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Abstract

This paper explores the comovement of the economic activity of several OECD countries
during periods of large negative and positive growth. Extremal dependence measures
are here applied to assess the degree of cross-country tail dependence of output growth
rates. Our main empirical findings are: (i) cross-country tail dependence is much
stronger during periods of large negative growth, than during the ones of large posi-
tive growth; (ii) cross-country growth is asymptotically independent; (iii) cross-country
tail dependence is considerably stronger than the one arising from a Gaussian depen-
dence model. In addition, our results suggest that, among the typical determinants for
explaining international output growth synchronization, only economic specialization
similarity seems to play a role during such extreme periods.
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I. Introduction

The fallout of the recent 2009 Great Recession has been widely felt. Although such extreme
events are infrequent, but recurrent in our profession, many of our data modeling tools
have been devised for (regular) central events, and tend to perform poorly on (rare) tail
events—where it is becomes challenging to extrapolate beyond the observed data. The huge
losses linked to the occurrence of such rare but catastrophic events, have led to an increasing
interest in the topic of statistics of extremes (Coles, 2001; Beirlant et al., 2004; de Haan
and Ferreira, 2006); for some recent applications in economics, see Straetmans et al. (2008),
Mohtadi and Murshid (2009), Ren and Giles (2010), Bollerslev et al. (2013), and de Carvalho
et al. (2013).

Here we will examine what insights can methods of statistics of extremes provide on the
comovement of the economic activity of several countries, during periods of large negative
and positive growth—left and right tails, respectively. Many statistical tools often applied in
the analysis of central events, are inappropriate for the analysis of extremes, and in particular
Pearson correlation—the most used measure of synchronization of economic activity in the
growth cycle literature—fails to be a reliable measure for assessing the level of agreement of
two variables at their extreme levels.1 Despite its broad use, the price of its simplicity comes
at the cost of some important limitations. First, Pearson correlation makes no distinction
between large negative and positive values; specifically, in the context of the growth cycle
literature, this implies that it places the same weight on negative and positive growth rates.
Second, Pearson correlation is defined through an average of departures from the mean, so
that its unsuitableness for quantifying dependence at tail events is self evident; hence, it
is inappropriate for evaluating the strength of the comovement of output growth rates for
periods which are far from average levels, such as during moments for which there is an
extremely sharp decline in economic activity.

In this paper we explore the comovement of the economic activity of several OECD coun-
tries during periods of large negative and positive growth. Extremal dependence measures
(Coles et al., 1999; Poon et al., 2003, 2004) are here used to evaluate the degree of cross-
country tail dependence of output growth rates, over the past 50 years. Although there
has been an increasing interest in studying the distribution of output growth rates (Can-
ning et al., 1998; Lee et al., 1998; Fagiolo et al., 2008; Castaldi and Dosi, 2009; Fagiolo et

al., 2009), our analysis allows us to study the comovements of international output growth
from a completely novel standpoint, and to our knowledge this is the first paper modeling
business cycle data with statistics of multivariate extremes. This allows us to collect some
new stylized facts for cross-country output dynamics. First, the application of extremal
dependence measures, allows us to observe that the comovement of output growth rates is
much stronger in left tails than in right tails. Hence, during acute recession periods the
strength of comovement of growth cycles is much stronger than during the utmost expan-
sionary periods. Second, cross-country growth is asymptotically independent. This is in
line with Poon et al. (2004), who also find evidence of asymptotic independence in stock
markets returns, and who note that this has important implications for understanding what
models can be compatible with the data. Third, dependence in the tails is shown to be much

1Correlation-based techniques are of course not the unique way to address the study of comovements;
see Gligor and Ausloos (2008) for a clustering-based approach, and Diebold and Yilmaz (2011) for a
connectedness-based method.
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stronger than the one arising from a Gaussian dependence model. Thus, if we use Pearson
correlation for measuring synchronization of output growth rates during extreme scenarios,
we will tend to underestimate dependence in the tails. The above-mentioned caveats of the
most employed measure of synchronization of economic activity motivates the question: are
the factors driving the mechanics of propagation of shocks the same over junctures of sharp
variations in output? Put di↵erently, are the typical determinants of synchronization tenable
throughout moments of exceptionally large negative (and positive) growth? As a byproduct
of our analysis puts forward, among some of the most standard determinants for explaining
international output synchronization (Baxter and Kouparitsas, 2005; Inklaar et al., 2008),
only economic specialization similarity seems to have an impact during such extreme periods.

The plan of this paper is as follows. The next section introduces extremal dependence
measures along with guidelines for estimation and inference. In section III we explore the
insights o↵ered by these measures, to the analysis of the comovement of the economic ac-
tivity of several OECD countries, during periods of extreme negative (and positive) growth.
Concluding remarks are given in section IV.

