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Abstract
This paper devises a regression-type model for the situation where both the response 
and covariates are extreme. The proposed approach is designed for the setting where 
the response and covariates are modeled as multivariate extreme values, and thus 
contrarily to standard regression methods it takes into account the key fact that the 
limiting distribution of suitably standardized componentwise maxima is an extreme 
value copula. An important target in the proposed framework is the regression mani-
fold, which consists of a family of regression lines obeying the latter asymptotic 
result. To learn about the proposed model from data, we employ a Bernstein polyno-
mial prior on the space of angular densities which leads to an induced prior on the 
space of regression manifolds. Numerical studies suggest a good performance of the 
proposed methods, and a finance real-data illustration reveals interesting aspects on 
the conditional risk of extreme losses in two leading international stock markets.

Keywords  Angular measure · Bernstein polynomials · Extreme value copula · Joint 
extremes · Multivariate extreme value distribution · Quantile regression · Statistics 
of extremes

1  Introduction

Whereas classical statistical modeling is mostly concerned with inferences sur-
rounding the bulk of a distribution, the field of statistics of extremes deals with  
the rather challenging situation of conducting inferences about the tail of a 
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distribution. The behavior of extreme values in large samples is often mathemati-
cally tractable, and this tractability is often used to build sound statistical meth-
ods for modeling risk and extreme values. As an example of this asymptotic trac-
tability, it is well known that if Y1,… , Yn is a random sample with sample 
maximum Mn = max(Y1,… , Yn) and if there exist sequences {an > 0} and {bn} 
such that (Mn − bn)∕an

d
→Z , then Z follows a GEV (Generalized Extreme Value) 

distribution with location, scale, and shape parameters � ∈ ℝ , 𝜎 > 0 , and � ∈ ℝ 
respectively; see, for instance, Embrechts et al. (1997, Theorem 3.2.3). Details on 
the paradigm of statistics of extremes can be found in monographs (e.g. Coles 
2001; Beirlant et al. 2004; de Haan and Ferreira 2006; Resnick 2007) as well as 
review papers (e.g. Davison and Huser 2015).

In this paper, we devise a regression-type method for the situation where both the 
response and the covariates are themselves extreme. Here and below, the expression 
“regression-type” is used to refer to the class of statistical models that relate the con-
ditional quantiles of a response with covariates via a joint distribution—rather than 
by specifying a functional relation between response and covariate as, for example, 
in quantile regression (Koenker and Bassett 1978). An important result in the field 
of statistics of extremes—that will be fundamental for our developments—is that 
the properly standardized vector of block maxima converges in distribution to a so-
called extreme value copula (Gudendorf and Segers 2010). Thus, a key target in the 
proposed framework is what we will refer to below as the regression manifold, that 
is, a family of regression lines that obeys the latter large sample result. Our methods 
thus take on board information on the dependence structure between the extreme 
values so to assess what effects an extreme value covariate can have on an extreme 
value response. To learn about the proposed model from data, we develop a prior 
in the space of regression manifolds by resorting to a flexible Bernstein polynomial 
prior on the space of angular densities as recently proposed by Hanson et al. (2017).

Our approach contributes to the literature on conditional modeling given large 
observed values (e.g. Wang and Stoev 2011; Cooley et al. 2012), nonetheless, our 
focus differs from the latter papers in a number of important ways as we describe 
next. The main difference is that, as anticipated above, here the focus is on devis-
ing a regression framework for extreme covariates and extreme responses, whereas 
the latter papers focus mainly on using the conditional density as a way to make 
probabilistic statements about the likelihood of an extreme given the occurrence of 
another extreme. Conditional quantile estimation within the framework of multivari-
ate extreme value distributions was first looked into by Cooley et al. (2012). Here, 
among other things, we aim to characterize the entire regression manifold, its cross 
sections as well as how extremal dependence affects its shape; additionally, we aim 
to tackle the nontrivial task of defining a prior on the space of regression mani-
folds. Since our main target of analysis is regression, our method has some links 
with statistical approaches for nonstationary extremes (e.g. Coles 2001, Sect. 6; Yee 
and Stephenson 2007; Eastoe and Tawn 2009; Wang and Tsai 2009; Katz 2013); 
the most elementary version of approaches for nonstationary extremes aims to learn 
about how the limiting law of a suitably standardized block maxima response ( S

