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Abstract. Leading economic indicators are often used to anticipate changes in key economic
variables. Understanding the dynamics of these indicators is of primary interest for policy-
making objectives and for a sustainable economic welfare. In this paper we are concerned
with the problem of setting a dynamic threshold above which the value of such leading indicator
would be considered as extreme. We propose a dynamic threshold modelling approach based
on fractionally integrated processes where a semi-parametric method is used to determine the
amount of differencing required to obtain a weakly stationary process—to which standard meth-
ods of statistics of extremes apply. Given that our approach is linked to the Box–Jenkins method,
we refer to the procedure proposed and applied herein as Box–Jenkins–Pareto. We use our ap-
proach to analyze the weekly number of unemployment insurance claims in the US and explore
the connection between its threshold exceedances and the US business cycle.

Keywords: Box–Jenkins method; Extreme value econometrics; Nonstationary process; Peaks
over threshold; Statistics of extremes; Unemployment data; US business cycle

1. Introduction

The recent US subprime crisis and the current European sovereign-debt crisis, have been
increasing awareness for the need to model extreme values. Among the most used techniques
for modelling extremes are peaks over threshold methods Coles (2001, Ch. 4). These methods
consider as extreme all observations above a fixed large threshold, which yields a Generalized
Pareto Distribution (GPD) as the limiting distribution of the threshold exceedances (Balkema
and de Haan, 1974; Pickands, 1975). Such methods are developed for weakly stationary
time series {Yt}t2Z that by definition fluctuate around a fixed level E(Yt) = µ, and whose
dependence on past observations is such that there exists a real-valued function g(|t� `|) =
cov(Yt, Y`), for every ` 2 Z; below the word ‘stationary’ will be used to abbreviate ‘weakly
stationary’ as defined here. Many data of interest fail however to be stationary, and in this
paper we provide a dynamic threshold modelling approach for this setting.

Here, we are concerned with the problem of setting a dynamic threshold above which
the value of a variable should be considered as extreme. We are motivated by a well-known
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Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile.
E-mail: mdecarvalho@mat.puc.cl

de Carvalho, M., Turkman K. F., and Rua, A. (2013), “Dynamic Threshold Modelling and the US Business Cycle,” Journal of the Royal Statistical Society, Ser. C, 62, 535–550.



2 M. de Carvalho, K. F. Turkman and A. Rua

Time (years)

In
iti

al
 C

la
im

s 
(in

 th
ou

sa
nd

s)

1970 1980 1990 2000 2010

20
0

30
0

40
0

50
0

60
0

70
0

(a)

Time (years)

U
ne

m
pl

oy
m

en
t R

at
e 

(%
)

1970 1980 1990 2000 2010

4
6

8
10

(b)

Figure 1. (a) Weekly number of unemployment insurance claims in the US (initial claims). The 2239
weekly observations are seasonally adjusted and range from 7 January 1967 to 28 November 2009;
(b) US monthly unemployment rate. The 515 monthly observations are seasonally adjusted and range
from January 1967 to November 2009.

economic time series, the weekly number of unemployment insurance claims in the US (hence-
forth initial claims), often considered as a reference leading indicator able to forestall reces-
sions (Montgomery et al., 1998; Choi and Varian, 2009, and references therein). As it can be
observed in Figure 1, there is a natural propensity for the number of initial claims to second-
guess the unemployment rate, and this is particularly clear at the end of the observation
period where the initial claims peaked before the unemployment rate. Hence, a peaks over
threshold analysis could be of interest for assessing the risk of entering into an unemploy-
ment surge, given the most recent information available on initial claims. Unemployment is
known to behave asymmetrically, in the sense that the probability of a decrease in unem-
ployment, given two previous decreases, is greater than the probability of an increase given
two preceding increases (Milas and Rothman, 2008). Unemployment is also supposed to
move countercyclically—upward in slowdowns and contractions, and downward in speedups
and expansions (Rothman, 1998; Caporale and Gil-Alana, 2008). Thus, the definition of a
suitable dynamic threshold could be extremely helpful for recognizing the eruption of those
surges and ultimately to help counteract them. As the harshness of some recent unemploy-
ment episodes testifies, the understanding of the law of motion of such thresholds is of real
value for policy-making.

