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Abstract.—Bayes’ theorem is a central result of Statistics and related fields, such as Artificial 
Intelligence and Machine Learning. In this note, we offer a gentle introduction to a geometric 
interpretation of Bayesian inference that allows one to think of priors, likelihoods, and 
posteriors as vectors in an Hilbert space. The given framework can be conceptualized as 
a geometry of learning from data, and it can be used to construct measures of agreement 
between these vectors. Conceptually, the geometry is tantamount to that of Pearson 
correlation, but where an inner product is considered over the parameter space—rather than 
over the sample space.

1 Introduction

This note builds on ideas from two prominent
thinkers: Thomas 'ayes (c. 1ȶȯ1Ž1ȶȵ1) and )avid
Hilbert (18ȵȱŽ1ȸ4Ȳ).@1B While their lives never over-
lapped temporally, this note shows how the work of
Hilbert can be used to reinterpret 'ayesƀ theorem and
'ayesian inference from a geometric viewpointžas
well as other key statistical concepts on what we re-
gard as a geometry of learning from data.

The 'ayesian paradigm is a well-known statisti-
cal inference approach that can be used for learning
from data about a parameter of statistical interest us-
ing 'ayes theorem. 1et ৰ2, ί , ৰ৾ be a sequence of
independent and identically distributed (iid) random
variables in a measurable space (ʎ, ਿ) that are drawn
from parametric density function৷಍(^) Ӿ ৷(^ Ӏ ಍),
with ^ ҥ ʎ and ಍ ҥ ɾ. The sets ʎ and ɾ are respec-
tively known as sample space and parameter space.

The key goal of 'ayesian inference is to learn
about the distribution of the parameter ಍ given the
data ਉ > (ਉ2, ί , ਉ৾). It follows from 'ayes theorem

that,

਀(಍ Ӏ ਉ) > ಕ(಍)Ϻ(಍)ӈɾ ಕ(ਅ)Ϻ(ਅ) dਅ/ (1)

where Ϻ(಍) > Ҭ৹৾>2 ৷಍(ਉ৹) is the likelihood function,
and ಕ(಍) is the prior density function. The density਀(಍ Ӏ ਉ) is known as posterior density and it summa-
rizes what we learn about ಍ aȭer observing ਉ.

The prior density can understood as a way adding
prior knowledge about ಍ to the analysisžsay, from an
expert opinion, from a census, and so onžor simply
as a way to Ƃinitiate the inferential machine.ƃ 6uoting
@ȸB:

The choice of a prior distribution is neces-
sary (as you would need to initiate the in-
ferential machine) but there is no notion of
the Ƃoptimalƃ prior distribution. (hoosing
a prior distribution is similar in principle
to initializing any other sequential proce-
dure (e.g., iterative optimization methods
@ƉB etc.). The choice of such initializa-
tion can be good or bad in the sense of the
rate of convergence of the procedure to its
final value, but as long as the procedure
is guaranteed to converge, the choice of
prior does not have a permanent impact.

@1B The key concepts and methods from this note relate with the ideas and principles in @ȲB, which was awarded with the ȱȯ18 1indley Prize
from the International Society of 'ayesian &nalysis.
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&nd indeed, the posterior can be shown to converge
to the true value, under rather general conditions
on the prior distributionža result known in statisti-
cal parlance as the 'ernsteinžvon Mises theorem @11,
Theorem 1ȯ.1B.

The remainder of this note is organized as follows.
In kȱ we note that thereƀs an hidden geometry under-
lying Eq. (4) that can be used to rethink 'ayesian infer-
ence and to develop measures of agreement between
prior, likelihood, and posterior. In kȲ we illustrate
how that geometry can be used for shedding light on
other statistical inference concepts.

'efore we get started a disclaimer is in order. To
make the presentation of the key ideas more acces-
sible, we will oȭen use visualizations based on (arte-
sian representations. >et, it is important to remember
that these representations are mainly heuristic and
hence should be interpreted with care.

Ǌ +?< ><oD<trP o= �8P<Ji8n in=<r<nc<

Ǌ�1 �9Jtr8ct ><oD<trP

We first clarify the sense in which the term geometry
will be used throughout this note. The following def-
inition of abstract geometry can be found in @ȶ, p. 1ȶB.