�
 ) 

changes according to a covariate � = (x1,… , xp)
T , via the specification
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Since the approach in (1) is built from the univariate theory of extremes it is not tai-
lored for conditioning on another variable being extreme as it fails to take on board 
information from the dependence structure between the extremes.

Additionally, the method proposed in this work is loosely related to quantile 
regression (Koenker and Bassett 1978), whose original version consists in modeling 
the conditional quantile of a response Y given a covariate � = (X1,… ,Xp)

T in a lin-
ear fashion, that is

where F−1(q ∣ �) = inf{y ∶ F(y ∣ �) ≥ q} and F(y ∣ �) is the distribution function 
of Y ∣ � = � . Versions of quantile regression that aim to equip (2) with the abil-
ity to extrapolate into the tail of Y are often known as extremal quantile regres-
sion methods (e.g. Chernozhukov 2005). While flexible and sturdy, such quantile 
regression-based approaches do not take into account information on the fact that 
the limiting joint distribution of suitably standardized componentwise maxima is an 
extreme value copula, and thus fail to be equipped with the ability to extrapolate into 
the joint tail. The approach proposed in this paper will take such knowledge on the 
limiting joint distribution into consideration and will assume a conditional law that 
stems from such knowledge—rather than imposing a linear specification as in (2); 
yet, the proposed approach is not to be seen as a competitor to quantile regression 
but rather as a method based on some loosely related principles and specific to the 
context where we have a block maxima response and a block maxima covariate.

The remainder of the paper unfolds as follows. In Sect. 2 we introduce the proposed 
model and Sect. 3 devises an approach for learning about it from data. Section 4 reports 
the main findings of a Monte Carlo simulation study. We showcase the proposed meth-
odology in a real data application to stock market data in Sect. 5. Finally, in Sect. 6 we 
present closing remarks. Supporting technical details can be found in the Appendix, 
and further numerical experiments and other details are presented in the supplementary 
material.

2 � Modelling conditional multivariate extreme value distributions

2.1 � Background on multivariate extremes

Prior to introducing a regression of block maxima on block maxima we need 
to lay groundwork on multivariate extremes. Let {(�i, Yi)}

n
i=1

 be a sequence of 
independent random vectors with unit Fréchet marginal distributions, i.e. 
exp(−1∕z) , for z > 0 . In our setup, Yi should be understood as a response, 
whereas �i = (X1,i,… ,Xp,i) should be understood as a p-dimensional covariate. 
Let the componentwise block maxima be �n = (Mn,x1

,… ,Mn,xp
,Mn,y) with 

Mn,y = max{Y1,… , Yn} and Mn,xj
= max(Xj,1,… ,Xj,n) , for j = 1,… , p . Under this 

setup, it is well-known that the vector of normalized componentwise maxima 

(1)(S ∣ � = �) ∼ GEV(�
�
, �

�
, �

�
).

(2)F−1(q ∣ �) = �
T�q, 0 < q < 1,
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�n∕n converges in distribution to a random vector (�,Y) which follows a mul-
tivariate extreme value distribution with the joint distribution function

Here,

is the exponent measure and d = p + 1 ; see, for instance, de Haan and Resnick 
(1977), Pickands (1981), and Coles (2001, Theorem 8.1). In addition, H is a parame-
ter of the multivariate extreme value distribution G known as angular measure, which 
controls the dependence between the extreme values; specifically, H is a probability 
measure on the unit simplex Δd = {(w1,… ,wd) ∈ [0, 1]d,

∑d

i=1
wi = 1} ⊂ ℝ

d , and 
obeying the mean constraint

where �d is a vector of ones in ℝd . If H is absolutely continuous with respect to 
the Lebesgue measure then its density is given by the Radon–Nikodym derivative 
h = dH∕d� , for � ∈ Δd.

