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1 Properties of affinity

1.1 Proof of Proposition 1
1. Since

√
fD(y) > 0 and

√
fD̄(y) > 0 it follows that κ > 0. Cauchy–Schwarz inequality further implies that |κ| =

〈
√
fD,

√
fD̄〉 6 ‖

√
fD‖‖

√
fD̄‖ = 1.

2. The argument is tantamount to that of Roos and Held,1 but it is included here for completeness. Let g(y) = z be a monotone
increasing function and let

fgD(z) = fD(g−1(z))
d

dz
g−1(z), fg

D̄
(z) = fD̄(g−1(z))

d

dz
g−1(z),

be densities of the transformed data g(YD) and g(YD̄),2 and denote by κg = 〈
√
fgD,

√
fg
D̄
〉 the affinity of the transformed

data. It thus follows that

κg =

∫ ∞
−∞

√
fgD(z)

√
fg
D̄

(z) dz

=

∫ ∞
−∞

{
fD(g−1(z))

d

dz
g−1(z)

}1/2{
fD̄(g−1(z))

d

dz
g−1(z)

}1/2

dz

=

∫ ∞
−∞

√
fD(g−1(z))

√
fD̄(g−1(z))

d

dz
g−1(z) dz (set g−1(z) = y)

=

∫ ∞
−∞

√
fD(y)

√
fD̄(y) dy = κ.
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Properties of induced priors

1.2 Proof of Theorem 1
The proof involves manipulations similar to those used for showing continuity of the inner product (cf Hunter and Nachtergaele3),
along with a result from Lijoi et al.4 Just note that

|κω − κ| = |〈
√
fωD,

√
fω
D̄
〉 − 〈

√
fD,

√
fD̄〉|

= |〈
√
fωD,

√
fω
D̄
〉 − 〈

√
fωD,

√
fD̄〉+ 〈

√
fωD,

√
fD̄〉 − 〈

√
fD,

√
fD̄〉|

6 |〈
√
fωD,

√
fω
D̄
〉 − 〈

√
fωD,

√
fD̄〉|+ |〈

√
fωD,

√
fD̄〉 − 〈

√
fD,

√
fD̄〉|

6 |〈
√
fωD,

√
fω
D̄
−
√
fD̄〉|+ |〈

√
fωD −

√
fD,

√
fD̄〉|

6 ‖
√
fωD‖︸ ︷︷ ︸
1

‖
√
fω
D̄
−
√
fD̄‖+ ‖

√
fωD −

√
fD‖ ‖

√
fD̄‖︸ ︷︷ ︸
1

=
√
dH(fω

D̄
, fD̄) +

√
dH(fωD, fD),

where dH(f, g) =
∫
{
√
f(y)−

√
g(y)}2 dy is the Hellinger distance. So, as it can be seen from (1.2), to have |κω − κ| < ε, with

ε > 0, it would suffice having dH(fω
D̄
, fD̄) < ε2/4 and dH(fωD, fD) < ε2/4. Thus,

{ω ∈ Ω : |κω − κ| < ε} ⊇ {ω ∈ Ω : dH(fωD̄, fD̄) < ε2/4, dH(fωD, fD) < ε2/4},

from where it finally follows that

P{ω ∈ Ω : |κω − κ| < ε} > P{ω ∈ Ω : dH(fωD̄, fD̄) < ε2/4}︸ ︷︷ ︸
πD̄

P{ω ∈ Ω : dH(fωD, fD) < ε2/4}︸ ︷︷ ︸
πD

> 0,

given that from the equivalence between Hellinger and L1 support, and from Section 3 in Lijoi et al.4 it follows that πD̄ > 0 and
πD > 0.

B.2. Proof of Theorem 2
The proof is along the same lines as that of Theorem 1, but it requires Theorem 4 of Barrientos et al.,5 which is essentially a
covariate-specific version of the result in Section 3 of Lijoi et al.4 Similar derivations as those in (1.2) yield

|κω(xi)− κ(xi)| 6
√
dH(fω

D̄|xi
, fD̄|xi

) +
√
dH(fωD|xi

, fD|xi
).

