
Statistics of extremes:

challenges and opportunities

M. de Carvalho a⇤

a

Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
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1 Introduction

My personal experience on discussing concepts of risk and statistics of extremes with practitioners

started in 2009 while I was a visiting researcher at the Portuguese Central Bank (Banco de Portugal). At

the beginning, colleague practitioners were intrigued about the methods I was applying; the questions
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were recurrent: “What is the di↵erence between statistics of extremes and survival analysis (or duration

analysis)?1 And why don’t you apply empirical estimators?” The short answer is that when modeling

rare catastrophic events, we need to extrapolate beyond observed data—into the tails of a distribution—

and standard inference methods often fail to deal with this properly. To see this, suppose that we

observe a random sample of losses L1, . . . , LN
iid
⇠ SL, and that we estimate the survivor function

SL(x) := P (L > x), using the empirical survivor function, bSL(x) := N�1
PN

i=1 I(Li > x), for x > 0.

Now, suppose that we want to assess what is the probability of observing a loss just " larger than the

maximum observed loss, MN := max{L1, . . . , LN}. Obviously, the probability of that event turns out

to be zero [bSL(MN + ") = 0, for all " > 0], thus illustrating that the empirical survivor function fails

to be able to extrapolate into the right tail of the loss distribution. As put simply by Taleb (2012,

p. 46), “the fool believes that the tallest mountain in the world will be equal to the tallest one he has

observed.”

In this chapter I resume some viewpoints that I shared with the Discussion Group ‘Future of

Statistics of Extremes’ at the ESSEC Conference on Extreme Events in Finance, which took place in

Royaumont Abbey, France, on December 15–17, 2014,

extreme-events-in-finance.essec.edu

and which originated the invitation by the Editor for writing this chapter. My goal is on providing

a personal view on some recent concepts and methods of statistics of extremes, and to discuss chal-

lenges and opportunities which could lead to potential future developments. The scope is far from

encyclopedic, and many other interesting perspectives are found all over this monograph.

In §2, I note that a bivariate extreme-value distribution is an example of what I call here a measure-

dependent measure, I briefly review kernel density estimators for the spectral density, and I discuss

families of spectral measures. In §3, I argue that the spectral density ratio model (de Carvalho and

Davison, 2014), the proportional tails model (Einmahl et al., 2015), and the exponential families for

heavy-tailed data (Fithian and Wager, 2015) share similar construction principles; in addition, I discuss

en passant a new nonparametric estimator for the so-called scedasis function, which is one of the main

estimation targets on the proportional tails model. Comments on potential future developments are

1In econometrics, survival analysis is also known as duration analysis; see Wooldridge (2010, Chap. 22).
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scattered across the chapter and a miscellanea of topics is included in §4.

Throughout this chapter I use the acronym EVD to denote Extreme Value Distribution.

2 Statistics of Bivariate Extremes

2.1 The Bivariate EVD is a Measure-Dependent Measure

Let G be a probability measure on (⌦,A), and let ⇥ be a parameter space. The family {G✓ : ✓ 2 ⇥}

is a statistical model. Obviously not every statistical model is appropriate for modeling risk. As

mentioned in §1, candidate statistical models should possess the ability to extrapolate into the tails of

a distribution, beyond existing data.

Theorem 1. If there exist sequences {an > 0} and {bn} such that P{(Mn � bn)/an 6 y} ! G✓(y), as

n ! 1, for some non-degenerate distribution G✓, then

G✓(y) = exp


�

⇢
1 + ⇠

✓
y � µ

�

◆��1/⇠�
, ✓ = (µ, �, ⇠), (1)

defined on {y : 1 + ⇠(y � µ)/� > 0} where µ 2 R, � 2 R+, and ⇠ 2 R.2

See Coles (2001, Theorem 3.1.1). Here, µ and � are location and scale parameters, while ⇠ is a shape

parameter that determines the rate decay of the tail: ⇠ ! 0, light-tail (Gumbel); ⇠ > 0, heavy-tail

(Fréchet); ⇠ < 0, short-tail (Weibull). The generalized EVD (G✓ in (1)) is a three parameter family

which plays an important role in statistics of univariate extremes.

In some cases we want to assess the risk of observing simultaneously large values of two random

variables (say, two simultaneous large losses in a portfolio), and the mathematical basis for such model-

ing is that of statistics of bivariate extremes. In this context, ‘extremal dependence’ is often interpreted

as a synonym of risk. Moving from one dimension to two dimensions increases sharply the complexity

of models for the extremes. The first challenge one faces when modeling bivariate extremes is that the

estimation object of interest is infinite-dimensional, whereas in the univariate case only three parame-

ters (µ, �, ⇠) are needed. The intuition is the following. When modeling bivariate extremes, apart from

2Following the standard convention that for for ⇠ = 0, Eq. (1) is to be understood with ⇠ ! 0.
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the marginal distributions we are also interested in the extremal dependence structure of the data,

and—as we shall see in Theorem 2—only an infinite-dimensional object is flexible enough to capture

the ‘spectrum’ of all possible types of dependence.