2.2 � Regression manifold for conditional multivariate extreme value distributions

We are now ready to introduce our regression method. We define the regression 
manifold as the family of regression lines,

where

is a conditional quantile of a multivariate extreme value distribution, with q ∈ (0, 1) 
and � ∈ (0,∞)p , and GY|�(y ∣ �) = ℙ(Y ≤ y ∣ � = �) is a conditional multivariate 
extreme value distribution function. The next proposition sheds light on sufficient 
conditions in order for the regression manifold in (5) to be smooth.

Proposition 1  Let GY|X(y ∣ x) = ℙ(Y ≤ y ∣ X = x) be a conditional multivariate 
extreme value distribution function. Suppose that y ↦ GY|�(y ∣ �) is continuous and 
strictly increasing over [a, b] ⊂ (0,∞) , and that � ↦ GY|�(y ∣ �) is continuous over 
ℝ

p . Then, yq|� is continuous with respect to the sup norm for all (�, q) ∈ ℝ
p × [c

�
, d

�
] , 

where c
�
= G

Y|�(a ∣ �) and d
�
= G

Y|�(b ∣ �).

Proof  Let (�0, z0) be a point in ℝp × [c
�0
, d

�0
] . We aim to show that for every 𝜀 > 0,

(3)G(�, y) = exp{−V(�, y)}, (�, y) ∈ (0,∞)p+1.

V(�, y) = d ∫Δd

max

(
w1

x1
,… ,

wp

xp
,
wp+1

y

)
H(d�),

(4)∫Δd

�H(d�) =
1

d
�d,

(5)L = {Lq ∶ 0 < q < 1} with Lq = {yq∣� ∶ � ∈ (0,∞)p},

(6)yq∣� = inf
{
y > 0 ∶ GY∣�(y ∣ �) ≥ q

}
,
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where y0 ∶= yq0|�0 and ‖(�, z)‖∞ = max{�x1�,… , �xp�, �z�} is the sup norm. In 
order to find 𝛿 > 0 that works for (7) we start by recalling that since by assump-
tion y ↦ GY|�(y ∣ �) is continuous and strictly increasing, then it can be shown 
after some calculations by following a standard argument by Apostol (1980, Theo-
rem 3.10) that there exists 𝛿1 > 0 , such that whenever q0 − 𝛿1 < q < q0 + 𝛿1 it holds 
that

Indeed, to obtain (8) it suffices to take

Now, by assumption � ↦ GY|�(y ∣ �) is continuous and hence there exists a neigh-
borhood of �0 with radius 𝛿2 > 0 such that for every � in that neighborhood it holds 
that G

Y|�(y0 − 𝜀 ∣ �) < q < G
Y|�(y0 + 𝜀 ∣ �) , as a consequence of (8). This then 

implies that y0 − 𝜀 < yq|� < y0 + 𝜀 , and hence (7) holds with � = min(�1, �2) , from 
where the final result follows.

In higher dimensions GY∣� can be expressed with the help of a joint multivariate 
extreme value density g

�,Y and its expression has been derived by Stephenson and 
Tawn (2005). By applying Bayes’ theorem, we deduce GY∣�(y ∣ �) = ∫ y

0
gY∣�(z ∣ �) dz 

from g
�,Y with gY|� given as follows:

where VΛ(�, y) corresponds to mixed partial derivative of the exponent measure 
V(�, y) with respect to the lth components of (�, y) such that l ∈ Λ , ni is the number 
of partitions of {1,… , d} of size i = 1,… , d , and rij is the jth partition of {1,… , d} 
of size i, with 1 ≤ j ≤ ni.

