depends on the
normalisation of the Killing vector field T. For asymptotically flat spacetimes we normalise T at
infinity. For example if T is a time translation then we require that g(T,T) — —1 for r — oo and

we fix the sign of k by requiring T to be future directed.
2) Using Killing’s equation VT, + V, T, = 0 from Proposition 1.24, we obtain
1
(VeT), =1T"V, T, = -T"V, T, = —iau (g(T, T))

and thus
d(g(T.T))|s = —26T"|5; . (4.7)

3) Note that we have Lr(g(T,T)) = 0, since Lrg =0 and LrT = 0. Using Proposition 1.20 vi) we

thus obtain

Lt (d(g(T, T))) = d(ﬁT(g(T’ T))) =0.
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Moreover, we have

—2Lp(KT”) = —2T'(k) - T" ,

where we have again used that Lrg = 0 and LoT = 0. Also note that since T is tangent to 2
we have for any tensor field E that (CrE)|s only depends on E|s.3® We thus obtain from (4.7)
0 = —2T(k) - T°|s and thus T(k) = 0. Thus, the surface gravity r is constant along the

generators of X.

4) Indeed, one can strengthen the above result and show that if (M, g) is a solution of Gap = 87Ty
where the matter T, satisfies that so-called dominant energy condition®® and if ¥ is a Killing

horizon of a Killing vector field T', then the surface gravity k is constant on all of X.

5) The event horizon {r = 2M} in Schwarzschild is a Killing horizon of the Killing vector field
% = %, see Example 4.4 c), where % s with respect to ingoing Eddington-Finkelstein coordinates.

It follows from (4.5) that the surface gravity is k = ﬁ. Note that 0y = 0, is normalised at infinity.

4.3.1 Physical interpretation of the surface gravity

We consider the maximal analytic Schwarzschild black hole. We are already familiar with the gravita-

tional redshift in the exterior of the black hole (see also problem sheet 4).

A
'gﬂlju«v\c-/ oQ cecenved \“0\&
2M
Xy 4 - _‘:
. . ; ™ '
\S £8~ A_—_f\ ‘Fn < ‘(q
i)
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A positive surface gravity implies that there is also a gravitational redshift at the surface of the black
hole, i.e., along the event horizon: Recall from Example 4.4 ¢) that the integral curves of 9y = e "V,
are affinely parametrised null geodesics, light rays, along the event horizon. From Problem 4 on the
fourth problem sheet we know that Jy, the affine velocity vector of the null geodesic, corresponds to
the wave vector of the light ray. Moreover, an observer with 4-velocity U measures the frequency of
the light ray as —ig(U, Ov).

Consider now an observer A crossing the event horizon at (va,2M, 6y, o) in ingoing Eddington-
Finkelstein coordinates with 4-velocity Uy = %(&, — 0,) and sending a light signal along the event
horizon that is received by another observer B crossing H at (vp,2M, 00, ¢p) with vg > v4 and with

4-velocity Up = %(&} —0y).

38We have L7 E = lim; 0 kL E_E, and since the flow ®; of 7' maps points on ¥ to points on X, it is clear that L1 FE

only depends on Els.
39N.e., T*®W, Wy, > 0 for all W timelike and T*®W,, is a causal vector.
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Recall that g = —(1 — %) dv? + dv ® dr + dr ® dv + r? do?. Thus the frequency f4 of the light ray
given by Jy as observed by A is

1
2\@%6

—KvVA

1
fa= _279(8‘/’(]14) =
T

and the frequency fp observed by B is
1 1
=——g(0yv,Up) = e
fB —9(0v,Us) o

—KVB _ —k-(vp—va) |
B € fA .
Thus, it follows that the light is red-shifted by a factor e~ "("5-4) where x = ﬁ is the surface

gravity. We thus see an exponential redshift in advanced time v along the event horizon, where the

exponential factor is given by the surface gravity.

Remark 4.8. 1. The observed frequency depends of course on the 4-velocity of the observer. How-

ever, note that [0, — 8T,\072/] = 0, so the observer B arises from Lie-transporting the observer

=3,
A to some later time along the flow-lines of the stationary Killing vector field 0;. So A and B

are ‘the same observers, just at different times’. If the observer B was boosted with respect to A,

then one would of course pick up an additional Doppler contribution.

