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1 JAGS CODE

model{

# Priors

betak[1]∼ dnorm(0, 0.001)

betanu[1]∼ dnorm(0, 0.001)

betaxi[1]∼ dnorm(0, 0.001)

for(j in 2:p) {

betak[j]∼ ddexp(0, lambdak)

betanu[j]∼ ddexp(0, lambdanu)

betaxi[j]∼ ddexp(0, lambdaxi)

}

lambdak ∼ dgamma(0.1, 0.1)

lambdanu ∼ dgamma(0.1, 0.1)

lambdaxi ∼ dgamma(0.1, 0.1)

# Likelihood

for(i in 1:n) {

spy[i] <- ((1 / sigma[i]) * ((1 + xi[i] * y[i] / sigma[i])^(-1 / xi[i] - 1)) *

k[i] * (1 - (1 + xi[i] * y[i] / sigma[i])^(-1 / xi[i]))^(k[i] - 1)) / C

ones[i]∼ dbern(spy[i])

log(k[i]) <- inprod(X[i, ], betak[])

log(nu[i]) <- inprod(X[i, ], betanu[])

log(xi[i]) <- inprod(X[i, ], betaxi[])

sigma[i] <- nu[i] / (1 + xi[i])

}

}
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2 SUPPLEMENTARY NUMERICAL RESULTS

2.1 ADDITIONAL REPORTS ON SIMULATION STUDY

In this section we report further evidence supporting the Monte Carlo simulation study in

the paper. Specifically, we report the conditional quantiles (0.025, 0.975) (see Figs. 1–4) as well

as a table on the frequency of variable selection (cf Table 1). In addition, we also report here

the mean integrated squared error (MISE) for Scenarios 2–4; see Fig. 5. A similar chart for

Scenario 1 is already provided in the main paper (see Fig. 4).
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Scenario 1

0.025 quantile

β1 = 0 β2 = 0.3 β3 = 0

β4 = 0 β5 = −0.3 β6 = 0

β7 = 0 β8 = 0 β9 = −0.3

0.975 quantile

γ1 = 0 γ2 = 0 γ3 = 0.3

γ4 = 0 γ5 = 0 γ6 = 0

γ7 = 0 γ8 = 0.3 γ9 = −0.3

Figure 1: Monte Carlo mean of posterior mean (0.025, 0.975) quantile estimates (black) along with pointwise

95% Monte Carlo bands, conditioning on a vector whose components are zeros except at the first and dth

components (i.e. (1, x1, 0, . . . , 0)T), (1, 0, x2, . . . , 0)T, and so on). The true lines are depicted in red.
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Scenario 2

0.025 quantile

β1 = 0 β2 = 0.3 β3 = 0

β4 = 0 β5 = −0.3 β6 = 0

β7 = 0 β8 = 0 β9 = −0.3

0.975 quantile

γ1 = 0 γ2 = 0 γ3 = 0.6

γ4 = 0 γ5 = 0 γ6 = 0

γ7 = 0 γ8 = 0.6 γ9 = −0.6

Figure 2: Monte Carlo mean of posterior mean (0.025, 0.975) quantile estimates (black) along with pointwise

95% Monte Carlo bands, conditioning on a vector whose components are zeros except at the first and dth

components (i.e. (1, x1, 0, . . . , 0)T), (1, 0, x2, . . . , 0)T, and so on). The true lines are depicted in red.
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Scenario 3

0.025 quantile

β1 = 0 β2 = 0.6 β3 = 0

β4 = 0 β5 = −0.6 β6 = 0

β7 = 0 β8 = 0 β9 = −0.6

0.975 quantile

γ1 = 0 γ2 = 0 γ3 = 0.3

γ4 = 0 γ5 = 0 γ6 = 0

γ7 = 0 γ8 = 0.3 γ9 = −0.3

Figure 3: Monte Carlo mean of posterior mean (0.025, 0.975) quantile estimates (black) along with pointwise

95% Monte Carlo bands, conditioning on a vector whose components are zeros except at the first and dth

components (i.e. (1, x1, 0, . . . , 0)T), (1, 0, x2, . . . , 0)T, and so on). The true lines are depicted in red.
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Scenario 4