In the particular case where we have a single covariate (p = 1) , the regres-
sion manifold L  in (5) can be derived using properties of bivariate copulas; see 
Appendix A. Accordingly, for an absolutely continuous angular measure H (with 
density h), it follows that

where �(x, y) = x∕(x + y) , and yq∣x is then calculated via (6).
We now derive regression manifolds L  in (5) for the cases of independent and 

perfectly dependent extremes, which are depicted in Fig. 1. When extremes are 

(7)y0 − 𝜀 < yq�� < y0 + 𝜀, whenever ‖(�, q) − (�0, q0)‖∞ < 𝛿,

(8)GY|�(y0 − 𝜀 ∣ �0) < q < GY|�(y0 + 𝜀 ∣ �0),

�1 = min{GY|�(y0 + � ∣ �0) − GY|�(y0 ∣ �0),GY|�(y0 ∣ �0) − GY|�(y0 − � ∣ �)}.

(9)gY��(y ∣ �) =

exp{−V(�, y)}
d∑
i=1

ni∑
j=1

(−1)i
∏
Λ∈rij

V(�, y)

d∑
i=1

ni∑
j=1

(−1)i
∞∫
0

exp{−V(�, y)}
∏
Λ∈rij

VΛ(�, y) dy

, y, � > 0,

(10)GY∣X(y ∣ x) = 2 exp(1∕x)G(x, y)∫
1

𝜔(x,y)

wh(w) dw, x, y > 0,
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independent, H assigns equal mass to the boundaries of the simplex, which also 
corresponds to asymptotic independence of � and Y (Hüsler and Li 2009), result-
ing in

with

When extremes are perfectly dependent, the angular measure H assigns all its mass to the 
barycenter of the simplex, d−1�d , leading to G(�, y) = exp{−max(x−1

1
,… , x−1

p
, y−1)} . 

Taking derivatives of G(�, y) in this case is non-trivial, and we replace the maximum 
function with a soft maximum (Cook 2011) so to obtain an approximation for the 
shape of the regression lines for perfectly dependent extremes. Thus, the soft maximum 
approximation for the regression lines for perfectly dependent extremes is

That is, regression lines for the case of perfectly dependent extremes do not depend 
on q. See  Appendix  B for the derivation, and Fig.  1 for a chart of its regression 
manifold.

We end this section with comments on properties of regression manifolds. 
Trivially, regression lines obey the standard properties of quantile functions (van 
der Vaart 1998, Chap. 21). Less trivial is however the fact that monotone regres-
sion dependence of bivariate extremes (Guillem  2000,  Theorem  1) implies that 
regression lines yq∣x in (6) are non-decreasing in x, for p = 1 , under some mild 
assumptions.

(11)Lq = {−1∕ log q ∶ � ∈ (0,∞)p},

GY∣�(y ∣ �) = ∫
y

0

exp(−z−1 − x−1
1

−⋯ − x−1
p
)(−z−2)

p∏
j=1

(−x−2
j
)

exp(−x−1
1

−⋯ − x−1
p
)

p∏
j=1

(−x−2
j
)

dz = exp(−1∕y), y > 0.

(12)L̃q = {min(x1,… , xp) ∶ � ∈ (0,∞)p}.
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Fig. 1   Regression manifolds for cases of complete independence (left) and perfect dependence (right)
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Proposition 2  Let GY|X(y ∣ x) = ℙ(Y ≤ y ∣ X = x) be a conditional bivariate extreme 
value distribution function, which we assume to be jointly continuously differenti-
able and strictly increasing in y for any fixed x ∈ (0,∞) . Then, the regression lines 
for bivariate extremes (0,∞) ∋ x ↦ yq∣x are non-decreasing for all q ∈ (0, 1).

Proof  Since y ↦ GY∣X(y ∣ x) is continuous (strictly increasing) for all x ∈ (0,∞) , yq∣x 
given by (6) is the solution to GY∣X(y ∣ x) = q for a fixed q ∈ (0, 1) . Then y satisfying 
GY∣X(y ∣ x) = q is an implicit function of x parametrized by q. Under our assump-
tions we apply the implicit function theorem and calculate the derivative of yq∣x with 
respect to x via

Equation  (13) combined with the monotone regression dependence property, 
i.e. x ↦ GY∣X(y ∣ x) is non-increasing for all y ∈ (0,∞) (Guillem 2000, Theorem 1), 
and the strict monotonicity of y ↦ GY∣X(y ∣ x) (increasing) for all x ∈ (0,∞) gives

This completes the proof.

