
A Euclidean Likelihood Estimator for Bivariate Tail

Dependence

Miguel de Carvalhoú†, Boris Oumowú, Johan Segers‡, and Micha≥ Warcho≥§

Abstract

The spectral measure plays a key role in the statistical modeling of multivariate extremes.

Estimation of the spectral measure is a complex issue, given the need to obey a certain moment

condition. We propose a Euclidean likelihood-based estimator for the spectral measure which

is simple and explicitly defined, with its expression being free of Lagrange multipliers. Our

estimator is shown to have the same limit distribution as the maximum empirical likelihood

estimator of J. H. J. Einmahl and J. Segers, Annals of Statistics 37(5B), 2953–2989 (2009).

Numerical experiments suggest an overall good performance and identical behavior to the

maximum empirical likelihood estimator. We illustrate the method in an extreme temperature

data analysis.

Keywords: Bivariate extremes; Empirical likelihood; Euclidean likelihood; Spectral measure;

Statistics of extremes.

1 Introduction

When modeling dependence for bivariate extremes, only an infinite-dimensional object is flexi-

ble enough to capture the ‘spectrum’ of all possible types of dependence. One of such infinite-

dimensional objects is the spectral measure, describing the limit distribution of the relative size

of the two components in a vector, normalized in a certain way, given that at least one of them

is large; see, for instance, Kotz and Nadarajah (2000, §3) and Beirlant et al. (2004, §8–9). The

normalization of the components induces a moment constraint on the spectral measure, making

its estimation a nontrivial task.

In the literature, a wide range of approaches has been proposed. Kotz and Nadarajah (2000,

§2–3) survey many parametric models for the spectral measure, and new models continue to be
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invented (Cooley et al., 2010; Boldi and Davison, 2007; Ballani and Schlather, 2011). Here we are

mostly concerned with semiparametric and nonparametric approaches. Einmahl and Segers (2009)

propose an enhancement of the empirical spectral measure in Einmahl et al. (2001) by enforcing

the moment constraints with empirical likelihood methods. A nonparametric Bayesian method

based on the censored-likelihood approach in Ledford and Tawn (1996) is proposed in Guillotte

et al. (2011).

In this paper we introduce a Euclidean likelihood-based estimator related with the maximum

empirical likelihood estimator of Einmahl and Segers (2009). Our estimator replaces the empirical

likelihood objective function by the Euclidean distance between the barycenter of the unit simplex

and the vector of probability masses of the spectral measure at the observed pseudo-angles (Owen,

1991, 2001; Crépet et al., 2009). This construction allows us to obtain an empirical likelihood-based

estimator which is simple and explicitly defined. Its expression is free of Lagrange multipliers,

which not only simplifies computations but also leads to a more manageable asymptotic theory. We

show that the limit distribution of the empirical process associated with the maximum Euclidean

likelihood estimator measure is the same as the one of the maximum empirical likelihood estimator

in Einmahl and Segers (2009). Note that standard large-sample results for Euclidean likelihood

methods (Xu, 1995; Lin and Zhang, 2001) cannot be applied in the context of bivariate extremes.

The paper is organized as follows. In the next section we discuss the probabilistic and geometric

frameworks supporting models for bivariate extremes. In Section 3 we introduce the maximum Eu-

clidean likelihood estimator for the spectral measure. Large-sample theory is provided in Section 4.

Numerical experiments are reported in Section 5 and an illustration with extreme temperature

data is given in Section 6. Proofs and some details on a smoothing procedure using Beta kernels

are given in the Appendix A and B, respectively.

2 Background

Let (X1, Y1), (X2, Y2), . . . be independent and identically distributed bivariate random vectors with

continuous marginal distributions FX and FY . For the purposes of studying extremal dependence,

it is convenient to standardize the margins to the unit Pareto distribution via Xú
i = 1/{1≠FX(Xi)}

and Y ú
i = 1/{1 ≠ FY (Yi)}. Observe that Xú

i exceeds a threshold t > 1 if and only if Xi exceeds its

tail quantile F ≠1
X (1 ≠ 1/t); similarly for Y ú

i . The transformation to the unit Pareto distribution

serves to measure the magnitudes of the two components according to a common scale which is

free from the actual marginal distributions.

