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In this paper we focus on the application of global stochastic optimization methods to

extremum estimators. We propose a general stochastic method—the master method

—which includes several stochastic optimization algorithms as a particular case.

The proposed method is sufficiently general to include the Solis–Wets method, the

improving hit-and-run algorithm, and a stochastic version of the zigzag algorithm.

A matrix formulation of the master method is presented and some specific results are

given for the stochastic zigzag algorithm. Convergence of the proposed method is

established under a mild set of conditions, and a simple regression model is used to

illustrate the method.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Extremum estimators are one of the most extensive classes of methods for estimating the parameters of a statistical
model of interest (Amemiya, 1985; Newey and McFadden, 1994; Andrews, 1999; Romano and Shaikh, 2010). The ordinary
least squares, the generalized method of moments, and maximum likelihood methods are defined by the solution of an
optimization problem of interest, and thus are instances of extremum estimators. One advantage of this general class of
estimators is its elegant asymptotic theory, which reduces to a set of general results. Despite their appealing features, in
many instances of interest these estimators are analytically intractable, and we frequently lack a closed-form solution for
computing estimates based on extremum estimators. An approach to overcome this problem is to rely on optimization
algorithms and obtain such estimates computationally. Two questions then arise. First, is there a method which
outperforms all others? Second, what type of algorithm should we use to perform the optimization? An answer to the
first question is provided by the No Free Lunch theorem—an impossibility result which precludes the existence of a
general purpose strategy, robust a priori to any type of optimization problem (Wolpert and Macready, 1997). In the second
question, a major concern is related with convergence features of the method used to iterate towards the optimal solution.
If the method converges to a local solution, consistency of the extremum estimator is no longer ensured (cf. Newey and
McFadden, 1994; Gan and Jiang, 1999). Hence, one should avoid to rely on optimization methods which may converge to a
local solution, since it is the global solution that has noteworthy asymptotic features. Two types of algorithm are typically
adopted to tackle such problems, namely deterministic and stochastic optimization methods. The former includes the
Newton–Raphson algorithm, the steepest descent method, among many others (Nocedal and Wright, 1999). In this paper
we focus on stochastic optimization algorithms, and these include random search methods (Spall, 2003; Zabinsky, 2003),
the simulated annealing technique (Bohachevsky et al., 1986), the improving hit-and-run algorithm (Zabinsky et al., 1993;
Andersen and Diaconis, 2007), the conditional Gaussian martingale algorithm (Esquı́vel, 2006), among many others.
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Stochastic search and optimization algorithms are applied in many fields. The topic includes applications ranging from
game theory (Pakes and McGuire, 2001) to the clustering of multivariate data (Booth et al., 2008); an overview of
stochastic search and optimization methods can be found, for instance, in Duflo (1996), Spall (2003), and Zabinsky (2003).

A major contribution of this paper is given by a master method from which several stochastic optimization algorithms
are a special instance. The generality of the proposed method is enough to include the conceptual algorithm of Solis and
Wets (1981) as a particular case, and we establish the convergence of our master method under a set of fairly mild
assumptions. Just as a master key opens several locks, each of which also having its own key, the establishment of
convergence of the master method allows us to reach the convergence of all the algorithms that it includes. An important
instance of this method, to which we devote some attention, is the stochastic zigzag method—an algorithm largely
inspired in the works of Mexia et al. (1999) and Pereira and Mexia (2010). We apply this instance of our method to obtain
maximum likelihood estimates in a classical problem of statistical risk modeling related to NASA’s (National Aeronautics
and Space Administration) first shuttle tragedy (Dalal et al., 1989).

This paper is structured as follows. In the next section some preliminary concepts are introduced, and in Section 3 we
revisit the meta-approach of Solis and Wets (1981). The master method is introduced in Section 4, and its convergence is
established in Section 5. Concluding remarks are given in Section 6. Proofs are in Appendix.

2. Preliminaries

2.1. Problem formulation

We start with the definition of extremum estimator.

Definition 2.1. An estimator bhn is an extremum estimator if there is a parameter objective function T n, such thatbhn ¼ arg max
h2H

T nðhÞ: ð1Þ

Some remarks on notation: HDRk denotes a parameter space; n is the sample size; the true parameter will be denoted by
ho. As a consequence of (1), the optimization problem at the center of our attention is

max
h2H

T nðhÞ: ð2Þ

For concreteness observe that the ordinary least squares estimator is obtained by setting T nðbÞ ¼ �ðy�XbÞTðy�XbÞ, where
y, X, and b denote the response vector, the design matrix, and the regression parameter, respectively.

Even though our main interest lies over the optimization problem (2), the procedures developed in this paper carry over
mutatis mutandis to other unconstrained optimization problems of interest.