The assumption of y ↦ GY∣X(y ∣ x) being strictly increasing for all x ∈ (0,∞) is a 
mild assumption, which is satisfied by any bivariate GEV distribution that possesses 
an absolutely continuous angular measure with a positive density on (0, 1). This can 
be easily seen by noting that under those circumstances, it follows from (10) that

Thus, monotonicity of regression manifold holds for Examples 1–3 below.

2.3 � Parametric instances of regression manifolds

We now consider some parametric instances of regression manifolds as defined in 
(5). Charts of regression manifolds for these parametric examples are depicted in 
Fig.  2. In Appendix  C, we show that for sufficiently large x, the following linear 
approximation holds for the regression manifold, Lq = {yq∣x ∶ x ∈ (0,∞)} , of the 
Logistic model from Example 1 with

Here, �q and �q are functions of both � and q (see Eqs. (24) and (25)), and o(x) is 
little-o of x in Bachmann–Landau notation; the numerical accuracy of this approxi-
mation is illustrated in the supplementary material.

(13)
�

�x
yq∣x = −

�

�x
GY∣X(y ∣ x)

�

�y
GY∣X(y ∣ x)

.

�

�x
yq∣x ≥ 0.

𝜕GY∣X

𝜕y
= 2 exp(1∕x)G(x, y)

⎛⎜⎜⎝
2

y2

1

∫
𝜔(x,y)

wh(w) dw

𝜔(x,y)

∫
0

(1 − w)h(w) dw + 𝜔3(x, y) h(𝜔(x, y))∕x

⎞⎟⎟⎠
> 0.

(14)yq∣x = �q + �qx + o(x).
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Example 1  (Logistic) An instance of the Logistic regression manifold can be found 
in Fig. 2 (top). It stems from the Logistic bivariate extreme value distribution func-
tion given by

where � ∈ (0, 1] characterizes the dependence between extremes: the closer � to 0, 
the stronger the dependence, with the limit � → 0 corresponding to the case of per-
fect dependence. The conditional distribution of Y given X is

G(x, y) = exp{−(x−1∕𝛼 + y−1∕𝛼)𝛼}, x, y > 0,

GY∣X(y ∣ x) = G(x, y)(x−1∕𝛼 + y−1∕𝛼)𝛼−1x1−1∕𝛼 exp(1∕x), x, y > 0,

Fig. 2   Regression manifold L  , as defined in (5), for bivariate Logistic, Husler–Reiss, and Coles–Tawn 
models (top to bottom) with strong dependence, intermediate and weak extremal dependence (left to 
right)
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thus leading to the following family of regression lines Lq in (5) where

and x > 0 . Here, W is the so-called Lambert W function, that is, the multivalued ana-
lytic inverse of f (z) = z exp(z) with z denoting a real or complex number (Borwein and 
Lindstrom 2016); see the supplementary material for further details. As it can be seen 
from Fig. 2 (top), the regression lines obey what is claimed in Proposition 2 in the sense 
that (0,∞) ∋ x ↦ yq∣x are non-decreasing for all q ∈ (0, 1).

Example 2  (Husler–Reiss) An instance of the Husler–Reiss regression manifold is 
depicted in Fig. 2 (middle). It follows from the Husler–Reiss bivariate extreme value 
distribution function which has the following form:

where Φ is the standard Normal distribution function and � ∈ (0,∞] is the parameter 
regulating the dependence between extremes: � → 0 corresponds to perfect depend-
ence and the limit case � → ∞ corresponds to complete independence. The family 
of regression lines Lq in (5) for this model does not have explicit representations and 
is obtained using (6) with

where � is the standard Normal density function.