Let (Y1,1, Y1,2), . . . , (YN,1, YN,2)
iid
⇠ FY1,Y2 , where I assume that Y1 and Y2 are unit Fréchet [G(1,1,1)]

marginally distributed, i.e., P (Y1 6 y) = P (Y2 6 y) = exp(�1/y), for y > 0. Similarly to the univariate

case the classical theory for characterizing the extremal behavior of bivariate extremes is based on block

maxima, here given by the componentwise maximaMN = (max{Yi,1}
N
i=1,max{Yi,2}

N
i=1) = (MN,1,MN,2);

note that the componentwise maxima MN needs not to be a sample point. Similarly to the univariate

case, we focus on the standardized maxima, which for Fréchet marginals is given by the standardized

componentwise maxima, i.e., M?
N = N�1(max{Yi,1}

N
i=1,max{Yi,2}

N
i=1) = (M?

N,1,M
?
N,2). Next, I define a

special type of statistical model which plays a key role on bivariate extreme value modeling.

Definition 1. Let F be the space of all probability measures that can be defined over (⌦0,A0). If GH

is a probability measure on (⌦1,A1), for all H 2 H ✓ F, then we say that GH is a measure-dependent

measure. The family {GH : H 2 H} is said to be a set of measure-dependent measures, if GH is a

measure-dependent measure.

Remark 1. Throughout the definitions and theorems presented below, H denotes the space of all

probability measures H which can be defined over ([0, 1],B[0,1]), where B[0,1] is the Borel sigma-algebra

on [0, 1], and which obey the mean constraint

Z

[0,1]

wH(dw) =
1

2
. (2)

What are relevant statistical models for statistics of bivariate extremes? Is there an extension of

the generalized EVD for the bivariate setting? The following is a bivariate analogue to Theorem 1.

Theorem 2. If P (M?
N,2 6 y1,M

?
N,1 6 y2) ! GH(y1, y2), as n ! 1, with G being a non-degenerate

distribution function, then

GH{(0, y1)⇥ (0, y2)} := GH(y1, y2) = exp

⇢
� 2

Z

[0,1]

max

✓
w

y1
,
1� w

y2

◆
H(dw)

�
, y1, y2 > 0, (3)

for some H 2 H .
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See Coles (2001, Theorem 8.1). Throughout I refer to GH as a bivariate EVD. Note the similarities

between (1) and (3): both start with an ‘exp,’ but for bivariate EVD ⇥ = H , whereas for univariate

EVD ⇥ ✓ R⇥ R+ ⇥ R. To understand why H needs to be an element of H , let y1 ! 1 or y2 ! 1

in (3). Some further comments are in order. First, since (2) is the only constraint on H, neither H

nor GH can have a finite parameterization. Second, a bivariate extreme value distribution GH is an

example of a measure-dependent measure, as introduced in Definition 1.

A pseudo-polar transformation is useful for understanding the role of H, which is the so-called

spectral measure. Define (R,W ) = (Y1 + Y2, Y1/(Y1 + Y2)), and denote R and W as the radius and

pseudo-angle, respectively. If Y1 is relatively large, then W ⇡ 1; if Y2 is relatively large, then W ⇡ 0.

de Haan and Resnick (1977) have shown that P (W 2 · | R > u) ! H(·), as u ! 1. Thus, when

the radius Ri is large, the pseudo-angles Wi are approximately distributed according to H. Perfect

(extremal) dependence corresponds to H being degenerate at 1/2, whereas independence corresponds

to H being a binomial distribution function, with half of the mass in 0 and the other half in 1. The

spectral probability measure H determines the interactions between joint extremes, and is thus an

estimating target of interest; other functionals of the spectral measure are also often used, such as the

spectral density h = dH/dw or Pickands (1981) dependence function A(w) = 1 � w + 2
R w

0
H(v) dv,

for w 2 [0, 1]. The cases of extremal independence and extremal dependence respectively correspond

to the bivariate EVDs, GH(y1, y2) = exp{�1/y1 � 1/y2} and GH(y1, y2) = exp{�max(1/y1, 1/y2)}, for

y1, y2 > 0.

2.2 Nonparametric Spectral Density Estimation

In practice, we have to deal with a statistical problem—lack of knowledge on H—and an inference

challenge—that is, obtaining estimates which obey the marginal moment constraints, and which define

a density on the unit interval. Indeed, as posed by Coles (2001, p. 146) “it is not straightforward to

constrain nonparametric estimators to satisfy functional constraints of the type” of Eq. (2). Inference

should be conducted by using n =
PN

i=1 I(Yi,1 + Yi,2 > u) pseudo-angles W1, . . . ,Wn, which are con-

structed from a sample of size N , thresholding the pseudo-radius at a su�ciently high threshold u.