II. Measuring Extremal Dependence

Dual measures of tail dependence

The link between the joint distribution function and its corresponding marginals can provide
helpful information regarding the dependence of two random variables. In statistical par-
lance, the function C establishing such connection is defined as a copula (Nelsen, 2006). A
key result in copula modeling is Sklar’s theorem which, in its simplest form, establishes the
existence and unicity of a copula C, for any given set of continuous marginals assigned to a
certain joint distribution (Embrechts, 2009, Theorem 1). The most straightforward example
of copula arises when the variables of interest are independent, so that the joint distribution
function can be written as the product of the marginals, and so the corresponding copula is
simply given by C(u, v) = uv, for (u, v) 2 [0, 1]2; other examples of copulas can be found,
for instance, in Granger et al. (2006), and references therein. As we shall see below, copulas
also play a role in joint tail dependence modeling.

Before we are able to measure dependence in the extreme levels of the variables G1 and
G2, here representing the output growth rates of two countries of interest, we first need to
convert the data into an appropriate common scale. Only if the data are transformed into a
unified scale fair comparisons can be made. Output growth rates are known to possess fat
tails (Fagiolo et al., 2008), so that transforming the data into the unit Fréchet scale becomes
the natural choice.2 This can be accomplished by turning the original pair (G1, G2) into

(Z1, Z2) =
�
�(logF

G1)
�1
,�(logF

G2)
�1
�
. (1)

The marginal distribution functions G1 and G2 are typically unknown so that in practice
the empirical distribution functions bF

G1 and bF
G2 are plugged in (1). After such relocation

2Although, we are restricting the exposition to the unit Fréchet scale, the conceptual framework under-
lying all measures presented here remains unchanged for cases wherein the variables are transformed into
unit Pareto margins as, for instance, in Straetmans et al. (2008, p. 23). In such case, instead of using (1),
we would convert the pair (G1, G2) into (Z̃1, Z̃2) =

�
(1� FG1)

�1, (1� FG2)
�1
�
.
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has been performed, the order of magnitude of the high quantiles of G1 becomes comparable
with those of G2, so that all di↵erences in the distributions that may persist are simply
due to the dependence between the variables. A natural measure for assessing the degree of
dependence at an arbitrary high level z, is given by the bivariate tail dependence index �

(Coles et al., 1999; Poon et al., 2003, 2004), defined as

� = lim
z!1

Pr{Z1 > z | Z2 > z}. (2)

Roughly speaking, � measures the degree of dependence which may eventually prevail in the
limit. As it is clear from (2), � is constrained to live in the interval [0, 1]. If dependence
persists as z ! 1, so that 0 < �  1, then we say that G1 and G2 are asymptotically

dependent. If the degree of dependence vanishes in the limit, then � = 0, and in this case
we say that the variables are asymptotically independent.

As discussed by Poon et al. (2003, 2004), this extremal dependence characterization is
not only consequential for a more fine understanding of the comovement of the variables
during extreme events as it also brings deep implications for statistically modeling the data.
In particular, if the variables are asymptotically independent then any naive application of
multivariate extreme value distributions leads to an overrepresentation of the occurrence
of simultaneous extreme events. It can be shown (Coles et al., 1999), that � can also be
rewritten in terms of a limit of a function of the copula C, i.e.

� = lim
u!1

2�
logC(u, u)

log u
. (3)

Hence, the function C not only ‘couples’ the joint distribution function and its corresponding
marginals, as it also provides helpful information for modeling joint tail dependence.

Tail dependence should be measured according to the dependence structure underlying
the variables under analysis. If the variables are asymptotically dependent, the measure �

is appropriate for assessing what is the strength of dependence which links the variables at
the extremes. If the variables are asymptotically independent then � = 0, so that � unfairly
pools the cases wherein although dependence may not prevail in the limit, it may still persist
for relatively large levels of the variables. To measure extremal dependence under asymptotic
independence, Coles et al. (1999) introduced the following measure

� = lim
z!1

2 log Pr{Z1 > z}

log Pr{Z1 > z, Z2 > z}

� 1, (4)

which takes values on the interval (�1; 1]. The interpretation of � is to a certain extent
analogous to Pearson correlation, namely: values of � > 0, � = 0, and � < 0, respectively
correspond to positive association, exact independence, and negative association in the ex-
tremes. It follows that if the dependence structure is Gaussian then � = ⇢ (Poon et al.,
2003, 2004). This benchmark case is particularly helpful for guiding how does the depen-
dence in the tails—as measured by �—compares with the one arising from fitting a Gaussian
dependence model; for a comprehensive inventory for the functional forms of the extremal
measure(s) � (and �), over a broad variety of dependence models, see He↵ernan (2000).

The concepts of asymptotic dependence and asymptotic independence can also be char-
acterized through �. More specifically, for asymptotically dependent variables, it holds that
� = 1, while for asymptotically independent variables � takes values in (�1, 1). Hence �
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and � can be seen as dual measures of joint tail dependence: if � = 1 and 0 < �  1, the
variables are asymptotically dependent, and � assesses the size of dependence within the
class of asymptotically dependent distributions; if �1  � < 1 and � = 0, the variables are
asymptotically independent, and � evaluates the extent of dependence within the class of
asymptotically independent distributions.

In a similar way to (3), the extremal measure � can also be written using copulas, viz.