Classical peaks over threshold methods fail to provide a good modelling solution for the
initial claims, since this series is clearly nonstationary. A seminal paper in nonstationary
extremes is Davison and Smith (1990), but the quest for alternative modelling approaches is
far from complete (Davison and Ramesh, 2000; Hall and Tajvidi, 2000; Chavez-Demoulin and
Davison, 2005; Yee and Stephenson, 2007; Padoan and Wand, 2008; Laurini and Pauli, 2009;
Eastoe and Tawn, 2009; Northrop and Jonathan, 2011). Most models introduce covariates
in the parameters of the threshold model to overcome the lack of stationarity, but some
di�culties arise when attempting to apply these to the initial claims data. First, the above-
mentioned leading attributes of this series make covariate-based approaches non-trivial, as
it is di�cult to obtain covariates which are also released on a weekly basis, given that most



Dynamic Threshold Modelling 3

economic data are available monthly or quarterly and released with a large lag. Second,
there is a serious risk of establishing spurious associations between the exceedances and the
corresponding covariates. As it is well known, the similitude of trending mechanisms in the
data can easily lead to spurious regressions, a problem which dates back to Yule (Phillips,
1998; Choi et al., 2008). Third, as recently pointed out by Eastoe and Tawn (2009), covariate-
based approaches following Davison and Smith (1990) are unable to preserve one of the most
important features of the GPD distribution, viz.: threshold stability, so that the choice of
the threshold a↵ects covariate selection; a point process approach (Coles, 2001, §7.3) avoids
problems with threshold stability, because its parameters are not threshold-dependent, but
it would still require covariates.

We propose to model the initial claims by developing a dynamic threshold modelling ap-
proach which avoids the above-mentioned di�culties, and which can be applied to integrated
processes of order ↵, with ↵ denoting any real number; these include fractionally integrated
processes which have their roots in the works of Granger and Joyeux (1980) and Hosking
(1981). If the process is integrated of order ↵, then although the time series of interest
may be nonstationary, it can be converted into a stationary series by di↵erencing ↵-times.
Since after di↵erencing ↵-times we obtain stationarity, classical peaks over threshold models
can be applied to the resulting series, and binomial series expansions then allow us to build
a dynamic threshold for the time series of interest. Given that our approach is linked to
the Box–Jenkins method (Box et al., 2008) and the GPD model, we call our strategy the
Box–Jenkins–Pareto approach. It is important to stress that our main aim here is not to
make inference about the extremes, but rather on setting a threshold to detect movements
in a variable. Hence, here we will use extreme value modelling only to choose a level for the
threshold of interest, but in another contexts one might be interested in actually using the
results of the extreme value analysis to make inferences about levels yet to be observed.

In the next section we provide a preliminary analysis of the data. In §3 we survey the
most frequently applied peaks over threshold approaches for stationary and nonstationary
time series, and in §4 we introduce our modelling strategy and provide guidelines for im-
plementation. In §5 we examine the weekly number of unemployment insurance claims in
the US and explore the connection between its threshold exceedances and the periods of
contraction in the US economy.

2. Preliminary analysis of initial claims data

To understand the dynamics of the initial claims data {Y
1

, . . . , Yn} in the time domain, we
use the correlogram which we define as the set of points {(`, R`) : ` 2 {0, . . . , `

max

}}, where
`
max

< n is a maximum lag, and R` is the sample autocorrelation function

R` =

Pn
t=`+1

(Yt � Y )(Yt�` � Y )
Pn

t=1

(Yt � Y )2
.