Pickands’ representation theorem (Pickands, 1981) asserts that if the vector of rescaled, com-

ponentwise maxima

Mú
n =

3
1
n

max
i=1,...,n

Xú
i ,

1
n

max
i=1...,n

Y ú
i

4
,
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converges in distribution to a non-degenerate limit, then the limiting distribution is a bivariate

extreme value distribution G with unit-Fréchet margins given by

G(x, y) = exp
;

≠ 2
⁄

[0,1]
max

3
w

x
,

1 ≠ w

y

4
dH(w)

<
, x, y > 0. (1)

The spectral (probability) measure H is a probability distribution on [0, 1] that is arbitrary apart

from the moment constraint ⁄

[0,1]
w dH(w) = 1/2, (2)

induced by the marginal distributions G(z, Œ) = G(Œ, z) = exp(≠1/z) for z > 0.

The spectral measure H can be interpreted as the limit distribution of the pseudo-angle Wi =

Xú
i /(Xú

i +Y ú
i ) given that the pseudo-radius Ri = Xú

i +Y ú
i is large. Specifically, weak convergence

of Mú
n to G is equivalent to

Pr[Wi œ · | Ri > t] w≠æ H( · ), t æ Œ. (3)

The pseudo-angle Wi is close to 0 or to 1 if one of the components Xú
i or Y ú

i dominates the other

one, given that at least one of them is large. Conversely, the pseudo-angle Wi will be close to

1/2 if both components Xú
i and Y ú

i are of the same order of magnitude. In case of asymptotic

independence, G(x, y) = exp(≠1/x≠1/y), the spectral measure puts mass 1/2 at the atoms 0 and

1, whereas in case of complete asymptotic dependence, G(x, y) = exp{≠1/ min(x, y)}, the spectral

measure H reduces to a unit point mass at 1/2.

Given a sample (X1, Y1), . . . , (Xn, Yn), we may construct proxies for the unobservable pseudo-

angles Wi by setting

Ŵi = X̂ú
i /(X̂ú

i + Ŷ ú
i ), R̂i = X̂ú

i + Ŷ ú
i ,

where X̂ú
i = 1/{1 ≠ F̂X(Xi)} and Ŷ ú

i = 1/{1 ≠ F̂Y (Yi)} and where F̂X = F̂X,n and F̂Y = F̂Y,n are

estimators of the marginal distribution functions FX and FY . A robust choice for F̂X and F̂Y is

the pair of univariate empirical distribution functions, normalized by n + 1 rather than by n to

avoid division by zero. In this case, X̂ú
i and Ŷ ú

i are functions of the ranks.

For a high enough threshold t = tn, the collection of angles {Ŵi : i œ K} with K = Kn = {i =

1, . . . , n : R̂i > t} can be regarded as if it were a sample from the spectral measure H. Parametric

or nonparametric inference on H may then be based upon the sample {Ŵi : i œ K}. Nevertheless,

two complications occur:

1. The choice of the threshold t comes into play both through the rate of convergence in (3)

and through the e�ective size |K| = k of the sample of pseudo-angles.

2. The standardization via the estimated margins induces dependence between the pseudo-

angles, even when the original random vectors (Xi, Yi) are independent.
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For the construction of estimators of the spectral measure, we may thus pretend that {Ŵi : i œ

I} constitutes a sample from H. However, for the theoretical analysis of the resulting estimators,

the two issues above must be taken into consideration. Failure to do so would lead to a wrong

assessment of both the bias and the standard errors of estimators of extremal dependence.

3 Maximum Euclidean Likelihood Estimator

We propose to use Euclidean likelihood methods (Owen, 2001, pp. 63–66) to estimate the spectral

measure. Let w1, . . . , wk œ [0, 1] be a sample of pseudo-angles, for example the observed values of

the random variables Ŵi, i œ K, in the previous section, with k = |K|. The Euclidean loglikelihood

¸E ratio for a candidate spectral measure H supported on {w1, . . . , wk} and assigning probability

mass pi = H({wi}) to wi is formally defined as

¸E(p) = ≠1
2

kÿ

i=1
(kpi ≠ 1)2.