Kernel smoothing estimators for h have been recently proposed by de Carvalho et al. (2013) and are
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based on

bh(w) =
nX

i=1

pi �(w;Wi⌫, (1�Wi)⌫). (4)

Here �(w; a, b) denotes the beta density with shape parameters a, b > 0, and ⌫ > 0 is a parameter

responsible for the level of smoothing, and which can be obtained through cross-validation. Each beta

density is centered around a pseudo-angle in the sense that E(W ⇤
i ) = Wi, for W ⇤

i ⇠ Beta(Wi⌫; (1 �

Wi)⌫). And how can we obtain the probability masses, pi? There are at least two options. A simple

one is to consider Euclidean likelihood methods (Owen, 2001, pp. 63–66), in which case the vector of

probability masses p = (p1, . . . , pn) solves:

max
p2Rn

�

1
2

Pn
i=1(npi � 1)2

s.t.
Pn

i=1 pi = 1
Pn

i=1 Wipi = 1/2.

(5)

By the method of Lagrange multipliers we obtain pi = n�1
{1 � (W � 1/2)S�2(Wi � W )}, where

W = n�1
Pn

i=1 Wi, and S2 = n�1
Pn

i=1(Wi �W )2. This yields the following estimator, known as the

smooth Euclidean likelihood spectral density

bhEuc(w) =
1

n

nX

i=1

{1� (W � 1/2)S�2(Wi �W )} �(w;Wi⌫, (1�Wi)⌫). (6)

Another option proposed by de Carvalho et al. (2013) is to consider a similar approach to that of

Einmahl and Segers (2009), in which case the vector of probability masses p = (p1, . . . , pn) solves the

following empirical likelihood (Owen, 2001) problem:

max
p2Rn

+

Pn
i=1 log pi

s.t.
Pn

i=1 pi = 1
Pn

i=1 Wipi = 1/2.

(7)

Again by the method of Lagrange multipliers, the solution is pi = [n{1+�(Wi�1/2)}]�1, for i = 1, . . . , n,

where � is the Lagrange multiplier associated to the second equality constraint in (7), defined implicitly

as the solution to the equation
1

n

nX

i=1

Wi � 1/2

1 + �(Wi � 1/2)
= 0.
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This yields the following estimator, known as the smooth Empirical likelihood spectral density

bhEmp(w) =
1

n

nX

i=1

�(w;Wi⌫, (1�Wi)⌫)

1 + �(Wi � 1/2)
. (8)

One can readily construct smooth estimators for the corresponding spectral measures; the smooth

Euclidean spectral measure and smooth Empirical likelihood spectral measure are respectively given

by

bHEuc(w) =
1

n

nX

i=1

{1� (W � 1/2)S�2(Wi �W )}B(w;Wi⌫, (1�Wi)⌫),

bHEmp(w) =
1

n

nX

i=1

B(w;Wi⌫, (1�Wi)⌫)

1 + �(Wi � 1/2)
,

where B(w; a, b) is the regularized incomplete beta function, with a, b > 0. By construction both

estimators, (6) and (8), obey the moment constraint, so that for example

Z 1

0

w bhEuc(w) dw =
nX

i=1

pi

⇢
⌫Wi

⌫Wi + ⌫(1�Wi)

�
=

nX

i=1

piWi = 1/2. (9)

Put di↵erently, realizations of the random probability measures bHEuc and bHEmp are elements of H .

Examples of applications of these estimators in finance can be found in Kiriliouk et al. (2015, Fig. 4).

At the moment, the large sample properties of these estimators remain unknown.

Other estimators for the spectral measure (obeying (2)) can be found in Boldi and Davison (2007),

Guillotte et al. (2011), and Sabourin and Naveau (2014).

2.3 Predictor-Dependent Spectral Measures

Formally, {Fx : x 2 X} is a set of predictor-dependent (henceforth pd) probability measures if the

Fx are probability measures on (⌦,B⌦), indexed by a covariate x 2 X ✓ Rp; here B⌦ is the Borel

sigma-algebra on ⌦. Analogously, I define:

Definition 2. The family {Hx : x 2 X} is a set of pd spectral measures if Hx 2 H , for all x 2 X.

And why do we care about pd spectral measures? Pd spectral measures allow us to assess how

extremal dependence evolves over a certain covariate x, i.e., they allow us to model nonstationary

7
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Figure 1: (a) Example of a spectral density. (b) Spectral surface from a predictor-dependent beta family, with a
x

= x

, for x 2 X = [0.5, 50].

extremal dependence structures. Pd spectral measures are a natural probabilistic concept for modeling

extremal dependence structures which may change according to a covariate. Indeed, in many settings

of applied interest, it seems natural to regard risk from a covariate-adjusted viewpoint, and this leads

us to ideas of ‘conditional risk.’ However, if we want to develop ideas of ‘conditional risk’ for bivariate

extremes, i.e., if we want to assess systematic variation of risk according to a covariate, we need to

allow for nonstationary extremal dependence structures.