An alternative definition of extremum estimator is given by the following condition:

T nð
bhnÞ ¼ sup

h2H
T nðhÞþopð1Þ: ð3Þ

Here and below, we say that a random variable Xn is opð1Þ, if for any e40 it holds that P½9Xn94e��!0, as n-1. From the
conceptual standpoint, the definition provided in (3) is preferable since it only requires that T nð

bhnÞ is within opð1Þ from the
global maximum of T nð

bhnÞ is within opð1Þ. This overcomes the question of existence and it is also more suitable for
computational purposes (Andrews, 1999). To reduce the burden of notation, below we omit the subscript n in the
extremum estimator and in the parameter objective function.

2.2. An overview of random search techniques

Suppose we have a random sample of size n from a population of interest, and we aim to estimate ho by solving the
optimization problem (2). From the conceptual standpoint, for a fixed n, we can think of the graph of T ,
grðT Þ ¼ fðh,T ðhÞÞ : h 2 Hg, as another population of interest from which we intend to consistently estimate the parameters:

arg max
h2H

T ðhÞ, max
h2H

T ðhÞ
� �

:

To do so, suppose that we collect a random sample fðhi,T ðhiÞg
p
i ¼ 1 from such population. Hence for each sampled value hi,

we also inquire its corresponding image value T ðhiÞ. Assume that such a sample is collected sequentially and that during
each extraction period we compute

~hiþ1 ¼
h0, ( i¼ 0,
~hiIfT ð ~hiÞZT ðhiþ1Þgþhiþ1IfT ðhiþ1Þ4T ð ~hiÞg, ( i 2 N,

(
ð4Þ

where Ið�Þ denotes the indicator function. As we shall see below, the procedure described above contains the quintessence
of the classical pure random search algorithm (Zabinsky, 2003, Section 2).
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Classical random search algorithm
1.
com
Choose an initial value of h, say h0 2 H, either randomly or deterministically. Set i¼0 and ~h0 ¼ h0.

2.
 Generate a new independent value hiþ1 from a probability distribution f, with support over H. If T ðhiþ1Þ4T ð ~hiÞ, set

~hiþ1 ¼ hiþ1; else set ~hiþ1 ¼
~hi. Increment i.

The convergence of the algorithm stated above was established in the seminal work of Solis and Wets (1981). The crux
of their work lies in the introduction of a conceptual algorithm which includes among others the above-mentioned
algorithm. To shed some light on some standard variants of the classical random search algorithm, observe that
�
 other types of processes can be used in lieu of (4);

�
 independence in the choice of the values of hi can be dropped;

�
 the probability distribution f can be allowed to have a support defined over Rk+H.1
3. Revisiting the Solis–Wets framework

3.1. Preliminaries and notation

In the sequel we present some definitions and notation. We start by introducing the essential supremum, a concept
which is related with the maximum. It turns out however that the essential supremum is more suited for computational
purposes than the maximum itself; the concept of optimality region is also presented below. The following shorthand
notation will be useful:

rt ¼ fh 2 H : T ðhÞotg, r t ¼ fh 2 H : T ðhÞrtg,

Dt ¼ fh 2 H : T ðhÞ4tg, Dt ¼ fh 2 H : T ðhÞZtg: ð5Þ

Definition 3.1. Let T : H-R be a measurable function. The essential supremum is defined as

ess sup
h2H
T ðhÞ � infft : T rt, a:e:g:

Remark 3.1. Observe that the essential supremum is tantamount to

sup ft : lðDtÞ40g,

where lð�Þ denotes the Lebesgue measure. This type of representation is actually preferred by Solis and Wets (1981).

To ease notation, below we use t to denote the essential supremum. Let us recollect two properties of the essential
supremum which will be necessary in latter developments. First, if the maximizer of T is unique, and T is continuous, the
essential supremum t coincides with the maximum, i.e.bh ¼ arg max

h2H
T ðhÞ ) t¼ T ðbhÞ: ð6Þ

Second, the measurable function T cannot take values above its essential supremum, except on a measure-zero set:

T rt, a:e: ð7Þ

These properties can be found for instance in Capiński and Kopp (1998, pp. 66 and 289). We now formally define the
concept of optimality zone.

Definition 3.2. Let t denote the essential supremum of T . The optimality zone for the argument of the maximum of T is
given by the set-valued function O : R2

þ4H, defined as

Oe,M ¼
fh 2 H : T ðhÞ4t�eg ( t 2 R,

fh 2 H : T ðhÞ4Mg ( t¼ þ1:

(

The arguments of the optimality zone Oe,M can be interpreted as a tolerance and a threshold, respectively. Using the
notation introduced in (5), we can restate the optimality zones as

Oe,M ¼
Dðt�eÞ ( t 2 R,

DðMÞ ( t¼ þ1:

(

The next definition closes our conceptual framework.
1 Obviously, due adaptations are necessary; otherwise some problems can arise in Step 2; the lapse of such modifications may preclude the

putation of the image for certain values of h which are not included in the domain of T .
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Definition 3.3. A function c : H�Rk-H is a compass function if

ðTJcÞðha,hbÞZT ðhaÞ, 8ðha,hbÞ 2 H�Rk,

ðTJcÞðha,hbÞZT ðhbÞ, 8ðha,hbÞ 2 H�H:

(

Example 3.1. A simple example of compass function is the mapping:

cðha,hbÞ ¼ haIfha2DðT ðhbÞÞg
ðha,hbÞþhbIfha2rðT ðhbÞÞg

ðha,hbÞ:

If we define

~hiþ1 ¼ cð ~hi,hiþ1Þ,

then it holds that

~hiþ1 ¼
~hiIfT ð ~hiÞZT ðhiþ1Þgþhiþ1IfT ðhiþ1Þ4T ð ~hiÞg,

and so we recover the above-mentioned probabilistic recursive translation of the pure random search algorithms.

