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Here we report further data analyses, numerical experiments, comments on the large
sample characterization of the dynamic threshold, and extra diagnostics.

1. Further exploratory analyses
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Figure 1. Correlagram for US monthly unemployment rate for the original data (a) and data in first

differences (b).
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Figure 2. Partial correlograms for: (a) weekly number of unemployment insurance claims in the US;

(b) US monthly unemployment rate.

2. Examples of numerical experiments with simulated data
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Figure 3. Solid gray lines represent the dynamic thresholds for n = 1000 observations simulated from:

(a) FARIMA(0.2,-0.43,0.4); (b) FARIMA(0.2,-0.89,0.4).
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Figure 4. Solid gray lines represent the dynamic thresholds for n = 1000 observations simulated from:

(a) FARIMA(0.2,0.6,0.4); (b) FARIMA(0.2,-0.7,0.4).
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Figure 5. Solid gray lines represent the dynamic thresholds for n = 1000 observations simulated from:

(a) FARIMA(0.2,0.7,0.4); (b) FARIMA(0.2,-0.8,0.4).
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3. Large sample characterization of the dynamic threshold

The following theorem follows directly by combining the delta method, with the Theorem 2
in Hurvich et al. (1998); we recall that the derivative of the Pochhammer symbol is given by

dh↵ii
d↵

= h↵ii{ (↵+ i)� (↵)}, ↵ 2 R\Z�
0 ,

with  denoting the digamma function, i.e.,  (x) = (d/dx) log�(x), for x 2 R\Z�
0 .

Theorem 1. Let {Yt} denote a series with Gaussian increments, and let Ft = {Y⌧�1}⌧t.

Consider the dynamic threshold

but = u+
1P
i=1

hb↵ii
�(i+ 1)

{Yt�iI(i odd)� Yt�iI(i even)} , (1)

where h↵ii = ↵(↵� 1) · · · (↵� i+1), and ↵ 2 (�1/2, 1/2)\{0}. If m = o(n4/5) and log2 n =
o(m), then it holds that m

�1/2(but � ut) | Ft converges weakly to

N

✓
0,⇡2

/24

 1X

i=1

h↵ii{ (↵+ i)� (↵)}
�(i+ 1)

{Yt�iI(i odd)� Yt�iI(i even)}
�2◆

, (2)

as n ! 1.

It is also possible to combine the delta method with other central limit theorems for ↵

which exist in the literature; for example:

• by Theorem 2 in Deo and Hurvich (2001), we can remove the assumption of Gaussian
increments, at the cost of imposing more strict conditions on the rate of increase of m,
but the limiting distribution remains unchanged;

• by Theorem 3 in Velasco (1999), we can obtain a similar result for ↵ 2 [1/2, 3/4) for
a modified GPH estimator which trims low frequency ordinates, but the expression for
the variance will di↵er from the one presented in (2); the assumptions on the rate of
increase of m need also to be changed.

Results about consistency of the GPH estimator (Hurvich et al., 1998; Velasco , 1999; Robin-
son and Marinucci, 2001; Phillips, 2007), can be readily adapted to establish consistency of
the dynamic threshold in (1), at every t 2 Z. Since for each t 2 Z, ut | Ft is a continu-
ous function of ↵, except at a countable number of points (Z�

0 ), the generalized continuous
mapping theorem of Billingsley (1999, Thm 2.7), can be used to establish consistency of
but | Ft, at every t 2 Z, for the same settings where the GPH estimator has been shown to
be consistent.
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4. Extra diagnostics
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Figure 6. Mean residual life plot; left and right tails are in (a) and (b), respectively.
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Figure 7. Difference in absolute value between the threshold obtained with a long memory parameter

of 0.96 and 1.
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Table 1. Left tail exceedances which occurred until two months after each of the nine mirror filtered exceedances

falling outside a contraction period.

Weeks After

Date 1 2 3 4 5 6 7 8

July 17, 1971 — — — — — — — -45.26

June 6, 1975 — — -38.04 — — — — —

January 22, 1977 — — -82.41 -78.14 -39.33 — — —

April 7, 1979 — -72.28 — — — — — —

August 2, 1986 — — — — — — — —

January 1, 1994 — — — — -42.91 — — —

January 20, 1996 — — — — — — — —

March 30, 2002 — — — — — — — —

September 10, 2005 — -61.18 — — — — — —
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