0.025 quantile

β1 = 0 β2 = 0.6 β3 = 0

β4 = 0 β5 = −0.6 β6 = 0

β7 = 0 β8 = 0 β9 = −0.6

0.975 quantile

γ1 = 0 γ2 = 0 γ3 = 0.6

γ4 = 0 γ5 = 0 γ6 = 0

γ7 = 0 γ8 = 0.6 γ9 = −0.6

Figure 4: Monte Carlo mean of posterior mean (0.025, 0.975) quantile estimates (black) along with pointwise

95% Monte Carlo bands, conditioning on a vector whose components are zeros except at the first and dth

components (i.e. (1, x1, 0, . . . , 0)T), (1, 0, x2, . . . , 0)T, and so on). The true lines are depicted in red.
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Scenario 2

(light effects for lower values, large effects for tail)
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Scenario 3

(large effects for lower values, light effects for tail)

Scenario 4

(large effects for lower values, large effects for tail)
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Figure 5: Side-by-side boxplots of MISE on the log scale for Monte Carlo simulation study for Scenarios 2–4.
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Scenario 1 β1 = 0 β2 = 0.3 β3 = 0 β4 = 0 β5 = −0.3 β6 = 0 β7 = 0 β8 = 0 β9 = −0.3

6 127 1 6 116 0 6 0 108

α1 = −0.3 α2 = 0 α3 = 0 α4 = 0.3 α5 = 0 α6 = 0 α7 = 0.3 α8 = 0 α9 = 0

7 4 0 15 2 0 6 0 6

γ1 = 0 γ2 = 0 γ3 = 0.3 γ4 = 0 γ5 = 0 γ6 = 0 γ7 = 0 γ8 = 0.3 γ9 = −0.3

2 4 184 8 8 4 3 183 151

Scenario 2 β1 = 0 β2 = 0.3 β3 = 0 β4 = 0 β5 = −0.3 β6 = 0 β7 = 0 β8 = 0 β9 = −0.3

14 233 6 5 234 0 6 3 235

α1 = −0.6 α2 = 0 α3 = 0 α4 = 0.6 α5 = 0 α6 = 0 α7 = 0.6 α8 = 0 α9 = 0

229 12 5 241 5 2 242 1 6

γ1 = 0 γ2 = 0 γ3 = 0.6 γ4 = 0 γ5 = 0 γ6 = 0 γ7 = 0 γ8 = 0.6 γ9 = −0.6

3 5 250 11 15 10 13 250 250

Scenario 3 β1 = 0 β2 = 0.6 β3 = 0 β4 = 0 β5 = −0.6 β6 = 0 β7 = 0 β8 = 0 β9 = −0.6

52 239 30 38 238 32 49 27 237

α1 = −0.3 α2 = 0 α3 = 0 α4 = 0.3 α5 = 0 α6 = 0 α7 = 0.3 α8 = 0 α9 = 0

84 72 11 88 60 17 74 22 60

γ1 = 0 γ2 = 0 γ3 = 0.3 γ4 = 0 γ5 = 0 γ6 = 0 γ7 = 0 γ8 = 0.3 γ9 = −0.3

2 5 249 8 11 6 9 250 245

Scenario 4 β1 = 0 β2 = 0.6 β3 = 0 β4 = 0 β5 = −0.6 β6 = 0 β7 = 0 β8 = 0 β9 = −0.6

50 244 46 42 244 36 49 46 244

α1 = −0.6 α2 = 0 α3 = 0 α4 = 0.6 α5 = 0 α6 = 0 α7 = 0.6 α8 = 0 α9 = 0

235 78 23 240 72 21 245 26 40

γ1 = 0 γ2 = 0 γ3 = 0.6 γ4 = 0 γ5 = 0 γ6 = 0 γ7 = 0 γ8 = 0.6 γ9 = −0.6

6 15 250 11 22 11 16 250 250

Table 1: Frequency of variable selection for M = 500 Monte Carlo repetitions and n = 500.

2.2 SIMULATION STUDY UNDER MISSPECIFICATION

In this section we assess the performance of the proposed methods under misspecification. Data

(n = 250) are simulated from

Y | X = x ∼ Burr(c(x), k), c(x) = exp(−xTγ), k = 1,

with γ = (0.6, 0, 0.6, 0, 0,−0.6, 0, 0, 0,−0.6)T, for all x. Reference limiting ‘true values’ of

κ(x) and ξ(x) can be respectively derived through the study of the limits limy→0 F (y|x)/yκ(x)

and limy→∞{1 − F (y|x)}/y−1/ξ(x), where F (y|x) is the conditional distribution function of

the Burr(c(x), k) model; such reference true values are respectively given by κ(x) = c(x) =

exp(−xTγ) and ξ(x) = 1/{c(x)k} = exp(xTγ). We consider again M = 500 Monte Carlo

replicates; we fit the following version of the proposed model, with power carrier Gκ(x)(v) =

vκ(x), and with link functions

κx = exp(xTβ), νx = exp(xTα), ξx = exp(xTγ).