Example 3  (Coles–Tawn) An instance of the Coles–Tawn regression manifold is 
depicted in Fig. 2 (bottom). It follows from the Coles–Tawn bivariate extreme value 
distribution function which has the following form:

where Be(q;a, b) is the cumulative distribution function of a Beta distribution with 
parameters a, b > 0 , q = �y−1∕(�y−1 + �x−1) and 𝛼, 𝛽 > 0 are the parameters regulating 
dependence between extremes; the case � = � = 0 corresponds to complete independ-
ence, whereas � = � → ∞ corresponds to perfect dependence. For fixed � ( � ) the strength 
of dependence increases with � ( � ). The family of regression lines Lq in (5) for this model 
does not have an explicit representation and is calculated using (6), for x, y > 0 , with

(15)yq∣x =

[{
1 − �

�
xW

(
�

1 − �
x−1e�∕(1−�)x

−1

q�∕(�−1)
)}1∕�

− 1

]−�
x,

G(x, y) = exp

{
−x−1Φ

(
𝜆 +

1

2𝜆
log

y

x

)
− y−1Φ

(
𝜆 +

1

2𝜆
log

x

y

)}
, x, y > 0,

GY∣X(y ∣ x) =

[
Φ
(
𝜆 +

1

2𝜆
log

y

x

)
+

1

2𝜆
𝜙
(
𝜆 +

1

2𝜆
log

y

x

)
−

xy−1

2𝜆
𝜙

(
𝜆 +

1

2𝜆
log

x

y

)]

× G(x, y) exp(1∕x), x, y > 0,

G(x, y) = exp[−x−1{1 − Be(q;𝛼 + 1, 𝛽)} − y−1Be(q;𝛼, 𝛽 + 1)], x, y > 0,

GY∣X(y ∣ x) =
[
1 − Be(q;� + 1, �) +

(� + 1)�

�
be(q;� + 2, � + 1)

−
x

y

�(� + 1)

�
be(q;� + 1, � + 2)

]
G(x, y) exp(1∕x),
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where be(q;a, b) is the density function of the Beta distribution with parameters 
a, b > 0 and � = (� + � + 2)(� + � + 1).

Section  2 introduced our key parameter of interest—regression manifolds for 
multivariate extreme values, i.e. L  as in (5)—, it commented on some of its proper-
ties, and gave examples of parametric instances. Next, we discuss Bayesian infer-
ence for L .

3 � Learning about regression manifolds via Bernstein polynomials

3.1 � Induced prior on the space of regression manifolds for p = 1

In this section we discuss how to learn about regression manifolds from data. To 
achieve this, we resort to the Bayesian paradigm and will define an induced prior on 
the space of regression manifolds by resorting to a flexible prior on the space of all 
angular measures that was recently proposed by Hanson et  al. (2017). To lay the 
groundwork, we start by defining the setup of interest. Let {(�

i
, Y

i
)}n

i=1
 be a sequence 

of independent random vectors with unit Fréchet marginal distributions; define 
Ri = Yi +

∑p

j=1
Xj,i and �

i
= (�

i
, Y

i
)∕R

i
 , known as the pseudo-angular decomposi-

tion of the observations. de Haan and Resnick (1977) showed the equivalence of the 
convergence of normalized componentwise maxima to G to the following weak con-
vergence of measures

This means that when the radius R is sufficiently large, the pseudo-angles � are 
nearly independent of R and follow approximately a distribution associated with 
the angular measure H. Thus, to learn about Lq in (5), we first learn about H based 
on k = |{�i ∶ Ri > u, i = 1,… , n}| exceedances above a large threshold u, where 
k = o(n) , with a methodology that we describe next.

Following Hanson et al. (2017), we model the angular density h via a Bernstein 
polynomial defined on the unit simplex Δd , and hence basis polynomials are Dir-
ichlet densities. More precisely, our specification for the angular density is

with � ∈ Δd and �J = (�� ∶ |�| = J) . Here, dird is the density of a Dirichlet distri-
bution supported on Δd , that is,

ℙ(� ∈ ⋅ ∣ R > u)
d
→H(⋅), as u → ∞.