To describe how extremal dependence may change over a predictor, I now introduce the concept of

spectral surface.

Definition 3. Suppose Hx 2 H is absolutely continuous for all x 2 X. The pd spectral density is

defined as hx = dHx/dw, and we refer to the set {hx(w) : w 2 [0, 1], x 2 X} as the spectral surface.

A simple spectral surface can be constructed with the pd spectral density hx(w) = �(w; ax, ax),

where a : X 7! (0,1). In Figure 1, I represent a spectral surface based on this model, with ax = x,

for x 2 X = [0.5, 50]. (Larger values of the predictor x lead to larger levels of extremal dependence.)

Other spectral surfaces can be readily constructed from parametric models for the spectral density;

see, for instance, Coles (2001, §8.2.1).
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Let’s now regard the subject of pd bivariate extremes from another viewpoint. Modeling nonsta-

tionarity in marginal distributions has been the focus of much recent literature in applied extreme value

modeling; see for instance Coles (2001, Ch. 6). The simplest approach in this setting was popularized

long ago by Davison and Smith (1990), and it is based on indexing the location and scale parameters

of the generalized EVD by a predictor, say by taking

G(µ
x

,�
x

,⇠)(y) = exp


�

⇢
1 + ⇠

✓
y � µx

�x

◆��1/⇠�
, x 2 X. (10)

And how to model ‘nonstationary bivariate extremes’ if one must? Surprisingly, by comparison to the

marginal case, approaches to modeling nonstationarity in the extremal dependence structure have re-

ceived relatively little attention. These should be important to assess the dynamics governing extremal

dependence of variables of interest. For example, has extremal dependence between returns of CAC 40

and DAX 30 been constant over time, or has this level been changing over the years?

By using pd spectral measures we are essentially indexing the parameter of the bivariate extreme

value distribution (H) with a covariate, and thus the approach can be regarded as an analogue of

the Davison–Smith paradigm in (10), but for the bivariate setting. In the same way that (10) is a

covariate-adjusted version of the generalized EVD (1), the following concept can be regarded as a pd

version of the bivariate EVD in (3).

Definition 4. The family {GH
x

: Hx 2 H } is a set of (measure-dependent) pd bivariate extreme value

distributions if for y1, y2 > 0,

GH
x

{(0, y1)⇥ (0, y2)} := GH
x

(y1, y2) = exp

⇢
� 2

Z

[0,1]

max

✓
w

y1
,
1� w

y2

◆
Hx(dw)

�
, x 2 X.

Similarly to §2.2, in practice we need to obtain estimates which obey the marginal moment con-

straint, and which define a density on the unit interval, for all x 2 X. It is not straightforward to

construct nonparametric estimators able to yield valid pd spectral measures. Indeed, any such estima-

tor, bhx, needs to obey the moment constraint, i.e.,
R 1

0
w bhx(w) dw = 1/2, for all x 2 X. Castro and de

Carvalho (2015) and Castro et al. (2015) are currently developing models for these contexts, but there

are still plenty of opportunities here.3

3A natural option could be on using dependent Bernstein polynomials (Barrientos et al., 2012)—although it may be

challenging to impose the moment constraint. It seems conceivable that similar ideas to those in Guillotte et al. (2011)

could be used to construct a prior over a family {H
x

: x 2 X}.
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Needless to say that other pd objects of interest can be readily constructed. For example, a pd

version of Pickands (1981) dependence function can be defined as Ax(w) = 1�w+2
R w

0
Hx(v) dv, and

a pd � = limu!1 P (Y1 > u | Y2 > u) can also constructed. Using the fact that � = 2 � 2A(1/2) (de

Carvalho and Ramos, 2012, p. 91) the pd � can be defined as �x = 2� 2Ax(1/2), for x 2 X.

2.4 Other Families of Spectral Measures

Beyond pd spectral measures other families of spectral measures are of interest. In a recent paper, de

Carvalho and Davison (2014) proposed a model for a family of spectral measures {H1, . . . , HK}. The

applied motivation for the concept was to track the e↵ect of explanatory variables on joint extremes,

i.e., the main concern was on the joint modeling of extremal events when data are gathered from

several populations, to each of which corresponds a vector of covariates. Thus, conceptually, there

are already in de Carvalho and Davison (2014) some of the ingredients of pd spectral measures and

related modeling objectives. Each element in the family, should be regarded as a ‘distorted version,’

of a baseline spectral measure H0, in a sense that I will precise below. Formally, spectral density ratio

families are defined as follows.