8



This misspecified setting still allows for direct comparison of regression coefficients in the left

and right tails, and as it can be seen from Fig. 6 the proposed methods are able to learn

about the coefficients for κ(x) and ξ(x) under this misspecified setting. We now show that

the regression coefficients of κ(x) still track the effect of covariates on lower values of the

response. The results of the conditional 0.025 quantile function are reported in Fig. 7, whereas

the corresponding estimates of the regression coefficients of κ(x) are reported in Fig. 6. The

joint analysis of the latter figures, reveals that the effect of covariates on lower values is well

tracked by the regression coefficients of κ(x), despite the fact that misspecification induces

some bias on the conditional quantile function. In addition, it can be seen from Figs. 6–7 that

the effect of covariates for the lower values is actually the opposite of that for the tail in terms

of sign.

Figure 6: Side-by-side boxplots with regression coefficient estimates for Monte Carlo simulation study plotted

against the true values (—).
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0.025 quantile

Figure 7: Monte Carlo posterior mean 0.025 quantile estimates (black) along with 95% Monte Carlo bands

plotted against the true (red), conditioning on a vector whose components are zeros except at first and dth

components (i.e. (1, x1, 0, . . . , 0)T), (1, 0, x2, . . . , 0)T, and so on).

2.3 SIMULATION RESULTS FOR A SIMPLIFIED MODEL

In this section we analyze numerically a simplified version of the proposed model where β, α,

and γ all have the same global shrinkage parameter. Figs. 8–10 should thus be compared with

Figs. 1–3 in the paper. The upshot from the simulation experiments reported below, for this

version of the model, is essentially the same as that from Section 3 of the paper.
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Scenario 1 Scenario 2

(light effects for lower values, light effects for tail) (light effects for lower values, large effects for tail)

Scenario 3 Scenario 4

(large effects for lower values, light effects for tail) (large effects for lower values, large effects for tail)

Figure 8: Cross sections of posterior mean conditional density (solid) along with pointwise credible bands

against true (dashed) for a one-shot experiment with n = 500; the cross sections result from conditioning on

x = (0.25, . . . , 0.25) (left) and x = (0.50, . . . , 0.50) (right).
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Scenario 1

(light effects for lower values, light effects for tail)

Scenario 2

(light effects for lower values, large effects for tail)

Scenario 3

(large effects for lower values, light effects for tail)

Scenario 4

(large effects for lower values, large effects for tail)

Figure 9: Side-by-side boxplots with regression coefficient estimates for Monte Carlo simulation study

(n = 250) plotted against the true values (—). The values 0–9 represent the coefficient indices.
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Scenario 1

(light effects for lower values, light effects for tail)

Scenario 2

(light effects for lower values, large effects for tail)
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Scenario 3

(large effects for lower values, light effects for tail)

Scenario 4

(large effects for lower values, large effects for tail)
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Figure 10: Side-by-side boxplots of MISE on the log scale for Monte Carlo simulation study for Scenarios 1–4.

3 SUPPLEMENTARY EMPIRICAL RESULTS

This section presents some supplements for the data analysis from the paper. In Fig. 11

we present conditional quantiles (0.025, 0.50, 0.975) so to directly assess how rainfall itself

is impacted by all potential drivers examined in the paper, namely: Atlantic multi-decadal

Oscillation (AMO), El Niño-Southern Oscillation (expressed by NINO34 index) (ENSO), North

Pacific Index (NP), Pacific Decadal Oscillation (PDO), Southern Oscillation Index (SOI), and

North Atlantic Oscillation (NAO).
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0.025 quantile

amo enso np

pdo soi nao

Median

amo enso np

pdo soi nao

0.975 quantile

amo enso np

pdo soi nao

Figure 11: Posterior mean conditional (0.025, 0.5, 0.975) quantile estimates (black) along with cred-

ible bands, conditioning on a vector whose components are zeros except at the first and dth components

(i.e. (1, x1, 0, . . . , 0)T), (1, 0, x2, . . . , 0)T, and so on).
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