� = lim
u!1

2 log(1� u)

log{1� 2u+C(u, u)}
. (5)

Hence, the function C can provide helpful information for assessing dependence in the ex-
tremes, both under asymptotic dependence and asymptotic independence; further details on
these connections can be found in de Carvalho and Ramos (2012).

In the next subsection we focus on estimation features of the dual measures of joint tail
dependence introduced above.

Estimation and inference

Although the copula-based representations provided above are conceptually enlightening,
they are not the most appropriate for estimation purposes. These can however be suitably
reparametrized by using a result due to Ledford and Tawn (1996, 1998), which establishes
that, under fairly mild assumptions, the univariate variable Z = min{Z1, Z2} has a regularly
varying tail with index �1/⌘. Formally

Pr{Z > z} ⇠

L(z)

z

1/⌘
, z ! 1, (6)

where L(z) is used to denote a slowly varying function, i.e., lim
x!1

L(xz)/L(x) = 1, for every

z > 0; the constant ⌘, which is constrained to the interval (0,1], is the so-called coe�cient
of tail dependence. The result reported in (6) can be restated as

Pr{Z1 > z, Z2 > z} ⇠

L(z)

z

1/⌘
, z ! 1. (7)

Hence, if we plug in (7) in equation (4), the following reparametrization (Coles et al., 1999)
of �, in terms of the coe�cient of tail dependence ⌘, arises

� = 2⌘ � 1. (8)

From the practical stance this representation is quite appealing since it only depends on ⌘,
which can be estimated through the well-known Hill estimator (Hill, 1975), defined as

b⌘H =
1

k

kX

i=1

�
logZ(n�k+i) � logZ(n�k)

 
, (9)

We use Z(1)  · · ·  Z(n), to denote the order statistics of a random sample {Z

i

}

n

i=1 from
Z = min{Z1, Z2}. Hence, from the discussion above, estimation of � (Poon et al., 2003,
2004) follows naturally as

b
� = 2b⌘H � 1, (10)
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with corresponding variance

var{b�} =
(b�+ 1)2

Z(n�k)
. (11)

A remark regarding practicalities. Note that eq. (9) depends on k, which represents the
number of observations used to conduct the tail index estimation, and its selection entails
a bias–variance tradeo↵: if too few observations are used, the produced estimate is subject
to a large variance, whereas if too many observations are used, a bias will arise. Here, we
select k using the iterative subsample bootstrap method discussed in Dańıelsson and de Vries
(1997), so that a compromise in this tradeo↵ can be achieved. The inference is based on the
asymptotic normality of the Hill estimator (de Haan and Ferreira, 2006, section III); hence,
if b� is significantly less than 1, at the ↵-level, so that

b
� < 1� z

↵

q
var{b�} ,

then we infer that the variables are asymptotically independent and take � = 0. It is
important to underscore that only if there is no significant evidence to reject � = 1, we
prosecute with the estimation of �, which is done under the assumption � = ⌘ = 1.

An estimator for �, can be constructed using the maximum likelihood estimator of the
slowly varying function

d
L(z) = (1� k/n){Z(n�k)}

1/⌘
, (12)

(Poon et al., 2003, 2004). Thus, if we plug in (12) in equation (7), under the constraint
b
� = 1, and use the definition of the extremal measure �, the following estimator arises

b� = (k/n)Z(n�k), var{b�} = k(n� k)/n3(Z(n�k))
2
.

III. Synchronization at the extremes

Extremal dependence in international output growth

Our empirical analysis entails 15 OECD countries: Austria, Belgium, Canada, Finland,
France, Germany, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, UK, and US.
The main criteria for selecting these countries was the period for which the first observation
was available, because methods introduced in section II are based on large sample results,
and hence we need to confine the breadth of the study to countries for which a longer
span of data is available. We use the first di↵erences of the logarithm of the (seasonally
adjusted) Industrial Production (IP) index, with the time horizon ranging from 1960:1 to
2009:12, gathered from Thompson Financial Datastream.3 As mentioned above the presented
methods are asymptotically motivated, so that other economic activity measures such as the
GDP—which is only available on a quarterly basis and, for most countries, over shorter
periods of time—are not considered; although we are aware that the index used here is a
proxy for measuring economic activity evolution, it is widely known that the IP is strongly
correlated with the aggregate activity as measured by GDP (see, for instance Fagiolo et al.,
2008).

3There are two exceptions to be noted. Namely for Canada and Spain, the data was only available starting
from 1961:1 and 1964:1, respectively.
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[Insert Table 1 about here]

We start the analysis with Pearson correlation ⇢ which is reported in Table 1. This
table summarizes correlation between all possible pairs of economies and thus supplies an
important benchmark for comparison with tail dependence measures in the following sense: if
we believed that a Gaussian dependence model was ruling the mechanics of the comovement
of international output growth then dependence in the left and right tails should coincide
with Pearson correlation coe�cient.4 In particular, this would imply that the degree of
association should be alike in periods of extreme declines and increases in economic activity.
As we shall see below, this happens not to be the case.

