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Abstract: Stochastic search algorithms are becoming an increasingly
popular tool in the optimization community. The random structure
of these methods allows us to sample from the range of a function
and to obtain estimates of its global minimum. However, a major
advantage of stochastic search algorithms over deterministic algorithms,
which is frequently unexplored, is that they also allow us to obtain
interval estimates. In this paper, we put forward such advantage
by providing guidance on how to combine stochastic search and
optimization methods with extreme value theory. To illustrate this
approach we use several well-known objective functions. The obtained
results are encouraging, suggesting that the interval estimates yield
by this approach, can be helpful for supplementing point estimates
produced by other sophisticated optimization methods.
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1 Introduction

The search for an input value which fulfills a well-defined output target is a
problem of interest in a wide variety of scenarios. In optimization theory, the input
value of interest is the one which maximizes/minimizes some profit/cost criteria.
Typically, these searches are made either through deterministic or stochastic search
algorithms. In this paper we are particularly concerned with optimization methods
where the search direction is randomly dictated. For an inventory of deterministic
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optimization methods see, for example, Nocedal and Wright (1999). Stochastic
search and optimization algorithms have been applied in a wide variety of scenarios.
The scope of the topic is broad enough to comprehend applications ranging from
game theory (Pakes and McGuire, 2001), to the clustering of multivariate data
(Booth et al., 2008). An introductory overview of stochastic search and optimization
methods can be found, for instance, in Duflo (1996), or in Spall (2003).

Although the No Free Lunch theorems (Wolpert and Macready, 1997) preclude
the existence of an a priori ideal optimization search strategy, a major advantage
of stochastic search algorithms over deterministic algorithms, which is frequently
unexplored, is that they also allow its user to obtain interval estimates. In this
paper, we exploit and put forward some consequences of such advantage providing
guidance on how to combine random optimization methods with extreme value
theory (Haan and Ferreira, 2006; Resnick, 2007). This connection arises naturally
since the main concern of extreme value theory lies precisely in the extremes of a
sequence of random variables. Applications of extreme value theory arise in the fields
of banking (Vries, 2005), finance (Poon et al., 2005), industrial production (Borbot
et al., 2007), wildfire analysis (Turkman et al., 2010), sport statistics (Einmahl,
2008), among others. A broad share of this statistical paradigm is founded on
Karamata’s regular variation, which places the methods at an elegant mathematical
support (Bingham, 1987).

2 Interval estimates for the minimum of a function

The asymptotic results derived in this section will act as a bridge linking stochastic
optimization methods with extreme value theory. Let L denote a continuous cost
function of interest defined over ⇥ a subset of Rk. From the conceptual stance, we
can model the set {(✓,L(✓)) : ✓ 2 ⇥}, as a population of interest from which we
intend to consistently estimate the parameters

(✓?, l?) :=

✓
arg min

✓2⇥
L (✓) ,min

✓2⇥
L (✓)

◆
.

To put this di↵erently, we intend to use data from the graph of L to estimate its
minimum. In order to do so, suppose we collect a random sample {(✓i,L(✓i)}ni=1

from such population. Hence for each sampled value ✓i, we also inquire its
corresponding image value L(✓i). Assume that the sampling scheme collects
sequentially the ✓i. This leads us to take ✓1 as our first guess for the minimum,
and so we set b✓1 := ✓1. During the next extraction periods we keep computing

b✓i+1 = b✓i I{L1:i  L(✓i+1)}+ ✓i+1 I{L1:i > L(✓i+1)}, i = 1, . . . , n� 1.

Here we use the notation L1:i  L2:i  . . .  Li:i to represent the order statistics
of L(b✓1),L(b✓2), . . . ,L(b✓i). Below we state Renyi’s decomposition—an important
result for modelling the order statistics of the image values of L (Haan and Ferreira,
2006).
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Lemma 2.1. Let E be a random variable with standard exponential distribution.

Let E1:n,. . . ,En:n denote the n-th order statistics from a standard exponential

distribution. The following decomposition holds,

Ei:n
d
=

iX

j=1

E⇤
j

n� j + 1
, (1)

where E⇤
j are independent and identically distributed with E.