We refer to this function as a ‘compass’, because this is the mapping that guides the process of selection of the
maxima.

4. The master method

4.1. Introducing the master method

Before we present the modus operandi of our master method some notation is necessary: Z will be used to denote the
iterates of the algorithm; the parameter c controls the length of each run of the algorithm.

Modus operandi of the master method ðc 2 NÞ
0.
 Set i,j¼ 1. Find a,b 2 H, and set ~h0 and h0 equal to arg maxx2fa,bgT ðxÞ. Further, set z1 and Z1;1 equal to arg minx2fa,bgT ðxÞ.

1.
 If c41, generate Zi,j from the probability space ðRk,BðRk

Þ,Pi,jÞ, and set Zi,jþ1 ¼Zi,j. Else, go to Step 2.

2.
 If joc�1, increment j, and return to Step 1. Otherwise, set ~hi ¼ cð ~hi�1,hiÞ, where hi ¼ arg maxq2f1,...,cgT ðZi,qÞ,

and set j¼1.

3.
 Generate zi from the probability space ðRk,BðRk

Þ,PiÞ, set Zi,1 ¼ zi, increment i and j, and return to Step 1.

Some comments on this general algorithm are in order:
�
 The parameter c can be defined a priori by the user, and it can take any positive integer value. As a rule of thumb, we
suggest taking c as random (e.g. drawn from discrete uniform distribution Uf1, . . . ,kgÞ.

�
 Observe that Step 0 simply initiates the algorithm. If we repeat Step 1 for a fixed i, we construct the iterates

Zi,1, . . . ,Zi,c�1. In Step 2 we update the compass and obtain the next ‘candidate’ for argument of the maximum,
proposed by the algorithm. The repetition of Step 3 yields z2,z3, . . .

�
 Here and below, we refer to each zi as a seed. If the seeds are independent and identically distributed, we refer to the

master method as pure. If the probability measure Pp depends on some probability measure(s) Pq, with qop, then the
master method will be called adaptive. Further, we refer to each Zi,j as an iterate, and to each sequence Zi,1, . . . ,Zi,c as a
course. Using this terminology, we can say that the consecutive repetition of Step 1 builds a course. Similarly, if we
rerun serially Step 3 we obtain a sequence of seeds.

�
 The mechanics of the algorithm is perhaps better understood through the law of movement of the iterates:

Zi,j ¼ ziIðj¼ 13c¼ 1ÞþZi,j�1Iðj 2 f2, . . . ,cg4c41Þ: ð8Þ

To gain some insight on the mechanics of the method, consider the case wherein c¼1. Throughout this section, this

benchmark case will be invoked frequently; in this case we have that

hi ¼ arg max
q2f1g

T ðZi,qÞ ¼ Zi,1 ¼ zi

and hence hi ¼ zi ¼ Zi,1. Additionally, j becomes inactive in the algorithm, since under these circumstances, Step 1 is never
triggered. Consequently, for c¼1 the algorithm can be equivalently rewritten as follows.

Modus operandi of the master method ðc¼ 1Þ
0.
 Set i¼1. Find h1 2 H, and set ~h0 ¼ h1.

1.
 Set ~hi ¼ cð ~hi�1,hiÞ, and increment i.

2.
 Generate hi from the probability space ðRk,BðRk

Þ,PiÞ, return to Step 1.
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It turns out that this is precisely the Solis and Wets (1981, p. 19) method. Hence, the classical Solis–Wets conceptual
algorithm is a particular case of our master method, when c¼1. The master method is simply a generalization of this

method which follows a course between any two seeds. These and other features will become more clear after the
introduction of a matrix formulation of the master method in Section 4.3.

4.2. Stochastic zigzag methods

We will be particularly interested in the instance of the proposed method where Step 1 takes the form:
1.
Fig
sea

pict

from
If c41, generate ai,j from the probability space ðR,BðRÞ,Pi,jÞ, and set Zi,jþ1 ¼ ai,jhi�1þð1�ai,jÞzi. Else, go to Step 2.
Essentially the layout of the stochastic zigzag algorithm is the following. In Step 0 we initialize the algorithm, and
sample from the line which passes through the points h1 and z1. The consecutive application of Step 1, simply collects a
random sample of c points from such line. In Step 2, we refresh the compass function C, obtaining the next ‘candidate’, for
the argument of the maximum, yield by the algorithm. We then move to Step 3, where a new seed is generated. Again, we
sample from the line which passes through the estimated argument of the maximum of the previous line and the new
generated seed, and repeat the procedure described above (eventually ad infinitum).