The Euclidean loglikelihood ratio can be viewed as a Euclidean measure of the distance of p =

(p1, . . . , pk) to the barycenter (k≠1, . . . , k≠1) of the (k≠1)-dimensional unit simplex. In this sense,

the Euclidean likelihood ratio is similar to the empirical loglikelihood ratio

¸(p) =
kÿ

i=1
log(kpi),

which can be understood as another measure of the distance from p to (k≠1, . . . , k≠1). Note that

¸E(p) results from ¸(p) by truncation of the Taylor expansion log(1 + x) = x ≠ x2/2 + · · · and the

fact that p1 + · · · + pk = 1, making the linear term in the expansion disappear.

We seek to maximize ¸E(p) subject to the empirical version of the moment constraint (2). Our

estimator Ĥ for the distribution function of the spectral measure is defined as

Ĥ(w) =
kÿ

i=1
p̂i I(wi Æ w), w œ [0, 1], (4)

the vector of probability masses p̂ = (p̂1, . . . , p̂k) solving the optimization problem

max
pœRk

≠ 1
2

qk
i=1(kpi ≠ 1)2

s.t.
qk

i=1 pi = 1
qk

i=1 wipi = 1/2.

(5)

This quadratic optimization problem with linear constraints can be solved explicitly with the

method of Lagrange multipliers, yielding

p̂i = 1
k

)
1 ≠ (w ≠ 1/2)S≠2(wi ≠ w)

*
, i = 1, . . . , k, (6)
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where w and S2 denote the sample mean and sample variance of w1, . . . , wk, that is,

w = 1
k

kÿ

i=1
wi, S2 = 1

k

kÿ

i=1
(wi ≠ w)2.

The weights p̂i could be negative, but our numerical experiments suggest that this is not as

problematic as it may seem at first sight, in agreement with Antoine et al. (2007) and Crépet

et al. (2009), who claim that the weights pi are nonnegative with probability tending to one.

The second equality constraint in (5) implies that Ĥ satisfies the moment constraint (2), as
s

[0,1] w dĤ(w) =
q

i wip̂i = 1/2, which can be easily verified directly.

The empirical spectral measure estimator of Einmahl et al. (2001) and the maximum empirical

likelihood estimator of Einmahl and Segers (2009) can be constructed as in (5) through suitable

changes in the objective function and the constraints. The empirical spectral measure Ḣ(w) =
q

i ṗi I(wi Æ w) solves the optimization problem

max
pœRk

+

qk
i=1 log pi

s.t.
qk

i=1 pi = 1.

yielding ṗi = 1/k for i = 1, . . . , k. In contrast, the maximum empirical likelihood estimator

Ḧ(w) =
q

i p̈i I(wi Æ w) has probability masses given by the solution of

max
pœRk

+

qk
i=1 log pi

s.t.
qk

i=1 pi = 1
qk

i=1 wipi = 1/2.

(7)

By the method of Lagrange multipliers, the solution is given by

p̈i = 1
k

1
1 + ⁄(wi ≠ 1/2) , i = 1, . . . , k,

where ⁄ œ R is the Lagrange multiplier associated to the second equality constraint in (7), defined

implicitly as the solution to the equation

1
k

kÿ

i=1

wi ≠ 1/2
1 + ⁄(wi ≠ 1/2) = 0,

see also Qin and Lawless (1994).

4 Large-Sample Theory

The maximum Euclidean likelihood estimator Ĥ in (4) can be expressed in terms of the empirical

spectral measure Ḣ given by

Ḣ(w) = 1
k

kÿ

i=1
I(wi Æ w), w œ [0, 1].
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Indeed, w and S2 are just the mean and the variance of Ḣ, and the expression (6) for the weights

p̂i can be written as

dĤ

dḢ
(v) = 1 ≠ (w ≠ 1/2) S≠2 (v ≠ w), v œ [0, 1].