A major advantage of Renyi’s decomposition, is that it allows us to write
the order statistics of the image values L1:n, . . . , Ln:n, as a function of the order
statistics of a standard exponential distribution

(L1:n, . . . , Ln:n) = ( (E1:n) , . . . , (En:n))
d
=

0

@ 
✓
E⇤

1

n

◆
, . . . , 

0

@
nX

j=1

E⇤
j

n� j + 1

1

A

1

A .

Here  is an inverse function of � log(1�H), where H denotes the distribution
function of the order statistics L1:n, . . . , Ln:n. The archetypal type of assumption
made in extreme value theory is also made here; we assume regular variation on
 (x)� l? at 0+, with index ↵ > 0, i.e.:

 (tx)� l?

 (t)� l?
�!
t!0+

x1/↵, 8x > 0. (2)

This is a minor assumption that is made in the literature in the same context (Haan,
1981). For a unified overview on regular variation, see Bingham (1987); Haan and
Ferreira (2006). Renyi’s decomposition is put at work below where we state a set
results which will be useful for constructing interval estimates for l?.

Lemma 2.2. The following asymptotic results hold.

1.

L1:n�l?

 (n�1)�l?
D�! E⇤

1
1/↵

.

2.

L2:n�l?

 (n�1)�l?
D�! (E⇤

1 + E⇤
2 )

1/↵
.

3.

L1:n�l?

L2:n�L1:n

D�! E⇤
1
1/↵

(E⇤
1+E⇤

2 )
1/↵�E⇤

1
1/↵

.

The next result is based on asymptotic arguments put forward by Haan (1981).
This is a cornerstone result linking stochastic search and optimization methods
with extreme value theory. A sketch of the proof is given in the appendix.

Theorem 2.3. Consider the auxiliary set-valued function  : N⇥ [0; 1] ◆ R

 n(p) =

#
L1:n � L2:n � L1:n

(1� p)�1/↵ � 1
;L1,n

"
. (3)

Then, as n ! 1
pr {l? 2  n(p)}� (1� p) = o(1).
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Theoretical applications of Theorem 2.3 can be found, for instance, in Romeijn and
Smith (1994) and Carvalho (2010). We follow de Haan’s general recommendation
to set the parameter ↵ = k/2, where k denotes the number of dimensions of the
problem of interest. Technical details regarding this choice are beyond the scope of
this work and can be found in Section 3 of Haan (1981). Thus, in practice we use
the following modified version of (3)

 n(p) =

#
L1:n � L2:n � L1:n

(1� p)�
2
k � 1

;L1,n

"
. (4)

Table 1 Search domains of the test functions and their global minimum values.

Test function Search domain l?

Beale [�4.5, 4.5]2 0
Easom [�100, 100]2 -1
Griewank [�600, 600]2 0
Rastrigin [�5.12, 5.12]2 0
Rosembrock [�5, 10]2 0
Styblinski–Tang [�8, 8]2 -78.33

3 Computational experiment

The method suggested by Theorem 2.3 is extremely easy to apply; it uses the
following inputs: two order statistics of the image values (L1:n, L2:n); level of
significance (p); dimension of the optimization problem of interest (k). Although
for the sake of illustration we focus on two-dimensional test functions, the theory
discussed above works for any subset of Rk. From the practical stance, we suggest
using the method discussed here as a supplement for the point estimates produced
by further sophisticated methods (e.g. gradient methods, simulated annealing,
evolutionary algorithms, among others).

This computational experiment intends to fill two purposes. Firstly, to provide
an illustration of the confidence zones suggested by Theorem 1. Secondly, we intend
to assess the degree of variation to which such interval estimates are subject, if a
new computation is made, and how does this evolves when the number of sampled
image values increases.