In Figs. 1 and 2, we exemplify the stochastic zigzag method using the Styblinski–Tang function (Spall, 2003, p. 46):

Lðy1,y2Þ ¼
1
2½y

4
1�16y2

1þ5y1þy
4
2�16y2

2þ5y2�: ð9Þ

Other variants of the stochastic zigzag algorithm are also included in the general method; for example, if c¼2, we get
the improving hit-and-run algorithm (Zabinsky et al., 1993; Andersen and Diaconis, 2007). We can also consider an
alternative shape for the line, and the generality of the master method is such that we may even take a different shape per
course. The specification given above was chosen because of its simplicity and ease of implementation (see Theorem 4.1 in
Section 4.3).

4.3. Matrix formulation of the master method

In this subsection, we present a matrix representation of the master method. This conceptual framework will help us to
clarify some features of the method, and, as we shall see latter, it reduces the burden of computational implementation. To
be able to present this formulation, we need to consider a stopping time for the method, which we denote by r. From the
theoretical standpoint, we can consider for instance the time of entry in the optimal zone. This can be defined for every
e,M40, as

re,M ¼ inffi 2 N : hi 2 Oe,Mg,

where N ¼N [ f1g. It is simple to show that this is a stopping time with respect to the natural filtration Fi ¼ sðh1, . . . ,hiÞ;
analogous stopping times can be found in introductory textbooks (Williams, 1991, Section 10.8), so we skip the details. The
crux of the proof is given by observing that for every i 2 N

fre,M r ig ¼
[i

p ¼ 1

fhp 2 Oe,Mg 2 Fi:
. 1. The figure represents the initialization of the stochastic zigzag method. In the picture in the left we start with points a and b to initialize the

rch. The picture in the center illustrates that in Step 1 we collect a random sample (c¼10) from the line which passes through a and b. The remaining

ure depicts Steps 2 and 3 wherein after estimating the argument of the maximum of the first line, we generate another seed and extract a sample

the new line which passes through such points.



Fig. 2. The application of the stochastic zigzag method to the Styblinski–Tang function (r¼30; c¼10). This function pertains to a class which is typically

used to assess the performance of an optimization algorithm (see e.g. Spall, 2003). The functional form of this function is given in formula (9).
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The law of movement of the iterates (8) allows us to describe the mechanics of the method in a matrix form, by defining
the iterative matrix Z as the (r� kc)-matrix

Z�

Z1;1 Z1;2 � � � Z1,c

Z2;1 Z2;2 � � � Z2,c

^ ^ ^ ^

Zr,1 Zr,2 � � � Zr,c

266664
377775¼

z1 Z1;1 � � � Z1,c�1

z2 Z2;1 � � � Z2,c�1

^ ^ ^ ^

zr Zr,1 � � � Zr,c�1

266664
377775¼

z1

z2

^

zr

26664
37775

and the map-iterative matrix TZ as the (r� c)-matrix

TZ �

T ðZ1;1Þ T ðZ1;2Þ � � � T ðZ1,cÞ

T ðZ2;1Þ T ðZ2;2Þ � � � T ðZ2,cÞ

^ ^ ^ ^

T ðZr,1Þ T ðZr,2Þ � � � T ðZr,cÞ

266664
377775¼

Tz1

Tz2

^

Tzr

266664
377775:

For illustration let us rethink the case wherein c¼1. Then the iterative matrix Z and the map-iterative matrix TZ

become

Z¼

z1

z2

^

zr

266664
377775, TZ ¼

T ðz1Þ

T ðz2Þ

^

T ðzrÞ

266664
377775:

The affinity between the Solis–Wets conceptual algorithm and the master method now becomes more clear. In the
particular case c¼1 the iterative matrix degenerates into a matrix composed uniquely by seeds, i.e. random draws
generated from the probability space ðRk,BðRk

Þ,PiÞ.
In the stochastic zigzag method, the following matrix is also used

a�

a1;1 a1;2 � � � a1,c�1

a2;1 a2;2 � � � a2,c�1

^ ^ ^ ^

ar,1 ar,2 � � � ar,c�1

266664
377775¼

a1

a2

^

ar

26664
37775:

In the next theorem we show how the matrix representation of the stochastic zigzag method can ease its
implementation.
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Theorem 4.1 (Kronecker–zigzag decomposition). The ith zigzag course can be rewritten as

zi ¼ ½zi ^ ai � hi�1þð1
T
c�1�aiÞ � zi�, i¼ 1, . . . ,r,

where hi�1 is defined accordingly to the formulation of the stochastic zigzag method given above.

