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We congratulate the authors for proposing a sturdy method based on randomly compressing fea-
ture vectors prior to classification. Below, we focus on connecting the random-projection ensemble
classifier with ideas and concepts from compressed classification and compressed regression meth-
ods. Let A = {A ∈ Rd×p : AAT = Id×d} be the so-called Steifel manifold. Similarly to Page et al.
(2013), in the paper under discussion the author’s first compress the covariates by using projection
matrices, but a key difference is that here the authors consider a set of independent projections,
A1, . . . , AB1

∈ A, whereas in the latter paper a single projection matrix A ∈ A is considered—
and treated as a Bayesian parameter. In particular, Page et al. (2013) considers a nonparametric
Bayesian approach which leads to a principal subspace classifier for a setting similar to the one in
the current manuscript, and assigns to A a (conjugate) von Mises–Fisher prior distribution on the
Steifel manifold. In an analogy to the author’s claim that “in a similar spirit to subsampling and
bootstrap sampling, we can can think of each random projection as a perturbation of the original
data,” the compressing paradigms described above—based on a single but random A—keep the
data as fixed, and posterior sampling about good directions along which to project the data is itself
target. Both compressing principles (single A ∈ A as Bayesian parameter, vs ensemble of random
A1, . . . , AB1 ∈ A) seem to have their own merits, and we wonder if the authors could comment on
this remark. On another note, the recently proposed compressed regression approach by Guhaniyogi
and Dunson (2015) is even closer to the authors proposal, in the sense that it projects data into an
ensemble of directions and uses model averaging to arrive at a final regression model. The focus of
the latter paper is on regression itself though, but we also wonder about the author’s view on this.
Finally, the practitioner could be left with the question: “How likely is it for the ensemble classifier
to improve over the base classifier on the original feature vectors?”
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