Integrating out this ‘likelihood ratio’ over v œ [0, w] yields the identity

Ĥ(w) = (�(Ḣ))(w), w œ [0, 1],

where the transformation � is defined as follows. Let D� be the set of cumulative distribution

functions of non-degenerate probability measures on [0, 1]. For F œ D�, the function �(F ) on

[0, 1] is defined by

(�(F ))(w) = F (w) ≠ (µF ≠ 1/2) ‡≠2
F

⁄

[0,w]
(v ≠ µF ) dF (v), w œ [0, 1].

Here µF =
s

[0,1] v dF (v) and ‡2
F =

s
[0,1](v ≠ µF )2 dF (v) denote the mean and the (non-zero)

variance of F .

We view D� as a subset of the Banach space ¸Œ([0, 1]) of bounded, real-valued functions on

[0, 1] equipped with the supremum norm Î · ÎŒ. The map � takes values in ¸Œ([0, 1]) as well.

Weak convergence in ¸Œ([0, 1]) is denoted by the arrow ‘ ’ and is to be understood as in van der

Vaart and Wellner (1996).

Asymptotic properties of the empirical spectral measure together with smoothness properties

of � lead to asymptotic properties of the maximum Euclidean likelihood estimator:

• Continuity of the map � together with consistency of the empirical spectral measure yields

consistency of the maximum Euclidean likelihood estimator (continuous mapping theorem).

• Hadamard di�erentiability of the map � together with asymptotic normality of the empirical

spectral measure yields asymptotic normality of the maximum Euclidean likelihood estimator

(functional delta method).

The following theorems are formulated in terms of maps Ḣn taking values in D�. The case to

have in mind is the empirical spectral measure Ḣn(w) = k≠1
n

q
iœKn

I(Ŵi Æ w) with {Ŵi : i œ Kn}

and kn = |Kn| as in Section 2. In Theorem 3.1 and equation (7.1) of Einmahl and Segers (2009),

asymptotic normality of Ḣn is established under certain smoothness conditions on H and growth

conditions on the threshold sequence tn.

Theorem 1 (Consistency). If Ḣn are maps taking values in D� and if ÎḢn ≠ HÎŒ æ 0 in outer

probability for some nondegenerate spectral measure H, then, writing Ĥn = �(Ḣn), we also have

ÎĤn ≠ HÎŒ æ 0 in outer probability.
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The proof of this and the next theorem is given in Appendix A. In the next theorem, the

rate sequence rn is to be thought of as
Ô

kn. Let C([0, 1]) be the space of continuous, real-valued

functions on [0, 1].

Theorem 2 (Asymptotic normality). Let Ḣn and H be as in Theorem 1. If H is continuous and

if

rn(Ḣn ≠ H) —, n æ Œ,

in ¸Œ([0, 1]), with 0 < rn æ Œ and with — a random element of C([0, 1]), then also

rn(Ĥn ≠ H) “, n æ Œ

with

“(w) = —(w) ≠ ‡≠2
H

⁄ 1

0
—(v) dv

⁄ w

0
(1/2 ≠ v) dH(v), w œ [0, 1]. (8)

Comparing the expression for “ in (8) with the one for “ in (4.7) in Einmahl and Segers

(2009), we see that the link between the processes — and “ here is the same as the one between

the processes — and “ in Einmahl and Segers (2009). It follows that tuning the empirical spectral

measure via either maximum empirical likelihood or maximum Euclidean likelihood makes no

di�erence asymptotically. The numerical experiments below confirm this asymptotic equivalence.

To facilitate comparisons with Einmahl and Segers (2009), note that our pseudo-angle w œ [0, 1]

is related to their radial angle ◊ œ [0, fi/2] via ◊ = arctan{w/(1 ≠ w)}, and that the function f in

(4.2) in Einmahl and Segers (2009) reduces to f(◊) = (sin ◊ ≠ cos ◊)/(sin ◊ + cos ◊) = 2w ≠ 1.

How does the additional term ‡≠2
H

s 1
0 —(v) dv

s w

0 (1/2 ≠ v) dH(v) influence the asymptotic

distribution of the maximum Euclidean/empirical estimator? Given the complicated nature of

the covariance function of the process —, see (3.7) and (4.7) in Einmahl and Segers (2009), it

is virtually impossible to draw any conclusions theoretically. However, Monte Carlo simulations

in Einmahl and Segers (2009, §5.1) confirm that the maximum empirical likelihood estimator is

typically more e�cient than the ordinary empirical spectral measure. These findings are confirmed

in the next section.