The result is plotted in Figure 2 where the dashed lines are based on the pivot R`
p

n  
N(0, 1), where ‘ ’ is used to denote weak convergence, which holds under some regularity
conditions for realizations of a white noise process (Brockwell and Davis, 2002, Thm 7.2.2).
We also plot in Figure 2 the correlogram of the data in first di↵erences. The exploratory
analyses reported in Figure 2 clearly suggest long-range dependence in the initial claims, with
the correlogram of the data in first di↵erences suggesting a unit root process. In Supporting
Information we provide related analyses for the unemployment rate.

In practice we are often faced with the question whether economic time series are station-
ary (de Carvalho and Júlio, 2012). One of the most used tests for such purpose is the KPSS
test (Kwiatkowski et al., 1992) which is based on decomposing the series into a random walk
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Figure 2. Correlogram for (a) the weekly number of unemployment insurance claims in the US (initial
claims), for the original data and (b) the data in first differences.

and a white noise series

Yt = Ht + "t, Ht = Ht�1

+ Ut, Ut
iid

⇠ (0,�2

U ), "t
iid

⇠ (0,�2

").

The interest is in testing the null hypothesis of stationarity, i.e., �2

U = 0. The KPSS test
statistic, at truncation lag parameter `, is given by

KPSS` =
nX

t=1

n�2S2

t

b�2

`

, St =
tX

i=1

ei, t = 1, . . . , n.

Here e
1

, . . . , en are the residuals from the regression Yt = ↵ + "t, and b�2

` is a consistent
estimator of the long-run variance �2 = limn!1 n�1E(S2

n), based on the residuals truncated
at lag `. We use the so-called Newey–West estimator to estimate �2, and take `

NW

= 36,
which is the truncation lag parameter chosen according to the Newey–West criterion (Newey
and West, 1994). For the initial claims data we obtain KPSS

36

= 0.69, which yields a p-value
of 0.016, so that we reject the null hypothesis of stationarity.

3. The Box–Jenkins–Pareto approach

3.1. Models for stationary time series

Suppose that the time series of interest {Yt} is stationary with univariate marginal survivor
function SY . Threshold models consider as extreme the observations which exceed a fixed
threshold u, and these observations are known as exceedances; to distinguish exceedances
from non-exceedances, we use the notation eu,t = I(Yt < u). The centerpiece of threshold
models is based on asymptotic developments (Balkema and de Haan, 1974; Pickands, 1975),
which establish that, for a fixed large threshold u, the conditional survivor function of an
exceedance by the amount y > 0, follows a GPD('u, �), i.e.

pr(Y > u+ y | Y > u) =

✓
1 +

�y

'u

◆�1/�

+

, y > 0. (1)
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Here 'u > 0 and � 2 R respectively denote the scale and shape parameters, and a
+

=
max(a, 0). For � = 0, (1) should be interpreted by taking the limit � ! 0, giving an
exponential distribution with parameter 1/'u, viz.:

pr(Y > u+ y | Y > u) = exp (�y/'u) , y > 0.

After threshold selection has been executed, parameter estimation needs to be conducted.
We focus on parameter estimation via likelihood methods; hence, let {Y

1

, . . . , Yn} denote a
sample from SY , so that the likelihood of the model can be written as

L (SY ,'u, �) =
nY

t=1

{1� SY (u)}
eu,t

"
SY (u)

'u

✓
1 +

�yt
'u

◆�1/��1

+

#
1�eu,t

. (2)

3.2. The Box–Jenkins–Pareto method for nonstationary time series

Data preparation techniques can be quite convenient for subsequent data analysis. One of
the most common data preparation methods is given by di↵erencing, i.e., to consider the
di↵erences between consecutive observations. The classical Box–Jenkins method is repre-
sentative of the advantages that di↵erencing can bring into the analysis (Box et al., 2008).
Suppose that the nonstationary time series {Yt} can be converted into a stationary series by
di↵erencing once, i.e.,

(1� L)Yt = Zt, (3)

for some stationary series {Zt} with survivor function SZ . Here L is the lag operator and
� ⌘ (1� L) is the di↵erence operator; a series which satisfies (3) is said to be integrated of
order 1, here denoted by I(1). In some cases there is no need to apply the di↵erence operator
to preprocess the data, since the process under analysis is already stationary, and a particular
case is when we have an I(0) process; formally, a stationary processes with autocovariance
function �` = cov(Yt, Y`) is an I(0) process, if

1X

`=�1
|�`| < 1.