The latter result warrants some comments. Roughly speaking, it states that the law of movement of each iterate, can be
readily extended to describe the whole law of movement of a zigzag course by replacing the scalar product with the
Kronecker product and performing the necessary scalar to vector adaptations. To put this differently, using the binary
operation �, we are able to build in a step each line of the iterative matrix Z. The latter result thus allows us to easily
implement computationally the algorithm by a ‘loop’ which is stated below in pseudocode.

Pseudocode implementation of the stochastic zigzag method
randomize:

seeds;
alpha.

for i¼1 to r,
compute yi�1;
compute zi;
increment i.
We give below an illustration of the Kronecker–zigzag decomposition and the stochastic zigzag method.

Example 4.1 (Minimizing the Styblinski–Tang function). Suppose that the following matrices were randomly generated

a¼

a1

a2

a3

264
375¼ 2=3 1=3

�1 �1=3

�2 �1

264
375, z¼

�4 1

0 0

2 0

264
375, ~h0 ¼ h0 ¼ ½�1 4�:

By Theorem 4.1, it follows that

z1 ¼ ½z1 ^ a1 � h0þð1
T
2�a1Þ � z1� ¼ ½�4 1 �2 3 �3 2�:

Hence

Tz1
¼ ½�15 �53 �58�

and so h1 ¼ ½�3 2�. Similarly, we build second and third lines of the iterative matrix Z:

z2 ¼ ½z2 ^ a2 � h1þð1
T
2�a2Þ � z2� ¼ ½0 0 3 �2 1 �2=3�:

This yields

Tz2
¼ ½0 �53 �10:12�,

so that h2 ¼ ½3 �2�: Finally, we have

z3 ¼ ½z3 ^ a3 � h2þð1
T
2�a3Þ � z3� ¼ ½2 0 0 4 1 2�:

Thus

Tz3
¼ ½�19 10 �24�

and so h3 ¼ ½1 2�. Thus, we have the following iterative matrix Z and corresponding map-iterative matrix TZ:

Z¼

�4 1 �2 3 �3 2

0 0 3 �2 1 �2=3

2 0 0 4 1 2

264
375, TZ ¼

�15 �53 �58

0 �53 �10:12

�19 10 �24

264
375:

Example 4.2 (Maximum likelihood estimation). We now consider an example of maximum likelihood estimation in a
logistic regression model. The data are from 23 flights of the space shuttle Challenger previous to the accident of 1986,
wherein the shuttle blew up during takeoff. On the morning of this catastrophic accident, the O-rings were 22 1F below the
minimum temperature recorded in all the previous flights. There has been a large discussion in the literature about how to
conduct a scientific risk analysis which allows one to predict the O-rings failure/success from its temperature (see, for
instance, Dalal et al., 1989; Maranzano and Krzysztofowicz, 2008). The simplest possibility is by a logistic regression model
where the variables of interest are the temperature of the primary O-rings of the space shuttle and an indicator of failure/
success of the O-rings during takeoff; the data can be found in Christensen (1990, Section 2.6). The interest is thus in
modeling the probability pi that at least one O-ring fails, by taking temperature ti as a covariate. This can be accomplished
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by considering the model:

log
pi

1�pi

� �
¼ yaþybti, ð10Þ

where ya and yb, respectively, denote an intercept and a slope parameter. By (10), we can rewrite the probability that at
least one O-ring fails, in case i, as

pi ¼
expfyaþybtig

1þexpfyaþybtig
,

so that the log-likelihood can be written as

‘¼
Xn

i ¼ 1

logfpi � IðfailureiÞgþ
Xn

i ¼ 1

logfð1�piÞ � IðsuccessiÞg: ð11Þ

The estimation objects of interest are the intercept and slope parameters of model (10). Table 1 summarizes the estimates
obtained by the application of the stochastic zigzag method to the log-likelihood (11). The results are from the averaging of
a Monte Carlo simulation study with 500 trials; per each value of c we considered r¼1000. As it can be observed from
Table 1, the estimates are close to the ones presented by Christensen (1990, p. 56), namely ðbya,bybÞ ¼ ð15:04,�0:2321Þ.
As pointed out by one of the reviewers, the comparison of the log-likelihood of our estimates and the one of ðbya,bybÞ is
critical for our comparison. Apart from the case c¼2, where we obtain a slightly lower value, the log-likelihood of our
average estimates gives �10.1576, which is the same value we would obtain with ðbya,bybÞ. To avoid unfair comparisons
with the estimates reported in Christensen’s book, we used the same number of decimal places in computing the log-
likelihoods reported in Table 1.

4.4. A short note on the construction of confidence intervals

This subsection is devoted to the construction of confidence intervals for the maximum of T , through the use of the
image of the first column of the map-iterative matrix TZ. As we shall see below, if the master method is pure, and the seeds
are uniformly distributed over H, then it is possible to take advantage of a result on extreme value theory due to de Haan
(1981). In the sequel, let T zð1Þr � � �rT zðrÞ denote the order statistics of the sequence of the image of the seeds, where r

denotes a finite (possibly degenerated) stopping time.