�<ànition 1 	�9Jtr8ct ><oD<trP
�É &n abstract ge-
ometry ਿ consists of a pair |ੇ , Ϲ~, where the ele-
ments of set ੇ are designed as points, and the ele-
ments of the collection Ϲ are designed as lines, such
that:

1. For every two points ৘, ৙ ҥ ੇ , there is a lineৼ ҥ Ϲ .

ȱ. Every line has at least two points.

Our abstract geometry of interest is ਿ > |ੇ , Ϲ~,
where ੇ > ৣ2(ɾ) is the the space of square inte-
grable functions, and the set of all lines isϹ > |𝑔𝑔 , ৻ϵ ӓ 𝑔𝑔, ϵ ҥ ৣ2(ɾ), ৻ ҥ R~/ (ȱ)

Hence, in our setting points can be, for example, prior
densities, posterior densities, or likelihoods, as long

as they are in ৣ2(ɾ). While not all priors and likeli-
hoods are in ৣ2(ɾ), the framework discussed herein
may extend beyond ৣ2(ɾ) with some modifications,
while still allowing similar geometric interpretations
as the ones provided below. See @Ȳ, kȲB for details.

Ǌ�Ǌ �8P<J ><oD<trP

ȳ�ȳ�Ȳ 9he margiSal liPelihood is aS iSSer product

Suppose the goal of the inference is over a parameter಍ which takes values on ɾ ԣ R਀. We use the geom-
etry of the Hilbert space ϲ > (ৣ2(ɾ), ݅բ, բ݆), with
inner-product@ȱB

݅𝑔𝑔, ϵ݆ > าɾ 𝑔𝑔(಍)ϵ(಍) d಍, 𝑔𝑔, ϵ ҥ ৣ2(ɾ)/ (Ȳ)

&dopting the geometric terminology used in linear
spaces, we denote the elements of ৣ2(ɾ) as vectors,
and assess their magSitudes through the use of the
norm induced by the inner product in (Ȳ), i.e., Ρ բ Ρ >(݅բ, բ݆)202.

The starting point for constructing our geometry
is the observation that 'ayes theorem can be written
using the inner-product in (ȱ.ȱ.1) as follows

਀(಍ Ӏ ਉ) > ಕ(಍)Ϻ(಍)݅ಕ, Ϻ݆ , (4)

where ݅ಕ, Ϻ݆ > ӈɾ ৷(ਉ Ӏ ಍)ಕ(಍) d಍ is the so-called
marginal likelihood. The inner product in (Ȳ) natu-
rally leads to considering ಕ and Ϻ that are in ৣ2(ɾ),
which is compatible with a wealth of parametric mod-
els and proper priors.

&s can be seen from Fig. 1, by considering ਀, ಕ, andϺ as vectors with diǌerent magnitudes and directions,
'ayesƀ theorem essentially describes the method of re-
shaping the prior vector in order to derive the poste-
rior vector. The likelihood vector amplifies or dimin-
ishes the magnitude of the prior vector, and appropri-
ately adjusts its direction, in a way that will be clearly
defined in the subsequent discussion.

The marginal likelihood ݅ಕ, Ϻ݆ is simply the inner
product between the likelihood and the prior, and
thus can be interpreted as an assessment of the con-
cordance between the prior and the likelihood. To
provide a more tangible understanding, letƀs define
the aSgle measure between the prior and the likeli-

@ȱB In mathematical terminology, the assertion that ϲ constitutes a Hilbert space is frequently referred to as the 7ieszŽFischer theorem. For
a proof see @ȱ, p. 411B.
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Figure 1.—Cartesian representation of vectors of interest in a 
Bayesian analysis.

hood as

ಕҽϺ > bsddpt ݅ಕ, Ϻ݆ΡಕΡΡϺΡ/ (ȴ)

Since ಕ and Ϻ are nonnegative, the angle between the
prior and the likelihood can only be acute or right, i.e.,ಕҽϺ ҥ \1, :1ҵ^. The closer ಕҽϺ is to 1ҵ, the greater
the agreement between the prior and the likelihood.
(onversely, the closer ಕҽϺ is to :1ҵ, the greater the
disagreement between prior and likelihood. In the
limiting case where ಕҽϺ > :1ҵžwhich implies the
prior and the likelihood have all of their mass on dis-
joint setsžwe say that the prior is orthogonal to the
likelihood. 'ayes theorem does not allow for a prior
to be orthogonal to the likelihood as ಕҽϺ > :1ҵ im-
plies that ݅ಕ, Ϻ݆ > 1, thus yielding a division by zero
in (4).