More generally, the series {Yt} is said to be integrated of order ↵, denoted by I(↵), if

�↵Yt = Zt, ↵ 2 R,

for some I(0) series {Zt} with survivor function SZ . A comprehensive discussion on these
series can be found in Robinson and Marinucci (2001), and this general class encompasses
fractionally integrated processes (Granger and Joyeux, 1980; Hosking, 1981). The long mem-
ory parameter ↵ contains information on the stationarity of the sequence: if ↵ 2 [0; 0.5) then
the series is stationary and mean-reverting; for ↵ 2 [0.5; 1) the series is no longer stationary
although it is still mean-reverting; finally, if ↵ � 1 the series is neither stationary nor mean-
reverting. A value of ↵ < 0 is indicative of mean reversion, but with a type of long memory
called ‘anti-persistence’, where negative autocorrelations die out slowly.

The following functional central limit theorem establishes the link between integrated
series and fractional Brownian motion—a continuous stochastic process with known applica-
tions in extreme value modelling (Mikosch et al., 2002; Buchamann and Klüppelberg, 2005).

Theorem 1. (Sowell, 1990) Let {Yt} be an integrated series of order ↵, where �1/2 <
↵ < 1/2. Suppose that Zt ⌘ �↵Yt are independent and identically distributed with E(Zt) = 0
and E(|Zt|

r) < 1, for r � max{4,�8↵/(1 + 2↵)}. Then

��1

n

bntcP
⌧=1

Y⌧  W↵(t), W↵(t) =
1

�(↵+ 1)

Z t

0

(t� x)↵dW (x),
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where �n = var(
Pn

⌧=1

Y⌧ ).

From the extreme value modelling standpoint, the question of interest is the following:
suppose that the series of interest {Yt} is nonstationary, but it is I(↵) for some real number
↵; is it still possible to build directly a threshold model for {Yt}? To give an answer to this
question, assume by now that the di↵erencing parameter ↵ is a positive integer; later we let
↵ be any real number. Since {Yt} is I(↵), the exceedances of Z, above a fixed large threshold
u, can be modelled through a GPD('u, �), i.e.

pr(Z > u+ y | Z > u) =

✓
1 +

�y

'u

◆�1/�

, y > 0. (4)

Hence, the likelihood of the model is essentially the same as in (2), and for every period t
we have that

pr(Zt > u+ y | Zt > u) = pr(�↵Yt > u+ y | �↵Yt > u)

= pr

"⇢
↵P

i=0

�↵
i

�
(�L)i

�
Yt > u+ y

�����

⇢
↵P

i=0

�↵
i

�
(�L)i

�
Yt > u

#

= pr(Yt > ut + y | Yt > ut). (5)

Here ut defines the dynamic threshold given by

ut = u+
↵P

i=1

�↵
i

�
{Yt�iI(i odd)� Yt�iI(i even)} , (6)

where
�↵
i

�
= �(↵+1)/{�(i+1)�(↵+ i� 1)} is the binomial coe�cient, and � is the gamma

function with the conventions �(0) = 1 and �(0)/�(0) = 1. The dynamic threshold in (6), is
composed of a building block (u) and a time-varying part which uses the previous ↵ values of
the time series. From a practical standpoint, this implies that for a sample {Y

1

, . . . , Yn} it is
only possible to start the dynamic threshold at the (↵+1)-observation. This is not however
as critical as it might appear since ↵ is finite and independent of n, so that (↵+1)/n = o(1),
when n ! 1. In the simplest case where the series is di↵erence-stationary with ↵ = 1, it
holds that ut = u+ Yt�1

. Hence, the relationship (5) suggests a natural way to construct a
dynamic threshold for I(1) series: obtain u from the first di↵erences of the series of interest,
and then add u to the lagged series.