[Insert Table 2 about here]

A short comment on notation: below, we use the notations �L and �R to distinguish
left-tail dependence from right-tail dependence. In Table 2 we outline the results from the
examination of left-tail dependence in the comovement of economic output. Some brief
remarks regarding the construction of this table are in order. First, the optimal k? was
estimated by dint of the iterative subsample bootstrap procedure of Dańıelsson and de Vries
(1997), for each possible pair of countries. Second, the corresponding estimates of the coef-
ficient of tail dependence ⌘ are obtained through (9). Finally, to work out the estimates of
�L, the Hill estimates obtained in the latter step are introduced in (10).

From the inspection of Table 2 we can ascertain that overall, the reported results are
considerably higher than the corresponding counterparts reported in Table 1. To be more
precise, in 90.48% of the cases it is verified that the estimated value of �L lies above ⇢. The
lesson here is the following: the strength of economic activity comovement is much stronger
during sharp declines than a Pearson correlation would foretell. Additionally, there is strong
evidence to support the hypothesis of asymptotic independence in left tails. In 96 pairs, out
of a total of 105 =

�
15
2

�
, we are unable to reject the null of asymptotic independence at the

↵-level of 5%. Moreover, the percentage of non-rejections increases into 97.1%, with only
3 pairs suggesting asymptotic dependence, if we consider an ↵-level of 10%. Such pairs are
(Japan, Germany), (Canada, Spain) and (UK, Canada), with the corresponding � values
given by 0.3090, 0.3160, and 0.3173, respectively.

[Insert Table 3 about here]

Table 3 sums up an analogous exercise to the one reported in Table 2, but now focusing
on right tails. Likewise, there is also a general evidence for the estimated values of �R to
be larger than their corresponding correlations, as measured by ⇢, although the strength of
the dominance is here markedly lower. Still, in 71.90% of the cases the computed values
of �R remain above Pearson correlation. Particularly, this implies that the extent of the
synchronization is manifestly larger during periods of sharp increases in the economic activity
growth than a naive estimate of ⇢ would predict. Furthermore, the statistical evidence in
favor of the hypothesis of asymptotic independence is also here remarkably clear with all pairs
supporting the null at the ↵-level of 10%. The comparison of Tables 2 and 3 also brings
an enlightening point into the discussion: overall, left-tail dependence is markedly stronger
than right-tail dependence. To be more specific, in 78.57% of the cases the estimated value
of �L dominates �R. The message here is the following: dependence is more pronounced in
periods of sharp declines in output, than during epochs of steep increases.

4As discussed above, in a Gaussian dependence model it holds that � = ⇢.
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[Insert Figure 1 about here]

To make a long story short, we depict in Figure 1 the average values per country for �L,
�R and for ⇢. This figure wraps up the discussion given above concerning the relative ordering
between these measures. On one hand, Figure 1 highlights that in average �L dominates �R,
which is consistent with the observations made above vis-à-vis the dominance of left tails
over right tails. On the other hand, it is also clear from the inspection of this figure that, on
average, �L and �R lie above ⇢. This complies with the aforementioned discussion regarding
the supremacy of the dependence in the tails in comparison with the one which would arise
from a Gaussian dependence model.

Do typical determinants of comovement hold in the tails?

We now assess if the determinants typically found as important in explaining international
output synchronization are tenable when one focuses on tail dependence. Among the several
variables deemed to influence output synchronization, the foremost candidates are trade
variables. Although it has long been acknowledged that trade is an important linkage between
economies, theory is ambiguous whether intensified trade relations result in more or in less
output comovement. From one point of view, comparative advantage trade theories postulate
that increasing trade leads to a higher degree of production specialization and consequently
to a lower comovement (see, for example, Krugman 1992). From another point of view,
according to a wide range of theoretical models of international trade, with either technology
or monetary shocks, increasing trade often results in higher comovement. For instance,
Frankel and Rose (1998) assert that closer trade links lead to higher output synchronization
as an outcome. The underlying issue is whether bilateral trade is mainly intra-industry or
inter-industry driven. In the former case one would expect higher comovement whereas in
the latter lower comovement would be predicted. Hence, along with the role of bilateral
trade, one should also take into account the relative trade specialization.

Another potential determinant often considered in the literature is the similarity of the
production composition. The intuition here is that countries with similar economic struc-
ture should be in like manner a↵ected by sector-specific shocks which may induce an higher
output comovement (see, for example, Imbs 2004). The existence of other similarity mech-
anisms paralleling in the economies is also reckoned among the conceivable determinants of
synchronization. For example, the implementation of coordinated policies may also have an
e↵ect in synchronization. If two countries adopt similar policies, either monetary or fiscal,
an higher synchronization may be induced (see, for example, Inklaar et al. 2008).