Theorem 4.2 (Confidence intervals for the maximum—de Haan, 1981). Consider the sequence of independent and identically

distributed zi with uniform distribution over H. Further, consider the auxiliary set-valued function X : N� ½0;1�4R, defined as

Xði,pÞ ¼ T zðiÞ; T zðiÞ þ
T zðiÞ�T zði�1Þ

ð1�pÞ�2=k
�1

" #
:

The following large sample result holds

P½T iðhoÞ 2 Xði,pÞ��ð1�pÞ ¼ oð1Þ:

Proof. See de Haan (1981, pp. 467–469). &

Remark 4.1. This result has also been used to conduct inference. For example, Veall (1990) relied on Theorem 4.2 to
develop a statistical procedure for testing if a certain solution is global. Hence, if the method is pure and the seeds are
uniformly distributed, Veall’s test can be implemented here by using the first column of the iterative matrix Z.

The method is extremely easy to apply using the following inputs: two order statistics ðT zðrÞ,T zðr�1ÞÞ, level of
significance p, and the dimension of the optimization problem k; further details on how to construct confidence intervals
with Theorem 4.2, can be found in de Carvalho (2011).
Table 1

Estimates of the intercept and slope parameters ðya ,ybÞ, for the logistic regression model (11), obtained by the

stochastic zigzag method.

Outputs from the Monte Carlo simulation
study

c

2 3 4

Average estimate (14.9121,�0.2302) (14.9932,0.5871) (14.9945,�0.2315)

Standard deviation (�0.2302,0.0145) (�0.2314,0.0086) (�0.2315,0.0067)

Log-likelihood �10.1578 �10.1576 �10.1576
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5. Convergence

In this section we study the convergence of the general algorithm introduced above. We start with the introduction of
some preliminary considerations. As a consequence of the compass updating rule of the master algorithm, ~hi ¼ cð ~hi�1,hiÞ, it
holds that the sequence fT ð ~hiÞgi2N is increasing:

T ð ~h iÞ ¼ ðTJCÞð ~hi�1,hiÞZT ð ~hi�1Þ:

This reasoning can be extended by induction, being valid that for every positive integer k

T ð ~h iþkÞZT ð ~hiÞ:

This simple fact plays an important role in the establishment of the following trinity of elementary results.

Proposition 5.1. For every positive integer k, we have that:
1.
 If hi 2 Oe,M , then ~h iþk 2 Oe,M .

2.
 If ~hi 2 Oe,M , then ~hiþk 2 Oe,M .

3.
 f ~hk 2 Oc

e,MgDf
~h1, . . . , ~hk�1 2 Oc

e,Mg \ fh1, . . . ,hk�1 2 Oc
e,Mg:
Claims 1 and 2 of the foregoing theorem, translate the idea that if an iterate of the algorithm falls in the optimal zone, then

it remains there forever. Claim 3 will be particularly useful in the proof of convergence of the general algorithm stated
above.

Theorem 5.1 (Convergence of the pure master method, Part I).
1.
 Suppose that T is bounded from above. Further, suppose that the master method is pure, and that 8B 2 BðHÞ lðBÞ40)
P½z1 2 B�40: Then P½ ~hi 2 Oc

e,M� ¼ oð1Þ:

2.
 Suppose that T is bounded from above. Then T ð ~hiÞ�T ¼ oð1Þ, a:s:, where T is a random variable such that P½T ¼ t� ¼ 1.

The latter result warrants some remarks. Claim 1 states that the probability of failing to sample the optimality region,
~
approaches 0 as the number of iterates increases, whereas Claim 2 ensures that the sequence fT ðhiÞgi2N converges a.s. to a

random variable T which is indistinguishable from the essential supremum. The proof of Claim 2 is entirely robust to both
the pure stochastic method and the adaptive master method, and so the second result also holds for the adaptive master
method. It then arises the question. Is the first claim of the previous theorem also extendable to the adaptive master
method? This question is addressed in the next theorem.

Theorem 5.2 (Convergence of the adaptive master method, Part I). Suppose that T is bounded from above. Further, suppose

that the master method is adaptive, and that inf
1rpr i�1

P½zp 2 Oc
e,M � ¼ oð1Þ: Then P½ ~hi 2 Oc

e,M � ¼ oð1Þ:

It is important to underscore that the hypothesis considered here to establish the convergence of the adaptive master
method is known in the literature, and is tantamount to the one used by Esquı́vel (2006). Note however that whereas
Esquı́vel used this condition to establish the convergence of the adaptive random search, here it is used in the more
general context of the adaptive master method.

Theorem 5.3 (Convergence of the pure master method, Part II). Suppose that T is bounded from above. Further, suppose

that master method is pure, and that 8B 2 BðHÞ lðBÞ40) P½z1 2 B�40: Further, suppose that T ðhÞ is continuous

and that bh ¼ arg maxh2H T ðhÞ. Then, it holds that T ð ~hiÞ�T ðbhÞ ¼ oð1Þ, a:s: If furthermore H 	 Rk is compact, then
~hi�
bh ¼ oð1Þ, a:s:

A similar result can be established if the master method is adaptive. Again, the framework need to be suitably
accommodated by using Esquı́vel’s (2006) condition.