Hence, to have |κω(xi)− κ(xi)| < ε, for ε > 0, it would suffice having

dH(fωD̄|xi
, fD̄|xi

) < ε2/4, dH(fωD|xi
, fD|xi

) < ε2/4, i = 1, . . . , n,

and thus using similar arguments to the ones in proof of Theorem 1 it follows that

P{ω ∈ Ω : |κω(xi)− κ(xi)| < ε} > P{ω ∈ Ω : dH(fωD̄|xi
, fD̄|xi

) < ε2/4, i = 1, . . . , n}︸ ︷︷ ︸
πD̄

× P{ω ∈ Ω : dH(fωD|xi
, fD|xi

) < ε2/4, i = 1, . . . , n}︸ ︷︷ ︸
πD

> 0,

given that Theorem 4 of Barrientos et al.,5 on the Hellinger support of the DDP, implies that πD̄ > 0 and πD > 0.
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Figure 1. Relationship between κ and AUC in the proper bigamma model for two different values of the shape parameter, α. a) α = 1
(highly skewed densities); b) α = 20 (mildly skewed).

2 Correspondence between κ, AUC in proper bigamma model
To build intuition regarding the relationship between κ and AUC, Figure 3 of the article plotted the relationship between κ and AUC
in the proper binormal model. We include Figure 1 here, comprised of corresponding plots for the proper bigamma model, which
is characterized by a common shape parameter for each gamma density. The relationship between the two summary measures is
affected by the shape parameter. As such, we consider both a shape parameter of 1 (panel a) to represent highly skewed gamma
densities and a shape parameter of 20 (panel b) to represent mildly skewed gamma densities. We note that qualitatively the curves
are rather similar even for very disparate levels of skewness. We also note that with a moderately large shape parameter, the proper
bigamma plot linking kappa and AUC is nearly identical to that of the proper binormal model (cf. Figure 3 of the article).

3 Simulation setting figures
Because of limited space in the article, only the second unconditional setting (70/30 mixtures of normals) from the simulation study
was illustrated with a figure. We therefore include Figure 2 to display the densities, κs, and AUCs from the first unconditional
setting of Table 2. We also had included three covariate-dependent settings. Due to the challenges inherent in overlaying bivariate
densities, we do not display the densities for the three conditional settings of Table 2, instead displaying only κ(x) and AUC(x).
These covariate-dependent quantities are plotted in Figure 3.

4 Figures corresponding to simulation results
Because of limited space in the article, only the selected simulation results were depicted. We therefore include Figures 4 and 5
below. Note that as mentioned in text, estimating κ that is close to zero tends to be more biased.
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Figure 2. Densities for the first unconditional simulation study setting in Table 2 of the article; the black and grey lines respectively denote
the densities of the biomarkers of the diseased and non-diseased subjects.
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Figure 3. Covariate-dependent affinity and AUC for the three conditional settings in Table 2 of the article; the black and grey lines
respectively denote κ(x) and AUC(x).
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Figure 4. AUC and κ estimates (average across 100 simulations) along with true values in the first unconditional scenario of the
simulation study (Table 2 from main manuscript): Both populations are normals with a) diseased mean equal to 1.6 and b) diseased mean
equal to 3.2.
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Figure 5. AUC and κ estimates (average across 100 simulations) along with true values in the second unconditional scenario of the
simulation study (Table 2 from main manuscript): In both scenarios means and standard deviations of mixture components vary.

5 Analytical derivations of entries in Table 1

Binormal

Let YD ∼ N(µD, σD) and YD̄ ∼ N(µD̄, σD̄). Then,

κ =

∫ +∞

−∞

√
fD(y)

√
fD̄(y) dy

=

∫ +∞

−∞

[
(2πσ2

D)−1/2 exp

{
− 1

2

(y − µD)2

σ2
D

}]1/2[
(2πσ2

D̄)−1/2 exp

{
− 1

2

(y − µD̄)2

σ2
D̄

}]1/2

dy

=
1√

2πσDσD̄

∫ +∞

−∞
exp

{
− 1

4

(
(y − µD)2

σ2
D

+
(y − µD̄)2

σ2
D̄

)}
dy

=
1√

2πσDσD̄

∫ +∞

−∞
exp

{
− 1

4σ2
Dσ

2
D̄

(
(σ2
D + σ2

D̄)y2 − 2(σ2
D̄µD + σ2

DµD̄)y + σ2
D̄µ

2
D + σ2

Dµ
2
D̄

)}
dy

=
1√

2πσDσD̄
exp

{
− 1

4σ2
Dσ

2
D̄

(
σ2
D̄µ

2
D + σ2

Dµ
2
D̄ −

(σ2
D̄
µD + σ2

DµD̄)2

σ2
D̄

+ σ2
D

)}
×
∫ +∞

−∞
exp

{
− 1

2(2σ2
Dσ

2
D̄
/(σ2

D + σ2
D̄

))