2. The above argument generalises to other black hole spacetimes. Black holes with kK = 0 are called

extremal black holes. There is no red-shift along the event horizon of such black holes.

3. Another interpretation of the surface gravity is via Hawking radiation. Ty = 5= is the tempera-

ture of the black hole.

4.4 The Kerr black hole

Consider )
9= gudt® + g, (dt ® dp + dyp @ dt) + % dr? + p2 d62 + g, dip? (4.9)
where
2Mr
git = —1+ e
2Mrasin® 0
Yo =TT
2Mra?sin® 0
Gpp = [7"2 +a’® + %} sin? @
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with

p2 =712 4+ a%cos? 6 and A:=7r2—2Mr+ad?.

Assume 0 < a < M. Then A has the two roots r+ = M ++/M?2 — a2 and we have A > 0 for r > r.
We first define (4.9) on the manifold M := R x (ry,00) x 982. In (t,p,7,0) coordinates*! the matrix
T P

of g becomes

gt Gip 0 0
|9 Gee O 0
o 0o £ o
0 0 0 p?
A direct computation gives g1g,p — (gip)? = —Asin?6. Thus g is a Lorentzian metric on M. One

can show that it is a solution of the vacuum Einstein equations. It is called the Kerr solution.
The coordinates (¢, ¢, 6) are called Boyer-Lindquist coordinates. We also record the form of the

inverse metric for later:

g g
_Asfrfze Asitrfze 0 0
g £
gl = Rein?0 Rsin?0 2 0 (4.10)
0 0 & 0
0 0 0 p%

The far field: We use 7 := 3 (r — M +r(1 — %)1/2) as a new radial coordinate as in Example 2.27
for the Schwarzschild metric and define the asymptotically Euclidean coordinates z = 7sin 8 cos ¢,

y = 7sinfsin ¢, z = 7 cosf. Then a computation shows that the metric (4.9) becomes*?

2M

. 2M 1 2_4Ma
g=—(1 - —I—(’)(;Q))dt
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1
dt[—ydx + zdy] + (’)(f—g)dt(dx, dy, dz)
2M 9 9 9 1
+(1+ - )(dx® + dy* + dz°) + O(ﬁ)(dx,dy,dz)(dx, dy,dz) .

Comparison with (2.24) shows that M is the total mass and J = Ma the total angular momentum in
z-direction. The parameter a = ﬁ is the angular momentum per unit mass. We thus see that

the Kerr metric describes the spacetime of a rotating body.

Remark 4.11. One can show that for a = 0 the Kerr metric (4.9) reduces to the Schwarzschild
metric with mass M. Also, when M = 0 (but not necessarilyi a = 0), the Kerr metric (4.9) equals the

Minkowski metric in spheroidal coordinates. See problem sheet 4.

The Kerr solution has two Killing vector fields 0y, J,, (the metric components are independent of
t and ¢) which commute [0, d,,] = 0. The Killing vector field 9; is timelike for large . Thus Kerr is
stationary (but not static, see problem sheet 3). The Killing vector field 0, asymptotically generates

rotations around the z-axis. We say that Kerr is azisymmetric.

40The case a = M corresponds to an extremal black hole and a > M is a naked singularity. Neither of those cases is

being discussed in this course.
4INote the ordering of the coordinates.
42We use the notation dtdz := %(dt ® dz + dr ® dt) etc.
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Note that

<0 for 2Mr < p?
2Mr
9(0r, 0p) = =1+ 2 =49=0 for 2Mr = p? <= r =74 := M £/ M? — a2 cos? 0
>0 for 2Mr > p? .

The region ry < r < 74, in which 0; is spacelike, is called the ergoregion.

Given a stationary observer A with 4-velocity ~ (0; + Q- 0,), then € is the angular frequency of the

observer as seen by an observer B with velocity d; at infinity (see problem sheet 4). Thus, A appears

static to B if, and only if, Q = 0.