ȳ�ȳ�ȳ (ompatiGilit^

The object we aim to focus next is given by a stan-
dardized inner product

ಏಕ,Ϻ > ݅ಕ, Ϻ݆ΡಕΡΡϺΡ/ (ȵ)

The quantity ಏಕ,Ϻ ҥ (1, 2^ assesses the extent to
which an expertƀs viewpoint aligns with the data,
thereby oǌering an intuitive measurement of the con-
cordance between the prior and the data.

Extending the principle in (ȵ), for any two points
in the geometry under consideration we define their
compatibility as a standardized inner product.

�<ànition Ǌ 	�oDG8ti9iCitP
�É The compatibility
between points in the geometry under consideration
is defined as

ಏ𝑔𝑔,ϵ > ݅𝑔𝑔, ϵ݆Ρ𝑔𝑔ΡΡϵΡ, 𝑔𝑔, ϵ ҥ ৣ2(ɾ)/ (ȶ)

Particular instances include (ȵ) as well as:

Ƈ ಏಕ2,ಕ2 : which assesses the level of agreement
between two experts, with respective priors ಕ2
and ಕ2.

Ƈ ಏಕ,਀: which is a metric of the sensitivity of the
posterior to the prior specification.

�O8DGC< 1 	�<t8��<rnouCCi Dod<C
�É 1et

໶ৰ৹ Ӏ ಍ iidә 'ern(಍), ৹ > 2, ί , ৾,಍ ә 'eta(৲, ৳)/ (8)

Then, ಍ Ӏ ਉ ә 'eta(৲գ, ৳գ) with ৲գ > ৾2 , ৲ and৳գ > ৾ ү ৾2 , ৳, where ৾2 > Ү৹৾>2 ਉ৹.
The compatibility between prior and likelihood

for this betaŽ'ernoulli model is

ಏಕ,Ϻ > ৙(৲գ, ৳գ)|৙(2৲ ү 2, 2৳ ү 2)৙(2৾2 , 2, 2(৾ ү ৾2) , 2)~202 ,
for ৲, ৳ ? 202, with ৙(৲, ৳) > ӈ21 ਅ৲ү2(2 ү ਅ)৳ү2 ৵ਅ.@ȲB
To assess how compatible the priors ಕ2 ә 'eta(৲2, ৳2)
and ಕ2 ә 'eta(৲2, ৳2) are, we obtain

ಏಕ2,ಕ2 > ৙(৲2 , ৲2 ү 2, ৳2 , ৳2 ү 2)|৙(2৲2 ү 2, 2৳2 ү 2)৙(2৲2 ү 2, 2৳2 ү 2)~202 /
for ৲2, ৲2, ৳2, ৳2 ? 202.

@ȲB The geometry underlying compatibility can be reframed within an Hellinger aǏnity context so to allow for any ৲, ৳ ? 1. See @Ȳ, kȲB.
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Figure 2.—Cartesian representation underlying the strong likelihood principle (left) 
and sufficiency (right). See §§ 3.2 and 3.3.

ǋ �urt?<r G<rJG<ctiM<J 8nd inJi>?tJ

The roadmap for this section is as follows. kȲ.1 notes
that a variational representation of the posterior den-
sity naturally fits our geometry. kkȲ.ȱ and Ȳ.Ȳ are re-
lated with collinearity it follows from kȱ, whenever
the symbol ƂҺƃ is used in a 'ayesian setting it simply
implies that two likelihoods, priors or posteriors are
collinear. Finally, kȲ.4 notes the similarities between
the geometry of compabitility and that of Pearson cor-
relation.