As in theory, many factors may potentially underlie output synchronization, identifying
the determinants of comovement becomes an empirical matter. Among the variables that
have been pointed out in the literature as possible explanatory determinants of international
output comovement (for a comprehensive overview see, for example, Inklaar et al. 2008, and
references therein), we concern ourselves with the variables that have been found robust in
related work.5 Two influential papers in this respect are Baxter and Kouparitsas (2005)

5Recent work makes use of extreme bounds analysis, suggested by Leamer (1983) and developed by Levine
and Renelt (1992) and Sala-i-Martin (1997), to ascertain the ‘robustness’ of the determinants. Here the word
‘robust’ should be understood in Leamer’s terminology, and hence it applies to variables whose statistical
significance does not depend on the information set.
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and Inklaar et al. (2008). On one hand, Baxter and Kouparitsas (2005) consider over one
hundred countries and the variables under analysis are: bilateral trade between countries;
total trade in each country; sectoral structure; similarity in export and import baskets; factor
endowments; and gravity variables. On the other hand, Inklaar et al. (2008) considered an
even larger assortment of potential variables for 21 OECD countries. The results of the
latter suggest that besides bilateral trade between countries (as in Baxter and Kouparitsas
2005), variables capturing similarity of monetary and fiscal policies, as well as specialization
measures are robust determinants of international output comovement.

As Inklaar et al. (2008) also consider the monthly IP as a measure of economic activity
and the set of countries is closer to our case, we will draw heavily on their findings vis-à-vis
the selection of the variables to be examined in the remaining analysis. Thus, we consider
as possible determinants of output comovement the following variables: (i) bilateral trade
between countries; (ii) three specialization indicators; (iii) a similarity measure of monetary
policy stance; and (iv) a similarity measure of fiscal policy stance. Some specific comments,
about the meaning and computation of each of these yardsticks, will be provided below.
For the ease of exposition in the following we use some simplifying conventions regarding
notation. The indices i and j are reserved to represent countries, whereas t is taken to denote
time. Hence in cases where the respective meaning of these indices is clear from the context
they may be omitted. In addition, capital letters are intended to represent ‘totals’ of the
corresponding indices (for instance, T should be understood as the total number of time t

periods).
Starting with the first variable mentioned above, here we use bilateral trade intensity, for

the pair of countries (i, j), which is given by

1

T

TX

t=1

x

ijt

+m

ijt

+ x

jit

+m

jit

x

it

+m

it

+ x

jt

+m

jt

. (13)

Here x
ijt

and m

ijt

respectively denote exports and imports from country i to country j, while
x

it

and m

it

respectively represent total exports and imports of country i; this essentially
corresponds to the preferred measure of Baxter and Kouparitsas (2005). All data regarding
trade flows are taken from the CHELEM International Trade Database and covers the period
from 1967 up to 2008.

As mentioned earlier three indicators of specialization measure are here calculated, viz.:
industrial similarity; export similarity; and intra-industry trade. The industrial similarity,
proposed by Imbs (2004), can be written as

1

T

TX

t=1

 
1�

1

L

LX

l=1

|s

ilt

� s

jlt

|

!
, (14)

where s
ilt

denotes the production share of industry l in country i. As in Inklaar et al. (2008),
we resort to the 60-Industry Database of the Groningen Growth and Development Centre,
which has data mainly at the 2-digit ISIC detail level and the sample period ranges from
1979 up to 2003. By its turn, export similarity, suggested by Baxter and Kouparitsas (2005),
is computed as

1

T

TX

t=1

 
1�

1

P

PX

p=1

|s

ipt

� s

jpt

|

!
, (15)
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where s
ipt

is product p’s share of country i’s total exports. Likewise Baxter and Kouparitsas
(2005), export shares are obtained using trade data by commodity at the 2-digit ISIC detail
level for all country pairs. Finally, the measure of intra-industry trade is given by

1

T

TX

t=1

 
1�

P
p

|x

ijpt

�m

ijpt

|

P
p

(x
ijpt

+m

ijpt

)

!
, (16)

where x
ijpt

and m

ijpt

respectively denote the exports and imports of product p from country
i to country j. Again, trade data by commodity at the 2-digit ISIC detail level is used.

Concerning the similarity measure of monetary policy stance, we follow Inklaar et al.

(2008) and compute the correlation for all country pairs of the monthly short-term interest
rates taken from the OECD Main Economic Indicators Database, using the available data up
to December 2009. Regarding the measure of fiscal policy stance, we compute the correlation
for all country pairs of the cyclically adjusted government primary balance, as a percentage
of potential GDP, available at the OECD Economic Outlook Database, with the sample
period ranging in most cases from 1970 up to 2009.

[Insert Table 4 about here]

In Table 4, we present the regression results using as dependent variable a measure of
the degree of association (namely, the Pearson correlation coe�cient, the left and right tail
dependence, respectively measured by �L and �R) and as covariates the above described
factors, to wit: bilateral trade intensity; a specialization measure; and two policy stance
similarity indicators. For the Pearson correlation coe�cient, the results are broadly similar
to those obtained by Inklaar et al. (2008). We also find evidence supporting the importance
of bilateral trade intensity, specialization measure and monetary policy stance similarity for
explaining comovement. In contrast, the fiscal policy stance indicator is not statistically
significant in our case. Besides the fact that both the set of countries and the sample
period are not the same, we use the cyclically adjusted government primary balance whereas
Inklaar et al. (2008) use the cyclically adjusted government total balance. As it is widely
acknowledged, the government primary balance is a more adequate measure of the current
fiscal policy stance since it is not a↵ected by interest rate payments on the government debt
which reflects an accumulated governmental deficit over previous years.