Definition 5. Let Hk 2 H be absolutely continuous, for k = 1, . . . , K. The family {H1, . . . , HK}

is a spectral density ratio family, if there exists an absolutely continuous H0 2 H , tilting parameters

(↵k, �k) 2 R2
, and c : [0, 1] 7! R such that

dHk

dH0

(w) = exp{↵k + �kc(w)}, k = 1, . . . , K. (11)

Example 1. Consider a family of symmetric Beta distributions, dHk = �(w;�k,�k) dw, for k =

0, . . . , K. If c(w) = log{w(1 � w)} we can write that dHk = exp{ak + bkc(w)} dw, where (ak, bk) =

(� logB(�k),�k � 1), with B(�) =
R 1

0
{u(1� u)}��1 du. Hence, dHk/dH0 = exp {↵k + �kc(w)}, where

the tilting parameters are (↵k, �k) = (log{B(�0)/B(�k)},�k��0). Note that (↵0, �0) = (0, 0), and thus

this parametrization is identifiable. This version of the model is closed, since tilting always produces a

symmetric beta distribution.
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Figure 2: Scatterplots presenting two configurations of data (predictor, pseudo-angles): one (a) where there is sample

pseudo-angles per each observed covariate, and another (b) where to each observed covariate may correspond a single

pseudo-angle.

From (11), we can write all the normalization and moment constraints for this family as a function of

the baseline spectral measure and the tilting parameters, i.e.,
8
>>>>>>>><

>>>>>>>>:

R 1

0
dH0(w) = 1,

R 1

0
w dH0(w) = 1/2,

R 1

0
exp{↵1 + �1c(w)} dH0(w) = 1,

R 1

0
w exp{↵1 + �1c(w)} dH0(w) = 1/2,

...
...

R 1

0
exp{↵K + �Kc(w)} dH0(w) = 1,

R 1

0
w exp{↵K + �Kc(w)} dH0(w) = 1/2.

(12)

Inference is based on the combined sample {W1,0, . . . ,Wn0,0, . . . ,W1,K , . . . ,Wn
K

,K} from the spectral

distributions H0, . . . , Hk. Details on estimation and inference through empirical likelihood methods

can be found in de Carvalho and Davison (2011, 2014). An extremely appealing feature of their model

is that it allows for borrowing strength across samples, in the sense that the estimate of Hk is based

on n = n0 + · · · + nK pseudo-angles, instead of simply nk. Although flexible, their approach requires

however a substantial computational investment; in particular, inference entails intensive constrained
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optimization problems—even for a moderate K—so that estimates of Hk obey empirical versions of

the normalization and moment constraints in (12). Their approach allows for modeling extremal

dependence in settings such as Fig. 2 (a) but it excludes data configurations such as Fig. 2 (b). The

pd-based approach of Castro et al. (2015) allows for inference to be conducted in both settings in Fig. 2.

3 Models Based on Families of Tilted Measures

The main goal of this section is on describing the link between the specifications underlying the spectral

density ratio model, discussed in §2.4, the proportional tails model (Einmahl et al., 2015), and the

exponential families for heavy-tailed data (Fithian and Wager, 2015).

3.1 Proportional Tails Model

The proportional tails model is essentially an approach for modeling nonstationary extremes. Sup-

pose that at time points t = 1, . . . , N we gather independent observations Y (N)
1 , . . . , Y

(N)
N respectively

sampled from the continuous distribution functions FN,1, . . . , FN,N , all with a common right end point

y⇤ = sup{y : FN,t(y) < 1}. Suppose further that there exists a (time-invariant) baseline distribution

function F0, also with right end point y⇤, and a continuous function s : [0, 1] 7! [0,1), such that

s

✓
t

N

◆
:= lim

y!y⇤

1� FN,t(y)

1� F0(y)
, t = 1, . . . , N. (13)

Here s is the so-called scedasis density, and following Einmahl et al. (2015) I assume the following

normalization constraint
R 1

0
s(u) du = 1. Equation (13) is the key specification of the proportional tails

model. Roughly speaking, the scedasis density tells us how much more/less mass there is on the tail

1�FN,t, relatively to the baseline tail, 1�F0, for a large y; uniform scedasis corresponds to a constant

frequency of extremes over time.

The question arises naturally: “If the scedasis density provides an indication of the ‘relative fre-

quency’ of extremes over time, it would seem natural that such function could be somehow connected

to the intensity measure of the point process characterization of univariate extremes (Coles, 2001,

§7.3)?” To have an idea on how the concepts relate I sketch here an heuristic argument. I insist, the

argument is heuristic, and my aim here does not go beyond shedding some light on how these ideas
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connect. Consider the following artificial setting. Suppose that we could gather a large sample from

F0, say {Y1,0, . . . , Ym,0}, and that at each time point we could also collect a large sample from FN,t, say

{Y1,t, . . . , Ym,t}, for t = 1, . . . , N . For concreteness let’s focus on t = 1. Then, the definition of scedasis

in (13), and similar arguments as in Coles (2001, §4.2.2) suggest that for a su�ciently large y,

s

✓
1

N

◆
⇡

1� FN,1(y)

1� F0(y)
⇡

{1 + ⇠(y � µ1)/�1}�1/⇠

{1 + ⇠(y � µ0)/�0}�1/⇠
=

⇤1{(0, 1)⇥ (y,1)}

⇤0{(0, 1)⇥ (y,1)}
, (14)

where ⇤i{[t1, t2]⇥ (z,1)} := (t2� t1){1+ ⇠(z�µi)/�i}�1/⇠, for i = 0, 1, is the intensity measure of the

limiting Poisson process for univariate extremes (cf Coles, 2001, Theorem 7.1.1). Thus, it can be seen

from (14) that in this artificial setting the scedasis density can be literally interpreted as a measure of

the relative intensity of the extremes at period t = 1, with respect to a (time-invariant) baseline.