If ↵ is any real number the more general series expansion should be taken into account

�↵ =
1P
i=0

h↵ii
�(i+ 1)

(�L)i, (7)

where h↵ii = ↵(↵ � 1) · · · (↵ � i + 1) is the Pochhammer symbol for the falling factorial.
Thus, similarly to (5) we still have

pr(Zt > u+ y | Zt > u) = pr(Yt > ut + y | Yt > ut),

but now the dynamic threshold is

ut = u+
1P
i=1

h↵ii
�(i+ 1)

{Yt�iI(i odd)� Yt�iI(i even)} . (8)

In theory, pre-sample shocks could be included in the lag structure—if we had an infinite
amount of data—, but in practice we need to suppress them from the lag structure. These
di↵erent approaches of modelling pre-sample shocks lead to type i and type ii fractionally
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integrated processes, which have been compared in detail by Marinucci and Robinson (1999).
For any positive integer ↵, (7) is tantamount to the classical binomial expansion, so that in
this case we recover the threshold given in (6). The more general version of the dynamic
threshold in (8) is similar to the one obtained in (6), being also composed by a building
block and a time-varying part, but it uses all previous observations, and not just ↵ as before.
From a practical standpoint, this implies that for a sample {Y

1

, . . . , Yn}, ut depends on all
t � 1 observations. If ↵ = 0 then {Yt} is stationary so that we would expect the peaks
over threshold model for stationary time series to hold. From the inspection of (6) we can
confirm that this is the case, since ut = u. For completeness we discuss below how the
dynamic threshold in (8) can be used for return level modelling; we also discuss the case for
integrated series with a polynomial trend.

3.3. The Box–Jenkins–Pareto approach for time series with a polynomial trend

In applications we are often faced with the need to additionally model deterministic trends.
Formally, a process {Yt} is said to be integrated of order ↵, with a polynomial time trend of
degree �, if

�↵Yt � �t� = Zt, ↵,� 2 R,
for some stationary I(0) series {Zt} with survivor function SZ . In this case it holds that

pr(Zt > u+ y | Zt > u) = pr(Yt > �t + y | Yt > �t),

where the dynamic threshold is now given by

�t = u+ �t� +
1P
i=1

h↵ii
�(i+ 1)

{Yt�iI(i odd)� Yt�iI(i even)}. (9)

Hence, the polynomial trend enters additively into the dynamic threshold, and as expected
this has now two time-varying components: one due to the trend, and the other due to the
memory of the time series. The case where ↵ = 0 is again instructive, since then the process
is trend-stationary, and hence we obtain �t = u+ �t� .

4. The initial claims and the US business cycle

4.1. Data description and statistical packages

We intend to examine what connection the threshold exceedances of the initial claims may
have with the contraction periods of the US economy, as dated by the Business Cycle Dating
Committee of the National Bureau of Economic Research (NBER). The period under anal-
ysis is from 7 January 1967 to 28 November 2009, and we took the 2239 observations from
this seasonally adjusted series from the United States Department of Labor—Employment
& Training Administration; the data were downloaded from

http://www.ows.doleta.gov

The US Department of Labor revise the data periodically, and the version we use here
was downloaded on December 2010. One could think of using the exceedances resulting from
the dynamic threshold scheme introduced above, as an indicator of whether an economy is
entering or crossing a recession period. Several reasons anticipate however the di�culties
with such inquiry, and one of such complications lies in the data itself. As pointed by the
Business Cycle Dating Committee of the NBER (see Frequently Asked Questions NBER,
2008), there is marked week-to-week noise in the initial claims; cf. Figure 1.