The question that now arises is the following. Are the standard determinants of synchro-
nization tenable over periods of exceptional positive and negative growth? An answer to this
question is given by examining in Table 4 the regression outputs for the cases wherein �L and
�R are taken as dependent variables. From this exercise, a major conclusion can be readily
gathered. With the exception of the specialization measure, all the above determinants are
not statistically significant. This means that for the comovement in extreme events what
really seems to matter is the specialization similarity between economies. On the face of it,
the vehicle of propagation of shocks over scenarios of sharp variations in output appears to
be the specialization similarity across economies. Among the specialization indicators con-
sidered, the evidence for the export similarity measure, proposed by Baxter and Kouparitsas
(2005), is the strongest as it is statistically significant in the regression for both tails. By
its turn, the industrial similarity measure, as suggested by Imbs (2004), is clearly important
for explaining left-tail dependence whereas the intra-industry trade, used by Inklaar et al.
(2008), seems to be more relevant for right-tail dependence.
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IV. Discussion

This paper examines the synchronization of several OECD countries during periods of abrupt
declines and sudden increases in international economic activity, over the last 50 years. From
the conducted analysis some noteworthy empirical findings are here collected: synchroniza-
tion is more intense during periods of sharp declines than during scenarios of large positive
growth; our results pinpoint statistical evidence in favor of asymptotic independence, with
a stronger tail dependence than the one suggested by a Gaussian dependence model. Thus,
in particular, this implies that Pearson correlation considerably underestimates the level of
synchronization in periods large negative and positive growth. Lastly, our results put forward
that, among the standard determinants used for explaining international output growth syn-
chronization, only specialization similarity seems to play a role during extreme events. As
mentioned by a reviewer, the application of techniques of statistics of extremes to business
cycle data is still in its infancy, and one needs to be aware of its limits—especially in terms
of small sample biases. A reliable application of the techniques requires as much data as one
can get, so that it may be important to understand how the extremes of macroeconomic vari-
ables available on a higher frequency, connect with the cycle. Our analysis merely provides a
first step towards understanding the mechanisms of propagation of shocks during periods of
large negative and positive growth. An open question that also remains is whether other key
variables not considered as typical determinants for explaining international output growth
synchronization, can actually have an e↵ect during such extreme periods.

Appendix: Iterative Subsample Bootstrap

To select the optimal k = k?, we use the Dańıelsson–de Vries iterative subsample bootstrap procedure
(Dańıelsson and de Vries, 1997). This procedure is based on a recursive application of the following stages.
In a first step a Hall subsample bootstrap (Hall, 1990) is employed to subsamples of size n1 to yield a
starting value for k? (say k?1). In a second step, the Hill estimator (9) is routinely applied to the subsamples
using the starting value k?1 to consistently estimate a first order parameter ↵. Lastly, we estimate a second
order parameter � using the estimator proposed in Dańıelsson and de Vries (1997, p. 247). The optimal
value k? is then given by properly combining k1 with the first and second order parameters, viz.: k? =
k?1(n/n1)2�/(2�+↵).
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TABLE 1