In order for an observer with 4-velocity ~ (0; + Q0,,) to exist at radius r and latitude 6, we need
0> g(0s + Q0,9 + Q0,) = gue + 201, + Vg -

Thus we need Q € (Qmin, Qmax) with

it gt
Qin =w —  Jw? — =— and Omax =w +  Jw? — ——,
) )
where w = 3 (Qumin + Qmax) = — 224,
9o

i) Since git — GttJpp = Asin?6 > 0 for all r > r4+, we indeed have two roots Quin < Qmax. Since

gre < 0 for large 7 and g,, > 0, we have Qpnin < 0 < Qpayx for large 7.

ii) At the boundary of the ergoregion r = 7 we have gy = 0, and thus Qu,;,, = 0. In the ergoregion
gt > 0 and hence 0 < Qpin < Qmax- Thus, in the ergoregion stationary observers have to rotate
in the p-direction as seen from infinity. This is an extreme manifestation of the gravitational

dragging of frames by rotating bodies in general relativity.
4.4.1 Global structure

We start with the following

Lemma 4.12. Let (M, g) be a spacetime and let X € T,M be future directed timelike and 'Y € T,M
future directed causal. Then g(X,Y) < 0.
If X is future directed timelike and Y past directed causal, then g(X,Y) > 0.
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Proof. Without loss of generality assume g(X, X) = —1 and let Ey := X, Ey, ..., E, be an orthonormal
basis. Then Y = a(Ey + > i, b'E;) with Y7, (b")? < 1 (since Y is causal) and @ > 0 (since Y is
future directed). This gives g(X,Y) = —a < 0.

The case that Y is past directed causal follows analogously. O

The metric (4.9) degenerates at r = r,.. We show that this is a coordinate singularity similar to

the one at » = 2M for Schwarzschild. Let 7*(r) and 7(r) be two functions on (r*, c0) which satisfy

dr* r? + a? q dr a
= an =

dr A dr A

We then define vy :=t +r* and ¢4 = ¢ £ 7 mod 27. (vy,r,0,¢+) are Eddington-Finkelstein-like

<

coordinates (“+” for ingoing, “—” for outgoing). In (vy,r, 60, pL) coordinates the metric (4.9) takes

the form
9= gi dvi + gup (dvy @ doy + dpy @ dvy) + gop dp + p* d6? (4.13)
+ (dvy @ dr +dr @ dvy) — asin®0 (dp, @ dr + dr @ dep,)
which is a Lorentzian metric on M := R x (0,00) x S?. Note that —2 in these coordinates is

vt r 0,0+
a continuous non-vanishing null vector field. It thus fixes a time-orientation on (M,g). Also note

that*3 % . 81‘1 and that g(—0,,0,,) = —1, thus —0, determines the same time-orientation as

Oy, = O¢|pL for large r by Lemma 4.12.

In the following we investigate the causal structure of this spacetime.

[l t t
' - A}
0>0 Aeo 6 >0

: * = : drie _ r’4a® dTine _ a
For r € (r_,ry) choose a functions 7j(r) and Ti(r) with ==t = =4 and "=t = % and set

t=vy —rf, and ¢ = ¢y — Fipy mod 27 to obtain again the form (4.9) of the metric (4.13) in the
region R x (r_,ry) x S? in Boyer-Lindquist coordinates (¢,,0, ).

We want to compute g~ *(dr,dr). For r € (r_,r,) and r € (r;,o0) we can use Boyer-Lindquist
A
2

coordinates and (4.10) to easily obtain g=1(dr,dr) = %z in (r—,74) U (r4,00). By continuity we thus

43Here, and in the following, we will mark coordinate vector fields with respect to the Boyer-Lindquist coordinates by

BL. If no subscript is given, they are coordinate vector fields with respect to the (vy,r, 0, p4) coordinates.
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infer**
A

g Y (dr,dr) = 3

forr_ <r<oo. (4.14)

hS)

Hence

timelike hypersurface for r, < rg < 0o
{r=mo}isa null hypersurface for rg = r4

spacelike hypersurface for r_ < rg < rj .