ǋ�1 �onJB<rÈ-8r8d?8n r<Gr<J<nt8tion

The celebrated )onskerŽ;aradhan representation
shows that the posterior density is the solution to
a variational problem with search domain ੇ (ɾ) 
here and below, ੇ (ɾ) is the space of probability
density functions that can be defined over ɾ andৼ(಍) > mph Ϻ(಍) is the log likelihood. Specifically, the
)onskerŽ;aradhan representation is given by

਀(಍ Ӏ ਉ) > bsh njoਁҥੇ (ɾ)\үEਁ|ৼ(಍)~ , 01(ਁ, ಕ)^, (ȸ)

where Eਁ and 01 are respectively the prior expecta-
tion and 0ullbackŽ1eibler divergence, that is,

ড়ਁ|ৼ(಍)~ > าɾ ৼ(಍) ਁ(಍) d಍,
01(ਁ, ಕ) > าɾ ਁ(಍) mph|ਁ(಍)0ಕ(಍)~ d಍/

& geometric interpretation of (Ȳ.1) follows from ele-
mentary properties of inner products,

਀(಍ Ӏ ਉ) > bsh njoਁҥੇ (ɾ) ү݅ਁ, ৼ݆ , ݅ਁ, mph(ਁ0ಕ)݆
> bsh nbyਁҥੇ (ɾ)݅ਁ, ৼ݆ ү ݅ਁ, mph(ਁ0ಕ)݆
> bsh nbyਁҥੇ (ɾ)݅ਁ, );ਁ݆, (1ȯ)

where );ਁ is what we refer to as the )oSsPerż
;aradhaS liPelihood ratio,

);ਁ(಍) Ӿ mph\Ϻ(಍)0|ਁ(಍)ಕ(಍)~^/ (11)

1oosely, (1ȯ) implies that the posterior density is the
density in ੇ (ɾ) which is most lined up with the
)onskerŽ;aradhan likelihood ratio in (11).

ǋ�Ǌ �oCCin<8ritP
 I� CiB<Ci?ood GrinciGC<

1et Ϻ৷ and Ϻ𝑔𝑔 be the likelihoods based on observingਉ ә ৷ and ਉҴ ә 𝑔𝑔, respectively. The strong likelihood
principle states that if

Ϻ৷ (಍) > ৷(಍ Ӏ ਉ) Һ 𝑔𝑔(಍ Ӏ ਉҴ) > Ϻ𝑔𝑔(಍),
then the same inference should be drawn from both
samples. &ccording to our geometry, this means that
likelihoods with the same direction yield the same in-
ference. For instance, the 'ernoulli likelihood of the
model from Example (1) is

Ϻ৷ (಍) > ৾
๢৹>2 ಍ਉ৹(2 ү ಍)৾үਉ৹ > ಍Ү৹৾>2 ਉ৹ (2 ү ಍)৾үҮ৹৾>2 ਉ৹ ,

wheras that of the 'inomial model for ৾2 > Ү৹৾>2 ਉ৹
is Ϻ𝑔𝑔(಍) > ແ ৾৾

2ໂ಍৾2(2 ү ಍)৾ү৾2 ,

4



Figure 3.—Left: Prior, posterioar, and likelihood for beta–binomial specification from 
Example 1 with (a,b) = (4, 4), n = 40, and n1 = 30 so that, for example, κπ,l = 0.41. 
Right: Simulated data from bivariate normal distribution with ρX,Y = 0.98.

with ํ৲৳๎ denoting the binomial coeǏcient. Trivially,Ϻ৷ (಍) Һ Ϻ𝑔𝑔(಍),
and hence Ϻ৷ and Ϻ𝑔𝑔 are collinear.

ǋ�ǋ �oCCin<8ritP
 II� Juŭci<ncP

7oughly speaking, a suǏcient statistic is one that con-
tains all the information that is required to learn about಍.@4B The geometry from kȱ.ȱ can also be used to re-
think a celebrated characterization of suǏcient statis-
tics in a geometric fashion.
+?<or<D ǋ 	%<PD8n =8ctoriQ8tion
�É Suppose thatৰ > (ৰ2, ί , ৰ৾) has a joint density function or a fre-
quency function ৷಍(ਉ). Then ৫ (ৰ ) is suǏcient for಍ iǌ there exists a function of that statistic, ৞৫ (ਉ)(಍),
that is collinear to Ϻ(಍), that is,Ϻ(಍) Һ ৞৫ (ਉ)(಍)/
See, for instance, @ȵ, k4B for a nongeometrical formu-
lation of this classical result. 1etƀs illustrate this on a
well-known example.