Pearson correlation of the output growth rates for OECD countries

Pearson correlation ⇢

AUS BEL CN FIN FR GER IT JP NL NOR POR SP SWE UK US

AUS 0.3073 0.0820 0.0743 0.0515 0.1449 0.2760 -0.0489 0.1767 0.0181 -0.0325 -0.0018 0.0467 0.1881 0.0206

BEL 0.3073 0.0133 0.0414 0.0463 0.1603 0.2736 -0.0425 0.0382 0.0190 -0.0291 0.0400 0.0788 0.2181 0.0470

CN 0.0820 0.0133 0.1664 0.0939 0.0848 0.0737 0.1749 0.0693 0.0690 -0.0030 0.1162 0.0506 0.1569 0.3715

FIN 0.0743 0.0414 0.1664 0.0726 0.1285 0.0828 0.0673 0.0488 -0.0362 0.1048 0.0195 0.2594 0.0368 0.0704

FR 0.0515 0.0463 0.0939 0.0726 0.1093 0.0536 0.1110 0.0898 -0.0375 0.0178 0.0823 0.1213 0.0215 0.0443

GER 0.1449 0.1603 0.0848 0.1285 0.1093 0.0684 0.2262 0.1136 -0.0157 0.0969 0.0922 0.0350 0.1527 0.1430

IT 0.2760 0.2736 0.0737 0.0828 0.0536 0.0684 0.0511 0.1678 0.0829 0.0576 0.1196 0.1088 0.1715 0.1180

JP -0.0489 -0.0425 0.1749 0.0673 0.1110 0.2262 0.0511 0.0237 0.0073 0.1232 0.1434 0.0401 0.0831 0.2068

NL 0.1767 0.0382 0.0693 0.0488 0.0898 0.1136 0.1678 0.0237 -0.1022 0.0541 0.1139 0.0376 0.1817 0.0545

NOR 0.0181 0.0190 0.0690 -0.0362 -0.0375 -0.0157 0.0829 0.0073 -0.1022 0.0288 0.0352 0.0266 -0.0423 0.0270

POR -0.0325 -0.0291 -0.0030 0.1048 0.0178 0.0969 0.0576 0.1232 0.0541 0.0288 0.1793 -0.0832 0.0426 -0.0391

SP -0.0018 0.0400 0.1162 0.0195 0.0823 0.0922 0.1196 0.1434 0.1139 0.0352 0.1793 0.1336 0.0208 0.0776

SWE 0.0467 0.0788 0.0506 0.2594 0.1213 0.0350 0.1088 0.0401 0.0376 0.0266 -0.0832 0.1336 0.1265 0.0936

UK 0.1881 0.2181 0.1569 0.0368 0.0215 0.1527 0.1715 0.0831 0.1817 -0.0423 0.0426 0.0208 0.1265 0.1493

US 0.0206 0.0470 0.3715 0.0704 0.0443 0.1430 0.1180 0.2068 0.0545 0.0270 -0.0391 0.0776 0.0936 0.1493

Notes: AUS = Austria ; BEL = Belgium ; CN = Canada ; DK = Denmark ; FIN = Finland ; FR = France ; GER = Germany ; IT = Italy ; JP = Japan ;

NL = Netherlands ; NOR = Norway ; POR = Portugal ; SP = Spain ; SWE = Sweden ; UK = United Kingdom ; US = United States of America.
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TABLE 2

Left-tail dependence of the output growth rates for OECD countries

�L (Left-tail dependence as measured by �)

AUS BEL CN FIN FR GER IT JP NL NOR POR SP SWE UK US

AUS 0.3306 0.2233 0.2082 0.3355 0.3089 0.2815 0.4649 0.1783 0.2174 -0.0602 0.1045 0.2144 0.4512 0.1616

BEL 0.3306 0.1193 -0.0221 0.2472 0.2042 0.4695 0.2222 0.1455 0.2685 -0.0286 0.4878 0.2374 0.6945 0.0304

CN 0.2233 0.1193 0.6593 0.5195 0.3835 0.3426 0.7964 0.4253 0.1821 0.1495 0.8673 0.1820 0.5378 0.7113

FIN 0.2082 -0.0221 0.6593 0.4634 0.7133 0.3876 0.5085 0.1248 0.2421 0.3009 0.2620 0.4097 0.2709 0.3070

FR 0.3355 0.2472 0.5195 0.4634 0.3134 0.2743 0.4468 0.2970 0.1311 0.1985 0.3537 0.4243 0.4265 0.1549

GER 0.3089 0.2042 0.3835 0.7133 0.3134 0.4390 0.6803 0.2650 -0.0718 -0.0177 0.0292 0.5709 0.5559 0.5489

IT 0.2815 0.4695 0.3426 0.3876 0.2743 0.4390 0.2807 0.1579 0.0760 0.4741 0.2466 0.6350 0.6165 0.3513

JP 0.4649 0.2222 0.7964 0.5085 0.4468 0.6803 0.2807 -0.0920 0.3153 0.0926 0.1648 0.3136 0.4895 0.3582

NL 0.1783 0.1455 0.4253 0.1248 0.2970 0.2650 0.1579 -0.0920 -0.1104 0.2051 0.2198 0.2431 0.2890 0.3893

NOR 0.2174 0.2685 0.1821 0.2421 0.1311 -0.0718 0.0760 0.3153 -0.1104 0.2435 0.5762 0.3724 0.0752 0.2126

POR -0.0602 -0.0286 0.1495 0.3009 0.1985 -0.0177 0.4741 0.0926 0.2051 0.2435 0.1882 0.0904 0.1701 0.2392

SP 0.1045 0.4878 0.8673 0.2620 0.3537 0.0292 0.2466 0.1648 0.2198 0.5762 0.1882 0.1485 0.3036 0.6660

SWE 0.2144 0.2374 0.1820 0.4097 0.4243 0.5709 0.6350 0.3136 0.2431 0.3724 0.0904 0.1485 0.4895 0.5396

UK 0.4512 0.6945 0.5378 0.2709 0.4265 0.5559 0.6165 0.4895 0.2890 0.0752 0.1701 0.3036 0.4895 0.5002

US 0.1616 0.0304 0.7113 0.3070 0.1549 0.5489 0.3513 0.3582 0.3893 0.2126 0.2392 0.6660 0.5396 0.5002

Notes: AUS = Austria ; BEL = Belgium ; CN = Canada ; DK = Denmark ; FIN = Finland ; FR = France ; GER = Germany ; IT = Italy ; JP = Japan
NL = Netherlands ; NOR = Norway ; POR = Portugal ; SP = Spain ; SWE = Sweden ; UK = United Kingdom ; US = United States of America.
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TABLE 3

Right-tail dependence of the output growth rates for OECD countries

�R (Right-tail dependence as measured by �)