Theorem 5.4 (Convergence of the adaptive master method, Part II). Suppose that T is bounded from above. Further, suppose

that master method is adaptive, and that inf
1rpr i�1

P½zp 2 Oc
e,M� ¼ oð1Þ: Suppose in addition that T ðhÞ is continuous and that

bh ¼ arg max
h2H
T ðhÞ. Then, it holds that T ð ~hiÞ�T ðbhÞ ¼ oð1Þ a:s:; as i-1: If furthermore H 	 Rk is compact, then

~hi�
bh ¼ oð1Þ a:s:; as i-1:

6. Summary

This paper introduces the master method—a general algorithm which comprises several stochastic optimization
algorithms as a particular case. The generality of the master method is considerable including, for instance, the conceptual
algorithm of Solis and Wets (1981) and the improving hit-and-run algorithm (Zabinsky et al., 1993). Another specific
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embodiment of the master method is provided by the stochastic zigzag method—an optimization algorithm which is
based on the works of Mexia et al. (1999) and Pereira and Mexia (2010). We introduce a matrix formulation of the
algorithm which brings new insights into the general method and diminishes the burden of implementation.
The stochastic convergence of the master method is here achieved under a fairly mild set of conditions, and we illustrate
the method by revisiting a classical problem in statistical risk modeling.
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Appendix
Proof of Theorem 4.1. Just note that

zi ¼ ½zi ^ ai,1hi�1þð1�ai,1Þzi � � � ai,c�1hi�1þð1�ai,c�1Þzi�

¼ ½zi ^ ai,1hi�1 � � � ai,c�1hi�1�þ½0 ^ ð1�ai,1Þzi � � � ð1�ai,c�1Þzi�

¼ ½zi ^ ai � hi�1þð1
T
c�1�aiÞ � zi�: &

Proof of Proposition 5.1.
1.
 We just deal with the case where the essential supremum is finite, because the case where t¼1 is similar. Given that
the sequence fT ð ~hiÞgi2N is increasing, we have that for every positive integer k

T ð ~hiþkÞZT ð ~h iÞ ¼ T ðcð ~hi�1,hiÞÞZT ðhiÞ: ð12Þ

Further, since by assumption hi 2 Oe,M , it holds that

T ðhiÞ4t�e: ð13Þ

The final result now follows by combining inequalities (12) and (13).

2.
 We only consider the case in which t 2 R, given that the case where t¼1 is similar. Since by assumption we have that

~hi 2 Oe,M , then it holds that

T ð ~hiÞ4t�e:

The final result follows directly since fT ð ~hiÞgi2N is increasing.

3.
 By Claims 1 and 2, we have that for every positive integer k

ðhk�1 2 Oe,M3 ~hk�1 2 Oe,MÞ )
~hk 2 Oe,M : ð14Þ

Applying the contrapositive law to (14), yields

~hk 2 Oc
e,M )

hk�1 2 Oc
e,M

~hk�1 2 Oc
e,M

(
)

h1, . . . ,hk�1 2 Oc
e,M ,

~h1, . . . , ~hk�1 2 Oc
e,M ,

(

where the last implication follows directly from Claims 1 and 2. &

Proof of Theorem 5.1. The proof is as follows.
1.
 As a consequence of Proposition 5.1, it holds that

P½ ~hi 2 Oc
e,M �rP

\
1rpr i�1

f ~hp 2 Oc
e,Mg \ fhp 2 Oc

e,Mg

24 35rP
\

1rpr i�1

fhp 2 Oc
e,Mg

24 35: ð15Þ

Since by definition hp ¼ arg max
q2f1,...,cg

T ðZp,qÞ, then it holds that fhp 2 Oc
e,MgDfzp 2 Oc

e,Mg, for any positive integer p. This

latter observation combined with (15) yields

P½ ~hi 2 Oc
e,M �rP

\
1rpr i�1

fzp 2 Oc
e,Mg

24 35¼P½z1 2 Oc
e,M�

i�1:

The final result now holds since by assumption P½z1 2 Oc
e,M �o1.
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2.
 Start by noting that fT ð ~hiÞ,Figi2N is a submartingale, where Fi ¼ sð ~h1, . . . , ~hiÞ denotes the natural filtration, i.e.

E½T ð ~hiÞ9Fi� ¼ E½ðTJcÞð ~hi�1,hiÞ9Fi�ZE½T ð ~hi�1Þ9Fi� ¼ T ð ~hi�1Þ, a:s:

Since this submartingale is bounded from above, it is a.s. convergent to a random variable T.2 Moreover, since e is
arbitrary, the preceding claim implies that

P½T ðhiÞot� ¼ oð1Þ: ð16Þ

Fatou’s lemma yields

P½Tot� ¼P½lim inf
i-1

fT ð ~hiÞotg�r lim sup
i-1

P½T ð ~hiÞot� ¼ 0,

where the last equality follows by (16). Furthermore, recall that (7) holds, i.e.