5 Monte Carlo Simulations

In this section, the maximum Euclidean likelihood estimator is compared with the empirical spec-

tral measure and the maximum empirical likelihood estimator by means of Monte Carlo simula-

tions. The comparisons are made on the basis of the mean integrated squared error,

MISE(·) = E

5 ⁄ 1

0
{· ≠ H(w)}2dw

6
.

The bivariate extreme value distribution G with logistic dependence structure is defined by

G(x, y) = exp{≠(x≠1/– + y≠1/–)–}, x, y > 0,

7



Figure 1: Examples of trajectories of the empirical spectral measure (solid), the maximum empirical

likelihood estimator (dashed), and the maximum Euclidean likelihood estimator (dotted). The solid

grey line corresponds to the true spectral measure H– coming from the bivariate logistic extreme value

distribution with parameters –i = 0.8 (left) and –ii = 0.4 (right).

in terms of a parameter – œ (0, 1]. Smaller values of – yield stronger dependence and the limiting

cases – æ 0 and – = 1 correspond to complete dependence and exact independence, respectively.

For 0 < – < 1, the spectral measure H– is absolutely continuous with density

dH–

dw
(w) = 1

2(–≠1 ≠ 1){w(1 ≠ w)}≠1≠1/–
)

w≠1/– + (1 ≠ w)≠1/–
*–≠2

, 0 < w < 1.

Here we consider –i = 0.8 and –ii = 0.4, with stronger extremal dependence corresponding to case

ii. For each of these two models, 1000 Monte Carlo samples of size 1000 were generated. The

thresholds were set at the empirical quantiles of the radius ‚R given by t = 75%, 75.5%, . . . , 99.5%

for case i and t = 50%, 50.5%, . . . , 99.5% for case ii. The margins were estimated parametrically,

by fitting univariate extreme value distributions using maximum likelihood.

In Figure 1, a typical trajectory of the estimators is shown, illustrating the closeness of the

maximum Euclidean and empirical likelihood estimators. The good performance of the maximum

Euclidean/empirical spectral measure is confirmed by Figure 2. For larger k (lower threshold t),

the bias coming from the approximation error in (3) is clearly visible.

Numerical experiments in Einmahl and Segers (2009, §5.2) show that the presence of atoms at

the endpoints 0 and 1 has an adverse e�ect on maximum Euclidean/empirical likelihood estimates,

and this finding is further confirmed by Guillotte et al. (2011, §7.1). Indeed, by construction, the

pseudo-angles Ŵi will never be exactly 0 or 1. The empirical spectral measure therefore does not

assign any mass at 0 and 1, and this situation cannot be remedied by the maximum empirical or

Euclidean likelihood estimators, having the same support as the empirical spectral measure.
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Figure 2: Logarithms of the mean integrated squared errors of the spectral measure estimates based on

1000 samples of size 1000 from the bivariate logistic extreme value distribution with parameters –i = 0.8

(left) and –ii = 0.4 (right). The solid, dashed, and dotted lines correspond to the empirical spectral

measure, the maximum empirical likelihood estimator, and the maximum Euclidean likelihood estimator,

respectively.

The weights p̂i of the maximum Euclidean likelihood estimator can be negative. However,

as can be seen from Figure 3, the weights tend to be positive overall, except for extremely high

thresholds, with the proportion of negative weights being smaller in case i. This suggests that the

closer we get to exact independence, the lower the proportion of negative weights.