Another important question is: “How can we estimate the scedasis density?” Einmahl et al. (2015)

propose a kernel-based estimator

bs(w) = 1

n

NX

t=1

I(Y (N)
t > YN,N�n)Kb(w � t/N), w 2 (0, 1), (15)

where Kb(·) = (1/b)K(·/b), with b > 0 being a bandwidth and K being a kernel; in addition, YN,1 6
· · · 6 YN,N are the order statistics of Y (N)

1 , . . . , Y
(N)
N . Specifically, Einmahl et al. (2015) recommend

K to be a symmetric kernel on [�1, 1]. A conceptual problem with using a kernel on [�1, 1] is that it

allows for the scedasis density to put mass outside [0, 1].4 Using similar ideas to the ones involved in the

construction of the smooth spectral density estimators in §2.2, I propose here the following estimator

es(w) = 1

n

NX

t=1

I(Y (N)
t > YN,N�n)�(w; ⌫t/(N + 1), ⌫{1� t/(N + 1)}), w 2 (0, 1). (16)

Indeed, each beta density is centered close to t/N in the sense that E(Zt) = t/(N + 1), for Zt ⇠

Beta(⌫t/(N + 1); ⌫{1� t/(N + 1)}), where ⌫ is the parameter controlling the level of smoothing. My

goal here will not be on trying to recommend an estimator over the other, but rather on providing a

brief description of strengths and limitations with both approaches. In Fig. 3, I illustrate how the two

estimators, (15) and (16), perform on the same data used by Einmahl et al. (2015) and on simulated

4For a discussion on the challenges surrounding kernel density estimation on the unit interval see, for instance, Chen

(1999), Jones and Henderson (2007), de Carvalho et al. (2013), Geenens (2014), and references therein.
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data (single run experiment).5 The data consist of daily negative returns of the Standard and Poor’s

index from 1988 till 2007 (N = 5043), and I use the same value for n (130), the same bandwidth

(h = 0.1), and (biweight) kernel [K(y) = 15(1 � y2)2/16, for y 2 [�1, 1]] as authors; I also follow the

authors’s settings for the simulated data. Finally, I consider ⌫ = 100 for illustration.

1990 1995 2000 2005
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0

w

s

(a) (b)

Figure 3: Scedasis density estimates. The solid line represents the beta-kernel estimate from (16), whereas the dashed

line represents the estimate from (15). (a) Daily Standard and Poor’s index from 1988 till 2007; the gray rectangles

correspond to contraction periods in the US economy. (b) Simulated data illustration from F
N,t

(y) = exp{�s(t/N)/y},

for y > 0, with N = 5000 and n = 400; the grey line represents the true scedasis s(w) = 2w + 0.5, for w 2 [0, 0.5), and

s(w) = �2w + 2.5, for w 2 [0.5, 1].

In the Standard and Poor’s example in Fig. 3 (a) it can be seen that both estimators capture

similar dynamics; the gray rectangles represent contraction periods of the US economy as dated by

the National Bureau of Economic Research (NBER). It is interesting to observe that the local maxima

of the scedasis density are relatively close to economic contraction periods. Indeed, ‘turning points’

(local maxima and minima) of the scedasis density seem like an interesting estimation target for many

5The dashed line in Fig. 3 (a) di↵ers slightly (close to 0 and 1) from Einmahl et al. (2015, Fig. 1), because here I do

not use boundary correction.
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settings of applied interest.

The estimator in (16) has the appealing feature of putting all mass of the scedasis density inside the

(0, 1) interval, and some further numerical experiments suggest that it tends to have a similar behavior

to that in (15) except at the boundary. However, a shortcoming with the method in (16) is that it may

not be defined at the vertices 0 or 1, and hence it could be inappropriate for forecasting purposes.

The proportional tails model is extremely appealing, and simple to fit. A possible shortcoming is

that it does not allow for ⇠ > 0 to change over time. For applications in which we suspect that ⇠

may change over time, the generalized additive approach by Chavez-Demoulin and Davison (2005) is a

sensible alternative and although the model is more challenging to implement, it can be readily fitted

with the R package QRM by typing in the command game.

A problem which seems relevant for practice is that of cluster analysis for the proportional tails

model. To see this, suppose that one estimates the scedasis density and tail index for several stocks.