Proposition 4.15. The hypersurface {r = ry} is a black hole event horizon.

Proof. Consider the vector field (dr)* for r_ < r < r,. By (4.14) it is a causal vector field. Moreover
we have g(—— (dr)¥) = —dr(%) = —1 and thus it is future directed causal by Lemma 4.12. Let now

v : I — M be a future directed timelike curve in r_ < r < r,. Then by Lemma 4.12 we have

§" = A(r) = dr(¥) = g((dr),4) <0,

and thus once a future directed timelike curve has entered the region {r_ < r < ry}, its r-coordinate
value can never increase beyond r,. By continuity the above argument extends to future directed
causal curves . Thus the region r» < r, lies inside the black hole region.

On the other hand it is easy to see that for every ro > r4 there are future directed causal curves
starting from 7y which reach into the asymptotically flat region r > r, and thus to future null
infinity. For example we have shown in the last section that for each r > r4 there is Q(r) such that
O¢|BL + Q(1)0,|BL is future directed timelike. Since the cone of timelike vectors is open we can add a
bit of O,|gr so that it stays timelike, i.e., O;|gr + Q(r)0y|BL + €(7)0r|BL With e(r) > 0. The integral
curves then reach the asymptotically flat region r» > r,. This shows that » > r, lies in the past of

future null infinity and thus {r = r4 } is indeed a black hole event horizon. O

Proposition 4.16. {r = r} is a Killing horizon of the Killing vector field Ty = 0,, + 0y

r +a2 +

with surface gravity k4 = ﬁ

Proof. First observe that 0| = 0, and J,|sL = 0, . Thus Ty is indeed a Killing vector field.

.
The normal of {r = r,} is given by (dr)!. We first compute for » > 7, in Boyer-Lindquist

— T 8 _ A0
coordinates (dr)f = g o = POy and
3‘ _ Ovy 0 &‘ 0 3<p+‘ 0 _r2+a2i+g+g 0
orlsL — 9r IBLdv, ' drlsLdr = Or lBLdp, A vy or  Adp,

Thus by continuity we obtain
(dr)) {r2+a2 3} +A3 a 6}
T — = | _ R
= p?2 Ovy  p2dr  p2oy
i +a? 0 a G, }
12 +a2cos?0lovy 2 4 a? Oy,

T4

44The region r < r_ is not discussed in this course — it is not physically relevant. The region r_ < r < oo in the

(v4,7,6,p+) coordinates is isometric to the regions I and II in the Penrose diagram in the next section.
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which shows that Ty is indeed normal to {r = r}.
To compute the surface gravity we use the formula 9,((Ty)"(Tu)y) = —264+(Th)a from (4.7),

which is left as an exercise. O

4.4.2 Penrose diagram

A Penrose-like diagram for Kerr is more difficult to draw since Kerr is not spherically symmetric and
so one loses more information if one quotients out the spheres. Here, we restrict to the two-dimensional
axis 8 = 0, .

We define Kruskal-like coordinates U := e *+Y~ and V := e"*+"+ and ® := ¢ — mod 27 in

at
ri+a2
the region r, < 7 < 00.*> Then one can show that in the coordinates (U, V,#, ®) the metric extends

6

analytically to R? x S2, where r ranges from r_ < r < co.

Each region in this diagram is isometric to (4.9) in Boyer-Lindquist coordinates where the r-coordinate
is restricted to the corresponding range.

For § = 0,7 the metric takes the form g = F(r)dUdV, where F(r) is an analytic function in r
and r = r(UV). We can now compactify by setting @ := arctanU and ¢ := arctan V' and draw the

following Penrose-like diagram for Kerr:

blade bale inkeior

I

o.s\/x-\e\'o\’\-cmu-/ (:\o_(— # Qe NS

The hypersurfaces {r = r_} in the black hole interior are called the Cauchy horizon. The metric

can be extended past it but the extension is not expected to correspond to anything physical. One

45Recall that v+ =t £ 7*, see Section 4.4.1.
46See for example the book ‘The geometry of Kerr black holes’ by O’Neill.
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expects that for small gravitational perturbations the Cauchy horizon turns into a singularity.
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