Figure 3: Proportion of negative weights based on 1000 samples of size 1000 from the bivariate logistic

extreme value distribution with parameters –i = 0.8 (left) and –ii = 0.4 (right).
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6 Extreme Temperature Data Analysis

6.1 Data Description and Preliminary Considerations

The data were gathered from the Long-term Forest Ecosystem Research database, which is main-

tained by LWF (Langfristige Waldökosystem-Forschung), and consist of daily average meteoro-

logical measurements made in Beatenberg’s forest in the canton of Bern, Switzerland. More

information on these data can be found at http://www.wsl.ch, and for an extensive study see

Ferrez et al. (2011). Two time series of air temperature data are available: One in the open field

and the other in a nearby site under the forest cover. Our aim is to understand how the extremes

in the open relate with those under the canopy; comparison of open-site and below-canopy climatic

conditions is a subject of considerable interest in Forestry and Meteorology (Renaud and Rebetez,

2009; Ferrez et al., 2011; Renaud et al., 2011). The raw data are plotted in Figure 4, but before

we are able to measure extremal dependence of open air and forest cover temperatures we first

need to preprocess the data. The preprocessing step is the same as in Ferrez et al. (2011, §3.1)

and further details can be found in there.

Figure 4: Daily average air temperatures from the meteorological station in Beatenberg’s forest: under

the forest cover (left) and in the open field (right).

We consider daily maxima of the residual series that result from removal of the annual cycle in

both location and scale, and we then take the residuals at their 98% quantile; hence the threshold

boundary is defined as U = {(x, y) œ [0, Œ)2 : x + y = ‚F ≠1
‚R (0.98) = 105.83}, so that there are

|U | = k = 57 exceedances.
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Figure 5: Scatterplot of air temperature data after transformation to unit Fréchet scale; the solid line

corresponds to the boundary threshold in the log-log scale, with both axes being logarithmic.

Figure 6: Empirical estimates and 95% pointwise confidence intervals for ‰(u) (left) and ‰(u) (right) as

a function of u œ (0, 1).

The dependence between open field and forest cover temperatures can be observed in Figure 5,

where we plot a log-log scale scatterplot of the unit Fréchet data, and where we note that after

log transformation the linearity of the threshold boundary U is perturbed.
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Spectral measures are only appropriate for modeling asymptotically dependent data. Although

this issue has been already addressed in Ferrez et al. (2011), for exploratory purposes we present

in Figure 6 the empirical estimates of the dependence coe�cients ‰(u) and ‰(u), for 0 < u < 1,

defined in Coles et al. (1999) as

‰(u) = 2 ≠ log Pr[FX(X) < u, FY (Y ) < u]
log Pr[FX(X) < u] , ‰(u) = 2 log(1 ≠ u)

log Pr[FX(X) > u, FY (Y ) > u] ≠ 1.

Let ‰ = limuø1 ‰(u) and ‰ = limuø1 ‰(u). Under asymptotic independence ‰ = 0 and ‰ œ (≠1, 1),

whereas under asymptotic dependence ‰ œ (0, 1] and ‰ = 1. Although plots such as Figure 6 fail

to have a clear-cut interpretation given the large uncertainty entailed in the estimation, the point

estimates seem to be consistent with asymptotic dependence as already noticed by Ferrez et al.

(2011).

6.2 Extremal Dependence of Open Air and Forest Cover Temperatures

We now apply the maximum Euclidean likelihood estimator to measure extremal dependence of

open air and forest cover temperatures. The estimated spectral measure is shown in Figure 7. All

weights are positive, i.e. p̂i > 0, for i = 1, . . . , 57.

By construction, the estimate of the spectral measure is discrete. A smooth version which still

obeys the moment constraint (2) can easily obtained by smoothing the maximum Euclidean or

empirical likelihood estimator with a Beta kernel. Related ideas are already explored in Hall and

Presnell (1999) and Chen (1997). Details are given in Appendix B.

A cross-validatory procedure was used to select the bandwidth, yielding a concentration pa-

rameter of ‹ ¥ 163. Numerical experiments in Warcho≥ (2012) suggest that convoluting empiri-

cal likelihood-based estimators with a Beta kernel yields a further reduction in mean integrated

squared error. The Beta kernel even outperforms Chen’s kernel (Chen, 1999), which is asymp-

totically optimal under some conditions (Bouezmarni and Rolin, 2003), but which is unable to

conserve the moment constraint.