All the analyses related with extreme value modelling were conducted using the R package
evd} \citep{Stephenson:02,Stephenson:06}.}
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4.2. Box–Jenkins–Pareto analysis

To apply the Box–Jenkins–Pareto approach we first need to estimate the long memory pa-
rameter ↵. There has long been an interest in fractionally integrated models and in the
estimation of the fractional di↵erencing parameter; for a recent review see Gil-Alana and
Hualde (2009). Among the estimation procedures available, parametric and semi-parametric
approaches are the most employed in practice. In the former, a full parametric model is
specified, and so there is the risk of misspecification, which can yield biased estimates of ↵
(Fox and Taqqu, 1986; Sowell, 1992). A semi-parametric approach to estimate the fractional
di↵erencing parameter is here pursued. We use the well-known GPH estimator (Geweke
and Porter-Hudak, 1983) which corresponds to the least squares estimate of slope, in the
log-periodogram regression

log{I(!j)} = a+ ↵ log{4 sin2(!j/2)}
�1 + "j , "j ⇠ (0,⇡2/6), j = 1, . . . , bmc, (10)

where !j = 2⇡j/n. A practical problem in its implementation is the selection of an upper
bound for the number of frequencies m to be used in the regression—a choice that entails a
bias–variance trade-o↵. Geweke and Porter-Hudak suggested using m = n1/2, and this is the
rule most often used in practice. Applying this rule to the initial claims data yields bmc = 47
and b↵ = 0.96, with a standard error of 0.11. Since the choice of the number of frequencies
to be used in the regression is not clear cut (Hurvich and Deo, 1999), we also present the
GPH estimate for a wide range of frequencies; following Perron and Qu (2010), we consider
m ranging from 10 up to n3/4. From Figure 3, except for the case where only extremely low
frequencies are used—where the GPH estimate reveals to be unstable—, the GPH estimate
is always close to one.

As usual, threshold selection is a debatable step. If a too low threshold is selected then
the asymptotic rationale of the model is not justified and bias is generated. On the other
hand, if a too high threshold is chosen few exceedances are available so that higher variance
is obtained; detailed recommendations on threshold selection can be found in Bermudez et

al. (2001). We use the mean residual life plot and plotted parameter estimates of the peaks
over threshold model, of the preprocessed data Zt = �0.96Yt, at a variety of thresholds. As
it can be observed in Figure 4 the estimate of the tail index estimate is stable if small
perturbations are induced in the fixed threshold of u+ = 48, and a similar analysis for the
left tail suggests a fixed threshold of u� = �38. The analysis was supplemented by quantile
plots, which are given in Figure 5 along with their simulation envelopes, and which provide
evidence supporting a reasonably good fit of the model.

Extra diagnostics and some numerical experiments with simulated data can be found in
Supporting Information. We also discuss in Supporting Information, conditions under which
it is possible to obtain asymptotic normality for the time-varying threshold, at each period
t. These results are however of limited applied interest, and in practice we prefer to use a
bootstrap scheme based on Arteche and Orbe (2009), so that for each period t, we:

i. estimate ba and b↵ by least squares in (10), and obtain the residuals ej = ba �

b↵ log{4 sin2(!j/2)}�1, for j = 1, . . . , bmc;

ii. obtain bootstrap samples e?bj from the the empirical distribution function of ej ,
and the corresponding bootstrap dependent variable I?(!j) for j = 1, . . . , bmc and
b = 1, . . . , B;

iii. obtain ↵?
b from the bootstrap regressions, for b = 1, . . . , B; obtain the bootstrap

distribution of bu?
tb | Yt�1

, . . . , Y
1

from

u+
t�1P
i=1

hb↵?
bii

�(i+ 1)
{Yt�iI(i odd)� Yt�iI(i even)} .
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Figure 3. The solid line represents the GPH estimates of ↵ with m ranging from 10 up to n3/4; the
gray vertical lines correspond to n1/3, n1/2, and n2/3, and the dashed lines represent 95% pointwise
confidence bands, which were obtained by the bootstrap.
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Figure 4. Maximum likelihood estimates of the shape parameters and corresponding 95% confidence
intervals over a grid of thresholds; left and right tails are in (a) and (b), respectively.
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Table 1. Maximum likelihood estimates for the peaks
over threshold analysis for left (�) and right (+) tails,
considering the thresholds u� = �38 and u+ = 48;
standard errors are in parentheses