(
y −

(
σ2
D̄
µD + σ2

DµD̄
σ2
D̄

+ σ2
D

))2}
dy

=
1√

2πσDσD̄

√
2π

2σ2
Dσ

2
D̄

σ2
D + σ2

D̄

exp

{
− 1

4σ2
Dσ

2
D̄

(
σ2
D̄µ

2
D + σ2

Dµ
2
D̄ −

(σ2
D̄
µD + σ2

DµD̄)2

σ2
D̄

+ σ2
D

)}

=

√
2σDσD̄
σ2
D + σ2

D̄

exp

{
− 1

4

(µD − µD̄)2

σ2
D + σ2

D̄

}
.
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Bibeta
Let YD ∼ Beta(aD, bD) and YD̄ ∼ Beta(aD̄, bD̄). Then,

κ =

∫ +∞

−∞

√
fD(y)

√
fD̄(y) dy

=

∫ 1

0

{
yaD−1(1− y)bD−1

B(aD, bD)

}1/2{
yaD̄−1(1− y)bD̄−1

B(aD̄, bD̄)

}1/2

dy

=

∫ 1

0
y(aD+aD̄)/2−1(1− y)(bD+bD̄)/2−1 dy

{B(aD, bD)B(aD̄, bD̄)}1/2
=
B((aD + aD̄)/2, (bD + bD̄)/2)

{B(aD, bD)B(aD̄, bD̄)}1/2
,

where B(a, b) =
∫ 1

0
ua−1(1− u)b−1 du.

Bigamma
Let YD ∼ Gamma(shape = αD, rate = βD) and YD̄ ∼ Gamma(shape = αD̄, rate = βD̄). Then,

κ =

∫ +∞

−∞

√
fD(y)

√
fD̄(y) dy

=

∫ +∞

0

[
βD

αD

Γ(αD)
yαD−1 exp{−βDy}

]1/2[
βD̄

αD̄

Γ(αD̄)
yαD̄−1 exp{−βD̄y}

]1/2

dy

=

[
βD

αDβD̄
αD̄

Γ(αD)Γ(αD)

]1/2 ∫ +∞

0

y(αD+αD)/2−1 exp

{
− βD + βD̄

2
y

}
dy

=

[
βD

αDβD̄
αD̄

Γ(αD)Γ(αD)

]1/2
Γ((αD + αD̄)/2)

((βD + βD̄)/2)(αD+αD̄)/2
.

6 Additional empirical reports

In the PSA data application (as reported in the article), the analysis proceeded as though 683 independent measures were obtained.
This was done to enable comparison with an existing analysis of this data set by Rodriguez and Martinez.6 One natural alternative
is to use only the last available observation from each of the n = 141 subjects. We made this restriction and repeated the analyses.
In doing so, the range of observed ages was slightly reduced from [46.75, 80.83]—the range with the 683 observations—to [51.94,
80.83]. To apply the model in light of this smaller age range, the ages were rescaled so that 51.94 became x = −1 and 80.83 became
x = 1. The results from the unconditional and age-dependent analyses are contained in Figure 6 and Figure 7, respectively. The
results when restricting the data to the last available observations are rather similar to the results when ignoring the dependence
among all 683 observations. However, not only is there more uncertainty in the affinity and AUC estimates, but the estimates of
both κ and AUC are slightly more favorable with the 141 observations than they were with the 683 observations. This might be due
to the fact that the last available observations on the PSA biomarkers were the closest observations to the time of diagnosis.

7 Supplemental online resources

The R code for replicating the simulation is available from

http://www.maths.ed.ac.uk/˜mdecarv/files/kappasim.zip

A shiny app illustrating how affinity looks like vis-à-vis the AUC of a binormal model is available from

https://mdecarvalho.shinyapps.io/decarvalho2018/
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Figure 6. Last available observation analysis I; this figures compares with Fig. 7 on the manuscript. Top: DPM-based estimated densities
along with AUC and κ values when age is not considered. The black and grey lines respectively denote the densities of the biomarkers of
the diseased and non-diseased subjects. Bottom: Overlapping histograms. For display purposes, the largest total PSA values (< 8% of the
n = 141 observations) are not shown in the leftmost plots. All total PSA values were below 100.
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Figure 7. Last available observation analysis II; this figures compares with Fig. 8. Means and 95% pointwise credible intervals for the
age-adjusted affinity and AUC of two biomarkers in cases and controls. Only the last available observation per subject was considered. a)
is the age-adjusted affinity; b) is the age-adjusted AUC if both biomarkers have upper-tailed diagnostic tests; c) is the age-adjusted AUC if
the second biomarker diagnostic test is lower-tailed. In each panel, the black and grey lines respectively denote the first and second
biomarkers.
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