It seems natural to wonder: “How can we cluster stocks whose scedasis looks more alike, or—perhaps

more interestingly—how can we cluster stocks with a similar scedasis and tail index?”

Lastly, I would like to comment that it seems conceivable that Bernstein polynomials could be used

for scedasis density estimation. In particular, a natural question is “Would it be possible to construct

a prior over the space of all integrated scedasis functions?” Random Bernstein polynomials could seem

like the way to go; see Petrone (1999) and references therein.

3.2 Exponential Families for Heavy-Tailed Data

In this section I sketch some basic ideas on exponential families for heavy-tailed data; I will be more

brief here than in §3.1. My goal is mainly on introducing the model specification and to move on;

further details can be found in Fithian and Wager (2015).

The starting point for the Fithian–Wager approach is on modeling the conditional right tail law

from a population, G⇤
1(y) = P (Y1 � u 6 y | Y1 > u), as an exponential family with carrier measure

G⇤
0 = P (Y0 � u 6 y | Y0 > u), for a su�ciently large threshold u. Two random samples are assumed to

be available, Y1,0, . . . , YN0,0
iid
⇠ F0 and Y1,1, . . . , YN1,1

iid
⇠ F1, with N0 >> N1; hence, the applied setting

of interest is one where the size of the sample from F0 is much larger than the one from F1. The model
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specification is
dG⇤

1

dG⇤
0

(y) = exp{⌘T (y)�  (⌘)}, y 2 [0,1), (17)

where the su�cient statistic T (y) is of the form y/(y+) for a certain ; the functional form of T (y) is

motivated from the case where G⇤
0 and G⇤

1 are generalized Pareto distributions (cf Fithian and Wager,

2015, p. 487).

In common with the spectral density ratio model the Fithian–Wager model is motivated by the

gains from borrowing strength across samples. Fithian and Wager are not however concerned about

spectral measures but rather on estimating a (small-sample) mean of a heavy-tailed distribution, by

borrowing information from a much larger sample from a related population with the same 0 < ⇠ < 1.

More concretely, the authors propose a semiparametric method for estimating the mean of Y1, by using

the decomposition µ = p µL + (1� p)µR, where µ = E(Y1), p = P (Y1 6 u), µL = E(Y1 | Y1 6 u), and

µR = E(Y1 | Y1 > u). The Fithian–Wager estimator for the (small-sample) mean can be written as

bµ = bp bµL + (1� bp) bµR

=
nL

N1

1

nL

X

{i:Y
i,16u}

Yi,1 +
nR

N1

1P
{i:Y

i,0>u} exp{b⌘ T (Yi,0 � u)}

X

{i:Y
i,0>u}

Yi,0 exp{b⌘ T (Yi,0 � u)},
(18)

where nL = |{i : Yi,1 6 u}| and nR = |{i : Yi,1 > u}|, for a large threshold u. Here b⌘ can be computed

through a logistic regression with an intercept and predictor T (y � u), as a consequence of results on

imbalanced logistic regression (Owen, 2007). As it can be observed from (18) the main trick on the

estimation of µ is on the exponential tilt-based estimator for the mean residual lifetime µR.

3.3 Families of Tilted Measures

From previous sections it may have became obvious that the common link underlying the specification

of the spectral density ratio model, the proportional tails model, and the exponential families for

heavy-tailed data, was the assumption that all members in a family of interest were obtained through

a suitable ‘distortion’ of a certain baseline measure. In this section I make this link more precise.

Definition 6. Let F be the space of all probability measures that can be defined on (⌦,A). Let gi,I :

⌦ 7! R, for i = 1, . . . , I. A family of probability measures in F, {F1, . . . , FI}, is a g-tilted family if
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there exists F0 2 F and a functional ✓ such that

�✓(y) :=

✓
✓(Fi)

✓(F0)

◆
(y) = gi,I(y), y 2 ⌦.

Some examples are presented below.

Example 2 (Spectral density ratio model). For the spectral density ratio model the family of interest is

{H1, . . . , HK} and thus I = K. Tilting is conducted through gk(w) = exp{↵k+�kc(w)}, for w 2 (0, 1);

let ✓(H) = dH, for absolutely continuous H 2 H . Thus, Eq. (11) can be written as

�✓(w) :=
dHk

dH0

(w) = exp{↵k + �kc(w)} =: gk(w), w 2 (0, 1).

Example 3 (Proportional tails model). For the proportional tails model, for a fixed N , the family

of interest is {FN,1, . . . , FN,N} and hence I = N . Tilting is conducted through gt,N(y) = s(t/N), for

y 2 R; let ✓(F ) = limy!y⇤ 1�F (y), with F denoting a continuous distribution function. Thus, Eq. (13)

can be rewritten as

�✓pt(y) := lim
y!y⇤

1� FN,t(y)

1� F0(y)
= s

✓
t

N

◆
=: gt,N(y), y 2 R.