Left tail Right tail

↵ '�
u� �� '+

u+ �+

0.96 16.09 0.04 21.45 0.07
(0.11) (3.22) (0.13) (4.99) (0.16)

1 12.87 0.24 21.14 0.08
(—) (2.89) (0.17) (4.96) (0.17)

The bootstrap approach of Arteche and Orbe (2009) was also used to obtain the pointwise
confidence bands for the GPH estimates in Figure 3. In Figure 6 we plot the time-varying
threshold for b↵ = 0.96 and its corresponding 95% pointwise confidence bands which were
constructed using the bootstrap, with B = 1000; we present the results for a short window,
here given by the first ten weeks of data, and there it can be observed that a threshold
exceedance occurs on week 9. In Table 1 we report the maximum likelihood estimates for
peaks over threshold analysis for left and right tails, for the cases where the long memory
parameter is 0.96 and 1. The estimates of the shape parameters are larger for ↵ = 1, whereas
the estimates of the scale parameter are larger for ↵ = b↵ = 0.96. The standard errors in
the shape and scale parameters are however too large to assess if these ranks are actually
significant.

●●●●●●●
●●●●●●

●●
●●
●●●●●●●●

●●
●●●

●●●●●●
● ● ●

●

● ●

● ●
●

●

●

40 60 80 100 120 140 160

50
10
0

15
0

20
0

25
0

30
0

Model

Em
pi
ric
al

●●●●●●●
●●●●●●

●●
●●
●●●●●●●●

●●
●●●

●●●●●●
● ● ●

●

● ●

● ●
●

●

●

(a)

●●●●
●●
●●●●●

●●
●●●

●●●
●●●●●

● ● ●
●

● ● ●

●

● ●

●

●

●

40 60 80 100 120 140 160

50
10
0

15
0

20
0

25
0

30
0

Model

Em
pi
ric
al

●●●●
●●
●●●●●

●●
●●●

●●●
●●●●●

● ● ●
●

● ● ●

●

● ●

●

●

●

(b)

Figure 5. Quantile plots for the fits of the peaks over threshold model and corresponding simulated
95% confidence intervals corresponding to: (a) left tail; (b) right tail.

4.3. Economic interpretation and mirror filtered exceedances

To give some interpretation to the sequence of exceedances generated by the dynamic thresh-
old, we introduce in the subsequent figures shaded areas representing the US economic ac-
tivity contractions dated by the Business Cycle Dating Committee of the NBER. It should
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Figure 6. The solid line represents the dynamic threshold constructed according to (8); the 95%
pointwise confidence bands constructed by the bootstrap, and the initial claims are respectively rep-
resented by the dashed–dotted and dashed lines.

be stressed that our aim here is not to design an optimal alarm mechanism—in the sense of
Antunes et al. (2003)—, but merely to provide some economic interpretation to the thresh-
old exceedances found by using our dynamic threshold procedure. We also note that our
analysis is ex-post, so that there is really no forecasting involved. Seven peak (P) to trough
(T) movements occurred from January 1967 to November 2009. Thus, during the period
under analysis seven contractions were acknowledged by the NBER Business Cycle Dating
Committee, viz.: i) December 1969–November 1970; ii) November 1973–March 1975; iii)
January 1980–July 1980; iv) July 1981–November 1982; v) July 1990–March 1991; vi) March
2001–November 2001; vii) December 2007–June 2009. Observe further that there is some
lag in the identification of peaks by NBER. For example, the economic activity peak of
December 2007 was only determined in December 2008 (NBER, 2008).