�O8DGC< Ǌ�É 1et ৰ2, ί , ৰ৾ iidә :niform(1, ಍). It can
be easily shown that

Ϻ(಍) > ৾
๢৹>2

2಍1\1,಍^(ਉ৹) Һ 2಍৾1\1,಍^|৫ (ਉ)~ Ӿ ৞৫ (ਉ)(಍),

where ৫ (ਉ) > nby|ਉ2, ί , ਉ৾~ and 1৘ is the indicator
function.

ǋ�ǌ �oDG8ti9iCitP MJ '<8rJon corr<C8tion

(ompatibility in )efinition ȱ follows the same con-
struction principles as the Pearson correlation coeǏ-
cient, which is based on the inner product

݅৯, ৰ ݆ > าʎ ৯ৰ d১ , ৯, ৰ ҥ ৣ2(ʎ, ઠʎ, ১ ), (1ȱ)

instead of the inner product in (Ȳ). 7ecall that Pear-
son correlation is defined as

ಖ৯,ৰ > cov(৯, ৰ )
sd(৯) sd(ৰ ) ,

and it can be understood as a cosine of ৯ҽৰ in a
similar fashion as (ȴ)žbut with Ƃcovƃ and Ƃsdƃ denot-
ing the covariance (inner product) and standard devi-
ation (norm), respectively. &nd indeed, just like the
cosine function, ಖ৯,ৰ ҥ \ү2, 2^.

(ompatibility is however defined for priors, pos-
teriors, and likelihoods in ৣ2(ɾ) equipped with the
inner product (Ȳ), whereas Pearson correlation works
with random variables in ৣ2(ʎ, ઠʎ, ১ ) equipped
with the inner product (1ȱ).

Fig. Ȳ sheds light on the diǌerent uses of compati-
bility and Pearson correlation. For example, ಏಕ,Ϻ mea-

@4B 7ecall that a statistic ৫ > ৫ (ৰ ) is suǏcient for ಍ if, ১ (ৰ ҥ ৘ Ӏ ৫ > ਄) does not depend on ಍, for all ਄ in the range of ৫ and for all sets ৘.
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sures the agreement between likelihood and prior
density, whereas ಖ৯,ৰ assesses the degree of linear as-
sociation between random variables ৯ and ৰ . The
value ಏಕ,Ϻ > 1/52 is in line with the moderate over-
lap between prior and likelihood visible in Fig. Ȳ. The
value of ಖ৯,ৰ > 1/:9 is in line with the strong posi-
tive association between the random variables ৯ andৰ that can be seen in Fig. Ȳ.

ǌ �CoJin> r<D8rBJ

This note oǌers a gentle introduction to geometrical
aspects underlying the 'ayesian paradigm that can be
used for defining metrics of agreement between pri-
ors, likelihoods and posteriors as well as to rethink
other concepts and results related with learning from
data.

,eometrical interpretations are commonplace in
Statistics and related fieldsžincluding for example
that of Pearson correlation @1ȴB, least squares and
1&SSO (1east &bsolute Shrinkage and Selection Op-
erator) @1ȯB, and information geometry @1B also, the
geometry of multivariate analysis is well-known @1ȲB.
Many well-known geometrical insights concentrate
on the geometr^ of data itself, whereas the focus of
this note has been on the geometr^ of learSiSg from
data. )espite the long tradition of geometrical in-
terpretations of statistical concepts, the view of the
'ayesian paradigm along the lines of this note is rela-
tively novel and it has been pioneered by @ȲB and @ȴB.

'eyond geometry, topology and algebra hava also
recently introduced a variety of insights and novel
paradigms to the practice of learning from dataž
leading to the fields of topological data analysis @1ȱB
and algebraic statistics @4, 14B.

Finally, we note that the geometrical view of the
)onskerŽ;aradhan representation in (1ȯ) consists of
a variational maximum inner product problem, and
that nonvariational versions of such problems are of
interest in the Machine 1earning literature @8B.

�cBnoNC<d><D<ntJ
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