(16)h(�) = b(�, J,�J) ∶=
∑
|�|=J

�� dird(�;�),

dird(�;�) =
Γ(���)
d∏
i=1

Γ(�i)

d�
i=1

w
�i−1

i
,
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where � ∈ ℕ
d (with ℕ ∶= {1, 2, 3,…} ), ��� = ∑d

j=1
�j , and Γ(z) = ∫ ∞

0
xz−1 exp(−x) dx 

is the gamma function; finally in (16) the 𝜋� > 0 are weights and J ∈ ℕ controls the 
order of the resulting polynomial.

To ensure that the resulting h(�) is a valid angular density (i.e. an actual den-
sity satisfying the moment constraint (4)), the weights must obey

for j = 1,… , d . The normalization and mean constraints in (17) imply that there are 
m − d parameters, where m =

(
J−1

d−1

)
 is the number of basis functions in (16); denote such 

free weights as {�� ∶ � ∈ F}, where F = {� ∈ ℕ
d, |�| = J, and � ∉ {�1,… , �d}} 

with �j being a J-vector of ones except element i is J − d + 1 . Similarly to Hanson et al. 
(2017), we parametrize the free weights via a generalized logit transformation that implic-
itly defines the auxiliary parameters �′

�
 , that is,

Now, to induce a prior in the space of regression manifolds we plug-in the angular 
density in (16) into (9); subsequent integration with respect to y and inversion of 
GY|�(y|�) leads to an induced prior on the space of regression lines Lq . In detail, 
to define a prior on the space of regression manifolds we proceed as follows. The 
Bernstein polynomial prior in (16) induces a prior on the space of regression lines 
Lq = {yq∣x ∶ x ∈ (0,∞)} , where yq∣x is a solution to equation, GY∣X(y ∣ x) = q , for 
q ∈ (0, 1) , where

where �(x, y) = x∕(x + y) , for x, y > 0 . Finally, to complete the model specification 
we set the following Dirichlet prior on the free parameters

where I is the indicator function, which accordingly induces a prior on the auxiliary 
parameters �′

�
 in (18).

(17)
∑
|�|=J

�� = 1,

J−d+1∑
i=1

i
∑

|�|=J,�j=i
�� =

J

d
,

(18)𝜋� =
exp(𝜋�

�
)

d +
∑

�̃∈F exp(𝜋�
�̃
)
.

(19)

GY∣X(y ∣ x)

=
2

J
exp

{
−

2

J

∑
|�|=J

��[�1x
−1{1 − Be(�(x, y);�1 + 1, �2)} + �2y

−1Be(�(x, y);�1, �2 + 1)]

}

×
∑
|�|=J

���1{1 − Be(�(x, y);�1 + 1, �2)} exp(1∕x),

p(�� ∶ � ∈ F) ∝ dird(� ∣ c �m)

d�
j=1

I

⎧⎪⎨⎪⎩

J−d+1�
i=1

i
�

���=J,�j=i
�� =

J

d

⎫⎪⎬⎪⎭
,
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3.2 � Induced prior on the space of regression manifolds for p ≥ 1

This section will show how an approximation due to Cooley et  al. (2012) can be 
used for conducting inference in the case p ≥ 2 ; while the main focus will be on 
p ≥ 2 the provided approximation works as well in the case p = 1 , and thus it can be 
regarded as an alternative to the exact approach from Sect. 3.1.

When p ≥ 2 we proceed as in Sect. 3.1, that is our induced prior in the space of 
regression lines is again induced by the Bernstein polynomial prior for the angular 
density in (16), and it follows by solving GY∣�(y ∣ �) = q , with h(�) as in (16). The 
expression for the conditional multivariate extreme value distribution GY∣�(y ∣ �) for 
p ≥ 2 is however not as manageable as the one in (19). We thus propose an approach 
for learning about the regression manifold L  , as defined in (5), via an approxi-
mation to the conditional multivariate GEV density. Let � = (�, y) ∈ (0,∞)d and 
�(t) = (�, t) ∈ (0,∞)d with ‖�‖ = y +

∑p

i=1
xi > u for a large threshold u.