Figure 7 represents the threshold exceedances and the original series. We now assess the
information content that the threshold exceedances of the initial claims possess for tracking
contraction periods. From the inspection of Figure 7 we can ascertain that among the 2239
weekly observations such mechanism would have been activated only 37 times. It is promising
that such naive mechanism is consistent with several contraction episodes and particularly
with the eruption of the latest economic activity peak determined by NBER. This is rein-
forced by the fact that in only 17.6% of the periods under analysis contractions occurred, so
that it is substantially more di�cult to spot recessive periods simply by chance. The analysis
of Figure 7 also reveals however that several exceedances occurred during expansions. As
argued above, it is recognized by the NBER (See Frequently Asked Questions NBER, 2008)
that there is a noticeable week-to-week noise in the initial claims series which complicates
its analysis. As it can be observed in Figure 7 the larger exceedances in (a) correspond to
isolated spikes in (b) so that they are most probably due to week-to-week noise. In general,
these spikes are immediately reverted in the following week. Therefore, one possible way to
sieve plausible exceedances from noisy ones is to inspect which exceedances were followed in
the next week by a left tail exceedance.
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Figure 7. (a) Threshold exceedances; (b) Weekly number of unemployment insurance claims in
the US (initial claims). Shaded areas represent the US economic activity contractions dated by the
Business Cycle Dating Committee of the NBER.
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Figure 8. (a) Mirror plot; (b) Mirror filtered exceedances.
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Figure 8 (a) depicts the right and left tail exceedances—a representation which we denote
as the mirror plot. The analogy here is that the lines corresponding to noisy exceedances
should be immediately followed by left tail exceedances creating the visual e↵ect of a mir-
ror image. The mirror plot can then be thought as an exploratory tool for examining which
right tail exceedances are followed by left tail exceedances in the next week. Observe that the
filtering procedure suggested by the mirror plot is congruous with the earlier discussed dy-
namic asymmetry, according to which unemployment exhibits abrupt increases in opposition
to longer and gradual declines (Milas and Rothman, 2008). In particular this implies that
right tail exceedances are not expected to be immediately followed by left tail exceedances.
The right tail exceedances which are not followed by a left tail exceedance in the upcoming
week are represented in Figure 8 (b) and are here denoted as mirror filtered exceedances.
Formally, we define mirror filtered exceedances as the sequence of point masses

ZF

t = Zt�t(T ), t 2 T,

where T = {⌧ : Z⌧ > u+, Z⌧+1

< u�
} and �t(·) denotes the Dirac measure at t. It may appear

from observing the mirror plot that some other exceedances should also disappear, but as it
can be observed in Table 1 in Supporting Information these exceedances are actually reflected
after more than one week. To additionally filter these exceedances we can extend the set T ,
so that more lags are taken into account. The number of mirror filtered exceedances is thus
|T | = 23, from which 14 occurred during contraction periods and 9 during expansion periods.
It is important to note that in only circa 4/23 of the periods under analysis contractions
occurred. This implies that it is much more di�cult to randomly spot contraction periods,
so that a proportion of 14/23 is considerably satisfying; this is reinforced by a one-tailed
binomial test against the alternative H

1

: proportion > 4/23, which yields a p-value of
3 ⇥ 10�6. It should also be pointed out that two of the mirror filtered exceedances which
occurred out of contraction periods are only a few weeks apart from the trough, and among
the remainder only five are clearly distant from any contraction period.

5. Discussion

This paper discusses an approach for setting a dynamic threshold for a leading economic
indicator, and explores the connection of its exceedances with the contraction periods of the
US economy. Our approach is based on fractionally integrated processes, which allow us
to construct a time-varying threshold that links the preprocessed series with the series of
interest. It is important to stress that here, we use extreme value modelling only to choose
a level for the threshold (the functional form of our dynamic threshold does not rely on the
extreme value theory), but in another application, one might be interested in actually using
the results of the extreme value analysis to make inferences about levels yet to be observed.

The case of fractionally integrated processes with a polynomial trend requires alternative
estimation procedures, and a natural one is given by the extended exact local Whittle estima-
tor of Shimotsu (2010). If one prefers to work on a scale which has a direct interpretation—say
first di↵erences—, the value of ↵ can still be indicative of the level of misspecification we
incur by working on such scale. The closer the ↵ is to zero, the more reasonable it may
be to apply a peaks over threshold model to Yt directly. Similarly, a value of ↵ 2 (0.5, 1]
suggests that it is not sensible to work with Yt, and that the closer the ↵ is to 1, the better
the approximation provided by �Yt.
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