3.1 Design of the experiment

Monte Carlo simulations were considered for several (degenerated) stopping times,
r = 10.000, 20.000, 100.000 and 500.000. Given that we run a battery of trials and
Monte Carlo simulations, we use the notation Li:n,j to denote the i-th order statistic
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from the j-th trial. The ouputs of our computational exercise are formally defined
in the sequel. Consider the set-valued function  : N⇥ [0; 1] ◆ R

 n(p) =

3

5n�1
nX

j=1

 
L1:n,j �

L2:n,j � L1,n,j

(1� p)�
2
k � 1

!
;n�1

nX

j=1

L1:n,j

2

4 , (5)

and define b�2
LB : [0, 1] ! R+

0 , as the following function of p

(n� 1)�1
nX

j=1

0

@
✓
L1:n,j � L2:n,j�L1:n,j

(1�p)�
2
k �1

◆
� n�1

nX

j=1

✓
L1:n,j � L2:n,j�L1:n,j

(1�p)�
2
k �1

◆1

A
2

.(6)

To measure the dispersion of the upper limit of the interval estimate, we also define

�̂2
UB = (n� 1)�1

nX

j=1

0

@L1:n,j � n�1
nX

j=1

L1:n,j

1

A
2

. (7)

We considered 1.000 trials and used some well-known test functions; the selected
test functions are frequently applied for assessing the performance of optimization
methods (Spall, 2003; Esqúıvel, 2007).

3.2 An account of the results

This section reports computational experience with the method presented in the
foregoing section. In Table 1, we summarize useful information regarding the the
search domains used, as well as their global minimums in the respective domains.
Given the large number of outputs reported in Table 2, some guidance is requisite.
From Table 2 we can ascertain that with the exception of the Easom and the
Rastrigin functions, the interval estimate created through the application of (4) is
very thin even with low computational e↵ort. To explain the entries in Table 2,
we focus on its first line. It contains the following information regarding the Beale
function

 10.000(0.10) =]� 0, 0409; 0, 0048[,

 10.000(0.05) =]� 0, 0918; 0, 0048[,

 10.000(0.01) =]� 0, 4985; 0, 0048[.

These respectively correspond to the 90%, 95% and 99% interval estimates for
the minimum of the Beale function build with 10.000 observations. To be more
precise the approximate confidence zone are built with 10.000 observations ⇥ 1.000
trials. As it can be observed from Table 2 the values of the lower and upper
bounds remain approximately constant from trial to trial. In the construction of
the approximate confidence intervals there is a tradeo↵ between the number of
trials and the number of observations to collect. Our computational experiments
suggest that it is preferable to consider a larger number of observations than a
larger number of replications. To state this di↵erently, we recommend a one shot
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Table 2 (1� p) interval estimates for p = 0.10/0.05/0.01; LB and UB respectively denote the
lower and upper bound of the confidence zone constructed according with (4). The
values in parentheses denote sample variances defined according to (6) and (7).

10.000 observations LB [p = 0.10] LB[p = 0.05] LB[p = 0.01] UB

Beale -0.0409 -0.0918 -0.4985 0.0048
(0.0022) (0.0096) (0.2580) (3e-05)

Easom -2.3266 -4.5481 -22.3196 -0.3273
(5.9262) (23.5227) (585.4046) (0.0908)

Griewank -0.7654 -1.8815 -10.8104 0.2391
(0.8137) (3.4069) (88.7540) (0.0142)

Rastrigin -2.6359 -6.1850 -34.5774 0.5582
(8.8619) (36.4579) (936.5940) (0.1605)

Rosembrock -0.5828 -1.3078 -7.1151 0.0704
(0.4335) (1.9305) (52.4967) (0.0049)

Styblinski–Tang -79.4701 -80.8843 -92.1976 -78.1974
(1.5938) (7.0524) (191.2889) (0.0196)

20.000 observations LB[p = 0.10] LB[p = 0.05] LB[p = 0.01] UB

Beale -0.0195 -0.0440 -0.2403 0.0026
(5e-04) (0.0023) (0.0608) (6e-06)

Easom -2.8362 -5.4301 -26.1817 -0.5016
(4.8064) (19.4017) (490.4135) (0.0841)

Griewank -0.5536 -1.3559 -7.7745 0.1685
(0.3970) (1.6416) (42.3840) (0.0080)

Rastrigin -2.1453 -4.8858 -26.8100 0.3212
(0.4265) (21.9313) (577.5952) (0.0855)

Rosembrock -0.2898 -0.6521 -3.5507 0.0363
(0.1135) (0.5022) (13.6278) (0.0015)