From the smoothed spectral measure, we obtain an estimate of the spectral density and plug-in

estimators for the Pickands dependence function A(w) = 1 ≠ w + 2
s w

0 H(v) dv, w œ [0, 1], and the

bivariate extreme value distribution in (1). The estimated spectral density is compared with the

fit obtained from the asymmetric logistic model

H–,Â1,Â2(w) = 1
2

5
1 + Â1 + Â2 ≠ {Â

1/–
1 (1 ≠ w)1/–≠1 ≠ Â

1/–
2 w1/–≠1}

{Â
1/–
1 (1 ≠ w)1/– + Â

1/–
2 w1/–}–≠1

6
, w œ [0, 1],

with parameter estimates ‚Â1 = 0.78 (standard error 0.03), ‚Â2 = 0.90 (0.03) and ‚– = 0.30 (0.02).

The asymmetric logistic model was considered by Ferrez et al. (2011) as the parametric model

that achieved the “best overall fit.”
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Figure 7: Estimates of the spectral measure (left) and the spectral density (right). Left: the dotted line

corresponds to the empirical Euclidean spectral measure, and the solid line corresponds to its smooth

version constructed using (10). Right: The solid line corresponds to the smooth spectral density obtained

from the Euclidean likelihood weights using (9), and the gray line represents the fit from the asymmetric

logistic model with ( ‚Â1, ‚Â2) = (0.78, 0.90) and ‚fl = 0.30.

In Figure 7 we also plot the smooth spectral measure and corresponding spectral density

which are obtained by suitably convoluting the empirical Euclidean spectral measure with a Beta

kernel as described in (9) and (10). Since more mass concentrated over 1/2 corresponds to more

extremal dependence, and more mass concentrated on 0 and 1 corresponds more independence in

the extremes, a rough interpretation for our context is as follows: The lower the shelter ability

of the forest, the more mass should be concentrated around 1/2, whereas higher shelter ability

corresponds to the case where the spectral measure gets more mass concentrated at 1; more mass

concentrated at 0 suggests relatively more extreme events under the forest cover, suggesting that

the forest has the ability to retain heat during extreme events.

In Figure 8.1 we plot the corresponding Pickands dependence function. More extremal depen-

dence corresponds to lower Pickands dependence functions, and the deeper these are on the right

the less frequent are the extreme events under the forest cover relatively to the open field. Our

analysis suggests that extreme high temperatures under the forest cover are more frequent than

expected from a corresponding parametric analysis. This somewhat surprising finding is already

predicted in Ferrez et al. (2011, Fig. 4). The phenomenon may be due to the ability of some forests

to retain heat, acting like a greenhouse, or it may be connected with the way that other features

of the forest’s structure can alter its microclimate (Renaud et al., 2011). Along with the Pickands

dependence function, we also plot in Figure 8.1 the pseudo-angles which provide further evidence
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Figure 8: Estimates of the Pickands dependence function and contours of the bivariate extreme value

distribution. Left: The solid line represents the smooth Pickands dependence function obtained from the

Euclidean likelihood weights using (12), and the gray line represents the fit from the asymmetric logistic

model with ( ‚Â1, ‚Â2) = (0.78, 0.90) and ‚fl = 0.30. The pseudo-angles are presented at the top. Right: The

solid gray line represents the smooth bivariate extreme value distribution obtained from the Euclidean

likelihood weights using (13). Air temperature data are plotted on the unit Fréchet scale.

of a marked right skewness.

The joint behavior of temperatures in the open and under forest cover can also be examined

from the estimated bivariate extreme value distribution function plotted in Figure 8.2, which

was constructed by convoluting the empirical Euclidean spectral measure with a Beta kernel as

described in (13).

7 Discussion

In this paper we propose a simple empirical likelihood-based estimator for the spectral measure,

whose asymptotic e�ciency is comparable to the empirical likelihood spectral measure of Einmahl

and Segers (2009). The fact that our estimator has the same limit distribution as the empirical

likelihood spectral measure, suggests that a more general result may hold for other members

of the Cressie–Read class, of which these estimators are particular cases, similarly to what was

established by Baggerly (1998) in a context di�erent from ours. We focus on the spectral measure

defined over the L1-norm, but only for a matter of simplicity, and there is no problem in defining

our estimator for the spectral measure defined over the Lp-norm, with p œ [1, Œ]. For real data

applications smooth versions of empirical the estimator may be preferred, but these can be readily

constructed by suitably convoluting the weights of our empirical likelihood-based method with a