AUS BEL CN FIN FR GER IT JP NL NOR POR SP SWE UK US

AUS 0.6020 -0.1907 0.1072 0.2875 0.0959 0.4584 -0.0053 0.1407 0.2027 0.1304 -0.0555 -0.0856 0.3831 0.0998

BEL 0.6020 -0.1243 0.1239 0.1812 0.4930 0.2857 -0.0490 0.1587 -0.0184 0.0108 0.2388 0.1102 0.3831 -0.1974

CN -0.1907 -0.1243 0.0735 -0.0836 0.1854 0.3215 0.1592 -0.2801 0.3181 0.0693 0.0359 0.0835 0.1513 0.0721

FIN 0.1072 0.1239 0.0735 0.1750 0.2358 0.0839 0.0895 0.1574 0.1701 0.0198 -0.1508 0.5396 0.1720 0.1569

FR 0.2875 0.1812 -0.0836 0.1750 0.1403 0.1693 0.3287 0.3095 0.2648 0.0644 0.2075 0.3047 0.1609 0.3225

GER 0.0959 0.4930 0.1854 0.2358 0.1403 0.1651 0.2693 0.1188 0.0198 0.2646 0.4709 0.1236 0.2091 0.0873

IT 0.4584 0.2857 0.3215 0.0839 0.1693 0.1651 0.0043 0.0708 0.0794 0.4226 0.0937 0.1480 0.5779 0.4077

JP -0.0053 -0.0490 0.1592 0.0895 0.3287 0.2693 0.0043 -0.0782 0.1348 0.4659 0.0242 0.0529 0.2261 0.2324

NL 0.1407 0.1587 -0.2801 0.1574 0.3095 0.1188 0.0708 -0.0782 0.1875 0.0252 0.1197 -0.0721 0.3355 0.1409

NOR 0.2027 -0.0184 0.3181 0.1701 0.2648 0.0198 0.0794 0.1348 0.1875 0.0292 0.3102 0.2181 0.1926 0.0765

POR 0.1304 0.0108 0.0693 0.0198 0.0644 0.2646 0.4226 0.4659 0.0252 0.0292 0.0945 -0.1106 0.1111 0.1880

SP -0.0555 0.2388 0.0359 -0.1508 0.2075 0.4709 0.0937 0.0242 0.1197 0.3102 0.0945 0.2879 0.2222 0.0695

SWE -0.0856 0.1102 0.0835 0.5396 0.3047 0.1236 0.1480 0.0529 -0.0721 0.2181 -0.1106 0.2879 0.0968 -0.0010

UK 0.3831 0.3831 0.1513 0.1720 0.1609 0.2091 0.5779 0.2261 0.3355 0.1926 0.1111 0.2222 0.0968 0.2691

US 0.0998 -0.1974 0.0721 0.1569 0.3225 0.0873 0.4077 0.2324 0.1409 0.0765 0.1880 0.0695 -0.0010 0.2691

Notes: AUS = Austria ; BEL = Belgium ; CN = Canada ; DK = Denmark ; FIN = Finland ; FR = France ; GER = Germany ; IT = Italy ; JP = Japan
NL = Netherlands ; NOR = Norway ; POR = Portugal ; SP = Spain ; SWE = Sweden ; UK = United Kingdom ; US = United States of America.
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TABLE 4

Comovement Determinants over Pearson Correlation and Extremal Dependence Measures

Specialization Measure

Industrial similarity Export similarity Intra industry trade

Pearson Correlation
Coe�cient t-HCSE Coe�cient t-HCSE Coe�cient t-HCSE

Bilateral trade 0.571 2.89 0.533 2.20 0.526 2.07
Specialization measure 0.146 3.50 0.087 2.79 0.102 1.58
Short-term interest rate 0.091 2.06 0.102 2.31 0.107 2.34
Cyclically adjusted government primary balance 0.008 0.34 0.002 0.09 -0.005 -0.19

Left-tail Dependence
Coe�cient t-HCSE Coe�cient t-HCSE Coe�cient t-HCSE

Bilateral trade 0.528 1.25 0.385 0.71 0.578 1.22
Specialization measure 0.344 3.12 0.233 3.02 0.149 0.93
Short-term interest rate -0.074 -0.57 -0.052 -0.41 -0.028 -0.21
Cyclically adjusted government primary balance 0.030 0.41 0.013 0.18 0.011 0.14

Right-tail Dependence
Coe�cient t-HCSE Coe�cient t-HCSE Coe�cient t-HCSE

Bilateral trade 0.439 1.02 0.293 0.77 0.059 0.14
Specialization measure 0.111 1.33 0.127 2.08 0.279 1.75
Short-term interest rate -0.009 -0.08 -0.011 -0.10 -0.016 -0.15
Cyclically adjusted government primary balance 0.068 1.41 0.059 1.20 0.031 0.55

Notes: constant is included ; t-HCSE (Heteroscedasticity Consistent Standard Errors).
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Figure 1. Average values per country for each of the dependence measures considered. The vertical bars correspond to Pearson
correlation ⇢, while the solid and dashed lines respectively correspond to the left-tail and right-tail dependence as measured by �L

and �R
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