Example 4 (Exponential families for heavy-tailed data). In §3.2 the ‘family’ of interest is {G⇤
1} and

thus I = 1. Tilting is conducted through g(y) = exp{⌘T (y) + (⌘)}, for y 2 [0,1); let ✓ to be defined

as in Example 2. Thus, Eq. (17) can be rewritten as

�⇤
✓(y) :=

dG⇤
1

dG⇤
0

(y) = exp{⌘T (y)�  (⌘)} =: g(y), y 2 [0,1).

4 Miscellanea

Asymptotic (In)Dependence

Here, I comment on the need for further developing models compatible with both asymptotic depen-

dence and asymptotic independence. In two influential papers, Poon et al. (2003, 2004) put forward

that asymptotic independence was observed on many pairs of stock market returns. This had important

consequences in finance, mostly because inferences in a seminal paper (Longin and Solnik, 2001) had

been based on the assumption of asymptotic dependence, and hence perhaps risk had been overesti-

mated earlier. However, an important questions is:“What if pairs of financial losses can move over time
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from asymptotic independence to asymptotic dependence, and the other way around?” Some markets

are believed to be more integrated these days than in the past, so for such markets it is relevant to

ask whether they could have entered an ‘asymptotic dependence regime’? An accurate answer to this

question, would require however models able to allow for smooth transitions from asymptotic indepen-

dence to asymptotic dependence, and vice versa, but as already mentioned in §2.3 at the moment there

is a shortage of models for nonstationary extremal dependence structures. Wadsworth et al. (2015)

presents an interesting approach for modeling asymptotic (in)dependence.

Spatial Multivariate Extremes

An important reference here is Genton et al. (2015), but there is a wealth of problems to work in this

direction, so I stop my comment here.

Dimension Reduction for Multivariate Extremes

Is there a way to reduce dimension in such a way that the interesting features of the data—in terms of

tails of multivariate distributions—are preserved?6 I think it is fair to say that, apart from some re-

markable exceptions, most models for multivariate extremes have been applied only to low-dimensional

settings. I remember that at a seminal workshop on high-dimensional extremes, organized by Anthony

Davison, at the Ecole Polytechnique Fédérale da Lausanne (14–18 September, 2009), for most talks

high-dimensional actually meant ‘two-dimensional,’ and all speakers were top scientists in the field.

Principal Component Analysis (PCA) itself would seem inappropriate, since principal axes are con-

structed in a way to find the directions that account for most variation, and for our axes of interest

(whatever they are...) variation does not seem to be the most reasonable objective? A naive approach

could be to use PCA for compositional data (Jolli↵e, 2002, §13.3) and apply it to the pseudo-angles

themselves. Such approach could perhaps provide a simple way to disentangle dependence into com-

ponents that could be of practical interest?

6An interesting paper on dimension reduction for multivariate extremes appeared in the meantime at the Electronic

Journal of Statistics (Chautru, 2015), after the discussion took place. Anne Sabourin and colleagues are also currently

working on the topic.
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Should the Journal Extremes include an Applications and Case Studies section?

Theory and methods are the backbone of our field, without regular variation we wouldn’t have gone

far anyway. But, beyond theory, should our community be investing even more than it already is, in

modeling and applications? As put simply by Box (1979), “all models are wrong, but some are useful.”

However, while most of us agree that models only provide an approximation to reality, we seem to be

very demanding about the way that we develop theory about such—wrong yet useful—models. Some

models entail ingenious approximations to reality, and yet are very successful in practice. Should we

venture more on this direction in the future? Applied work can also motivate new, and useful, theory.

Should we venture more on collaborating with researchers from other fields, or on creating more con-

ferences such as the ESSEC Conference on Extreme Events in Finance, where one has the opportunity

to regard risk and extremes from a broader perspective, so to think out of the box? Should the Journal

Extremes include an Applications and Case Studies section?

Communicating Risk and Extremes

What has our community been supplying in terms of communication of risk and extremes? Silence,

for the most part. Definitely there have been some noteworthy initiatives, but perhaps mostly from

people outside of our field such as those of David Spiegelhalter and David Hand? My own view is

that it would be excellent if in a recent future, leading scientists in our field could be more involved

in communicating risk and extremes to the general public, either by writing newspaper and magazine

articles, or by promoting science vulgarization. Our community is becoming more and more aware of

this need, I think. I was happy to see Paul Embrechts showing recently his concern about this matter

at EVA 2015 in Ann Arbor.

Prior Elicitation in Contexts where a Conflict of Interest Exists

How can we accurately elicit prior information when modeling extreme events in finance, in cases where

a conflict of interest may exist? Suppose that a regulator requires a Bank to report an estimate. If

prior information is gathered from a Bank expert—and if the Bank is better o↵ by misreporting—then

how can we trust in the accuracy of the inferences? In such cases, I think the only Bayesian analysis

a regulator should be willing to accept would be an objective Bayes-based analysis; see Berger (2006)
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for a review on objective Bayes.
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