14



kernel on the simplex.
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A Proofs

Proof of Theorem 1. Let Fn, F œ D�. By Fubini’s theorem,
⁄

[0,w]
v dF (v) = w F (w) ≠

⁄ w

0
F (v) dv, w œ [0, 1],

⁄

[0,1]
v2 dF (v) = 1 ≠

⁄ 1

0
2v F (v) dv,

and similarly for Fn. It follows that ÎFn ≠ FÎŒ æ 0 implies that µFn æ µF , ‡2
Fn

æ ‡2
F , and

s
[0,w] v dFn(v) æ

s
[0,w] v dF (v) uniformly in w œ [0, 1]. Hence Î�(Fn) ≠ �(F )ÎŒ æ 0. Therefore,

the map � : D� æ ¸Œ([0, 1]) is continuous. The lemma now follows from the fact that �(H) = H

together with the continuous mapping theorem, see Theorem 1.9.5 in van der Vaart and Wellner

(1996).

Proof of Theorem 2. Write

—n = rn(Ḣn ≠ H), “n = rn(Ĥn ≠ H).

Let Dn denote the set of functions f œ ¸Œ([0, 1]) such that H + r≠1
n f belongs to D�. Since

H + r≠1
n —n = Ḣn takes values in D�, it follows that —n takes values in Dn. Define gn : Dn æ

¸Œ([0, 1]) by

gn(f) = rn{�(H + r≠1
n f) ≠ H}.

Observe that

gn(—n) = rn{�(Ḣn) ≠ H} = “n.

Further, define the map g : C([0, 1]) æ C([0, 1]) by

(g(f))(w) = f(w) ≠ ‡≠2
H

⁄ 1

0
f(v) dv

⁄ w

0
(1/2 ≠ v) dH(v), w œ [0, 1].
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A straightforward computation shows that if fn œ Dn is such that Îfn ≠ fÎŒ æ 0 for some

f œ C([0, 1]), then Îgn(fn)≠g(f)ÎŒ æ 0; note in particular that fn(1) = 0 and thus also f(1) = 0.

The extended continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1)

implies that

“n = gn(—n) æ g(—) = “, n æ Œ,

as required. Note that we have actually shown that � is Hadamard di�erentiable at H tangentially

to C([0, 1]) with derivative given by �Õ
F = g. The result then also follows from the functional delta

method.

B Beta-Kernel Smoothing of Discrete Spectral Measures

We only consider the case of the empirical Euclidean spectral measure using a Beta kernel, but

the same applies to the empirical likelihood spectral measure by replacing the ‚pi with p̈i in (3).

The smooth Euclidean spectral density is thus defined as

Âh(w) =
kÿ

i=1
‚pi —{w; wi‹, (1 ≠ wi)‹}, w œ (0, 1), (9)

where ‹ > 0 is the concentration parameter (inverse of the squared bandwidth, to be chosen

via cross-validation) and —(w; p, q) denotes the Beta density with parameters p, q > 0. The

corresponding smoothed spectral measure is defined as

ÂH(w) =
⁄ w

0
Âh(v) dv =

kÿ

i=1
‚piB{w; wi‹, (1 ≠ wi)‹}, w œ [0, 1], (10)

where B(w; p, q) is the regularized incomplete beta function, with p, q > 0. Since
⁄ 1

0
w Âh(w) dw =

kÿ

i=1
‚pi

;
‹wi

‹wi + ‹(1 ≠ wi)

<
=

kÿ

i=1
‚piwi = 1/2, (11)

the moment constraint is satisfied. Plug-in estimators for the Pickands dependence function and

the bivariate extreme value distribution follow directly from

ÂA(w) = 1 ≠ w + 2
kÿ

i=1
‚pi

⁄ w

0
B{u; wi‹, (1 ≠ wi)‹}du, w œ [0, 1], (12)

ÂG(x, y) = exp
I

≠2
kÿ

i=1
‚pi

⁄ 1

0
max

3
u

x
,

1 ≠ u

y

4
—{u; wi‹, (1 ≠ wi)‹}du

J
, x, y > 0. (13)
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