T rt, a:e:

In particular, this implies that for every positive integer i we have P½T ð ~hiÞ4t� ¼ 0. Consequently it holds that

P½T ð ~hiÞ4t� ¼ oð1Þ: ð17Þ

Therefore, again by Fatou’s lemma

P½T4t� ¼P½lim inf
i-1

fT ð ~hiÞ4tg�r lim sup
i-1

P½T ð ~hiÞ4t� ¼ 0,

where the last equality is a consequence of (17). &

Proof of Theorem 5.2. Our approach is similar to the one used in the previous proof. By a similar reasoning, it holds that

P½ ~hi 2 Oc
e,M�rP

\
1rpr i�1

fzp 2 Oc
e,Mg

24 35r inf
1rpr i�1

P½zp 2 Oc
e,M�,

from where the final result follows. &

Proof of Theorem 5.3. The proof is split into two claims. The first claim establishes that T ð ~hiÞ�T ðbhÞ ¼ oð1Þ, a:s: and the
second claim shows that ~hi�

bh ¼ oð1Þ, a:s:
1.
app
We first show that the sequence fT ð ~hiÞgi2N converges in probability to T ð ~h0Þ. Consider an arbitrary e40, and start by
noting that

P½9T ð ~hiÞ�T ðbhÞ9Ze� ¼P½fT ð ~hiÞrT ðbhÞ�eg [ fT ð ~hiÞZT ðbhÞþeg�: ð18Þ

By (6) it holds that the essential supremum and the maximum coincide, and so by definition of essential supremum it
holds that P½fT ð ~hiÞZT ðbhÞþeg� ¼ 0. This implies that (18) can be rewritten as

P½9T ð ~hiÞ�T ðbhÞ9Ze� ¼P½T ð ~hiÞrT ðbhÞ�e� ¼P½ ~h i 2 Oc
e,M�:

As a consequence of Proposition 5.1, it holds that

P½ ~hi 2 Oc
e,M�rP½h1, . . . ,hi�1 2 Oc

e,M�rP½z1, . . . ,zi�1 2 Oc
e,M� ¼ ðP½z1 2 Oc

e,M �Þ
i�1:

Since by assumption P½z1 2 Oc
e,M �o1, the last inequality establishes that T ð ~hiÞ�T ðbhÞ ¼ opð1Þ: The remaining part of the

proof follows by a standard argument, given that the sequence fT ð ~hiÞgi2N is increasing, as this implies that the sequence
of events Ei,e ¼ f9T ð ~hiÞ�T ðbhÞ9reg is contractive, i.e. Eiþ1,eDEi,e, for every i 2 N and e40. Thus by a standard argument,3

convergence in probability implies that for every e40

P½lim
i-1

9T ð ~hiÞ�T ðhoÞ9re� ¼ 1:

Given that e is arbitrary, we get

P½lim
i-1

9T ð ~hiÞ�T ðbhÞ9¼ 0� ¼ 1,

from where the final result follows.

2.
 We now assume that H is compact, and suppose towards a contradiction that (Theorem 5.3) does not hold. Then for

every o on a set of positive probability O 	 Rk

(e40, 8p 2N (Ni4p 9 ~hiðoÞ�bh94e: ð19Þ
2 Since by assumption T is bounded from above, it holds that supi E½T ð ~h iÞ�o1. Consequently, Doob’s martingale convergence theorem can be

lied, hence establishing the a.s. convergence to T.
3 Recall that when a sequence of events Ei is either expansive or contracting it holds that limi-1P½Ei� ¼P½limi-1Ei�; see Ross (1996, p. 2).
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Now for all o 2 O the sequence f ~hiðoÞgi2N is a sequence of points in a compact set H and by Bolzano–Weierstrass
theorem there is a convergent subsequence f ~hik ðoÞgk2N of f ~hiðoÞgi2N. This subsequence must converge to bh because if
the limit were ha then, by the continuity of T we would have the sequence fT ð ~hik ÞðoÞgk2N converging to T ðhaÞ ¼ T ðbhÞ.
Since bh is the unique maximizer of T in H we have ha ¼

bh. Finally, observe that the subsequence f ~h ik ðoÞgk2N also verifies
the condition expressed in (19) for k large enough, which yields the desired contradiction. &

Proof of Theorem 5.4. Using an argument similar to the proof of Theorem 5.1 we get that

P½ ~hi 2 Oc
e,M �rP½h1, . . . ,hi�1 2 Oc

e,M �rP½z1, . . . ,zi�1 2 Oc
e,M �r inf

1rpr i�1
P½zp 2 Oc

e,M �:

This establishes that T ð ~hiÞ�T ðbhÞ ¼ opð1Þ, and the a.s. convergence can be achieved by the same argument used in the proof
of Theorem 5.3. The remaining part of the proof is the same as above. &
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