Styblinski–Tang -78.8997 -79.6046 -85.2518 -78.2634
(0.4113) (1.8156) (49.1538) (0.0049)

100.000 observations LB[p = 0.10] LB[p = 0.05] LB[p = 0.01] UB

Beale -0.0041 -0.0092 -0.0499 5e-04
(2e-06) (1e-04) (0.0026) (2e-07)

Easom -2.0988 -3.4918 -14.6353 -0.8452
(1.3030) (5.6331) (150.2689) (0.0183)

Griewank -0.2619 -0.6373 -3.6409 0.0760
(0.0864) (0.3614) (9.4083) (0.0015)

Rastrigin -0.5316 -1.1991 -6.5390 0.0691
(0.4265) (1.8842) (51.0218) (0.0046)

Rosembrock -0.0584 -0.1310 -0.7124 0.007
(0.0043) (0.0192) (0.5227) (5e-05)

Styblinski–Tang -78.4469 -78.5898 -79.7329 -78.3183
(0.0167) (0.0735) (1.9868) (2e-04)

500.000 observations LB[p = 0.10] LB[p = 0.05] LB[p = 0.01] UB

Beale -8e-04 -0.0018 -0.0097 1e-04
(8e-07) (4e-06) (1e-04) (8e-09)

Easom -1.2893 -1.6514 -4.5486 -0.9633
(0.1045) (0.4600) (12.4314) (0.014)

Griewank -0.1191 -0.2883 -1.6418 0.0332
(0.0183) (0.0769) (2.0045) (3e-04)

Rastrigin -0.0118 -0.0265 -0.1440 0.0014
(2e-04) (7e-04) (0.0193) (2e-06)

Rosembrock -0.0110 -0.0248 -0.1356 0.0015
(2e-04) (2e-04) (8e-04) (2e-06)

Styblinski–Tang -78,3537 -78.3807 -78.5960 -78.3295
(5e-04) (0.0024) (0.0643) (8e-06)
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run with a larger number of observations than averaging over several trials with
a smaller number of observations. The sample variances of the lower and upper
bounds of the interval estimates, respectively defined according to (6) and (7), are
also reported in Table 2. As expected, the results evidence an overall tendency for
approaching zero as the number of observations increases; this occurs at a di↵erent
rate per test function.
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Appendix

Proof of Lemma 2.2.

The proofs are as follows:

1. As a consequence of Lemma 2.1, it holds that

L1:n � l

?

 (n�1)� l

?
=
 (E1:n)� l

?

 (n�1)� l

?

d
=
 (n�1

E

⇤
1 )� l

?

 (n�1)� l

?
.

The final result is a consequence of (2).

2. The line of attack is similar to the proof of the previous claim. As a consequence of Lemma
2.1, we have

L2:n � l

?

 (n�1)� l

?
=
 (E2:n)� l

?

 (n�1)� l

?

d
=
 

⇣
n

�1
⇣
E

⇤
1 + n

n�1E
⇤
2

⌘⌘
� l

?

 (n�1)� l

?
.

Evoke (2) and the final result follows.

3. The ratio of interest can be conveniently rewritten as

L1:n � l

?

L2:n � L1:n
=

(L1:n � l

?)/( (n�1)� l

?)

{(L2:n � l

?)� (L1:n � l

?)}/( (n�1)� l

?)
.

Claims 1 and 2 can now be applied to yield the final result.

Proof of Theorem 2.3.

Start by noting that

pr {l? 2  n(p)} = pr

(
L1:n �

L2:n � L1:n

(1� p)�1/↵ � 1
 l

?  L1:n

)
,

which implies that

pr {l? 2  n(p)} = pr

(
L1:n � l

?

L2:n � L1:n


1

(1� p)�1/↵ � 1

)
.

As a consequence of claim 3 of Lemma 2.2, it can be shown that (Haan, 1981)

pr

⇢
L1:n � l

?

L2:n � L1:n
 x

�
�!
n!1

✓
x

1 + x

◆↵

,

implying that for n large, pr {l? 2  n(p)} approaches
 

1

(1� p)�1/↵ � 1

!↵

⇥
 
1 +

1

(1� p)�1/↵ � 1

!�↵

= 1� p.
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