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We congratulate the authors for a stimulating paper on principles concerning applied statistical
modeling for clustering. Interpretation is certainly an important step in our investigations, and
we often see it as the ultimate step of a data analysis (Cox and Donnelly, 2011, §1.2). This
paper encourages our Society to reflect on the problems arising in data-partition analyses (e.g.,
covariate/cluster method selection), when these are not suitably supplemented with interpretation
and subject-matter knowledge.
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Figure 1: Data generated from a Gumbel copula; the marginal for Z is a standard normal, and the
marginal for X is a mixture of N(1, 1) and N(6, 1) (⇡1 = ⇡2 = 1/2).
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We focus on discussing a simple setup related to the appearance of ‘spurious’ clusters due to
(inadequate) data preprocessing, as in Fig. 3 (c) of the paper, with thoughts being illustrated using
simulated data. We suppose that there exists a latent variable Z with distribution function

FZ(·) =

KX

k=1

⇡kF ( · ; ✓k), (1)

whose mixture components define the ‘meaningful’ K clusters the researcher expects to see. The
challenge is on using the data {Xi}

n
i=1 ⇠ FX to learn about Z. Here ⇡k 2 (0, 1),

PK
k=1 ⇡k = 1,

and {F ( · ; ✓) : ✓ 2 ⇥} denotes a parametric family indexed on a parameter space ⇥; more complex
sampling schemes could have been used for Z (e.g. Booth et al., 2008, eq. 2), but (1) su�ces
for our purposes. We assume that the dependence between X and Z is described through an
unknown copula function C{FX(u), FZ(v)} = FX,Z(u, v), for (u, v) 2 [0, 1]2, where FX,Z denotes
the joint distribution function. In practice Z cannot be directly measured and therefore X (which
is typically highly correlated with Z) is used as a proxy. However, we often forget that X may
not be as informative about Z as one might hope (e.g., when Z is happiness and X income), and
preprocessing is used to suitably tilt the distribution of X so that it becomes more similar to that
of Z.

In §6.1 the authors provide scientifically relevant arguments why the zero savings group of
Fig. 3 (c) fails to be meaningful, and thus motivating the need to employ a somewhat arbitrary
c = 50. Additionally, a naive application of a pattern recognition technique could lead to spurious
clustering—a pattern on X without any correspondent on Z. To illustrate the appearance of such
spurious clusters in our setup, consider Fig. 1 which displays 100 points simulated according to
a Gumbel copula C (p, q) = exp[�{(� log p) + (� log q) }1/ ], for (p, q) 2 [0, 1]2, with  = 3.
The marginal for Z is a standard normal, and the marginal for X is a mixture of N(1, 1) and
N(6, 1) (⇡1 = ⇡2 = 1/2). This example is certainly artificial—as in practice only {Xi}

n
i=1 would be

observed—but it is interesting to observe that a spurious cluster on X may exist, even when Z is
strongly correlated with X (Pearson correlation = 0.79).

From a modeling point of view, the paper clearly puts forward the key role that subject-specific
interpretations play in helping link X to Z. Since the authors strongly advocate incorporating
researcher intuition in clustering (of which we agree), we wonder whether the Bayesian paradigm
should play a more active role in the proposed ‘clustering philosophy.’ Particularly, product par-
tition models have been recently devised for assessing uncertainty about the configuration of the
clusters (Müller et al., 2008). These methods are able to incorporate uncertainty associated with a

priori ‘expected’ data partitions via a prior distribution assigned to the cluster configuration. The
Bayesian approach would also seem natural for a less debatable choice of c in the preprocessing
stage, or for the specification of a prior distribution on the structure of dependence between X and
Z.
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