Then, following Cooley et  al. (2012,  Proposition  1) the conditional density of 
a multivariate extreme value distribution can be approximated, via a point process 
representation for extremes, as follows

An induced prior for g can be devised by plugging the approximation in (20) with 
the specification from Sect.  3.1, which leads to the following prior for the condi-
tional multivariate extreme value distribution function,

where B� =
∏d

i=1
Γ(�i)∕Γ(���) is the multivariate beta function. Hence, we can 

learn about the regression manifold L  by estimating �� as described in Sect. 3.1, 
that is, by plugging in the Bernstein polynomial estimates (16) into the approxima-
tion (20) and numerically inverting (21) with respect to y. This strategy is illustrated 
numerically in the supplementary material.

4 � Simulation study

4.1 � Preliminary experiments

We study the finite sample performance of the proposed methods under three data 
generating scenarios that were introduced in Sect. 2; see Examples 1–3. Specifi-
cally, we simulate data as follows:

(20)gY∣�(y ∣ �) ≈
‖�‖−d−1h(�∕‖�‖)

∫ ∞

0
‖�(t)‖−d−1h(�(t)∕‖�(t)‖) dt .

(21)GY∣�(y ∣ �) ≈

∑
���=J

��∕B�

p∏
i=1

x
�i−1

i
∫ y

0
t�d−1‖�(t)‖−J−1 dt

∑
���=J

��∕B�

p∏
i=1

x
�i−1

i
∫ ∞

0
t�d−1‖�(t)‖−J−1 dt

,
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–	 Scenario 1—strongly dependent extremes: Husler–Reiss model with � = 0.1.
–	 Scenario 2—weakly dependent extremes: Logistic model with � = 0.9.
–	 Scenario 3—asymmetric intermediate dependence: Coles–Tawn model with 

� = 0.5 , � = 100.

For now we focus on illustrating the methods in a single-run experiment; a Monte 
Carlo simulation study will be reported in Sect. 4.2. To illustrate how the result-
ing estimates compare with the true regression lines on a one-shot experiment, 
in each scenario we generate n = 5 000 samples {(Xi,Yi)}

n
i=1

 . For the analysis 
we use observations for which �Xi +

�Yi > u , where u is the 98% quantile; here, 
the raw data are transformed to unit Fréchet margins via the transformation 
(X̂i, Ŷi) = (−1∕ log{F̂X(Xi)},−1∕ log{F̂Y(Yi)}), where F̂X  and F̂Y respectively 
denote the empirical distribution functions (normalized by n + 1 rather than by n 
to avoid division by zero). To learn about regression lines from data, we employ a 
standard componentwise adaptive Markov Chain Monte Carlo (MCMC) (Haario 
et  al. 2005) with a Dirichlet prior, Dirichlet(10−4�k) , defined on a generalized 
logit transformation of weights �� . The length of each MCMC chain is 10 000 
with a burn-in period of 4 000.

In Fig. 3 we plot true and estimated regression manifolds under the three sce-
narios above over the range (x, y) ∈ (0, 20] × (0, 20] , where 20 corresponds to the 
95% quantile of the unit Fréchet marginal distributions. Figure 3 shows that, for 
these one shot experiments, the proposed methods recover well the shape of L  
for all three cases, although as expected the fits are slightly less accurate for q 
closer to 0 and 1. To have a closer look into the outputs from these numerical 
experiments, we depict in Fig.  4 cross sections of the angular manifold, over 
q and over x, thus leading to regression lines and conditional quantiles for the 
Husler–Reiss (top), Logistic (central), and Coles–Tawn (bottom) models. Once 
more, we see that the fits are fairly reasonable overall although a bit more of bias 
is visible for q closer to 0 and 1, as can be seen in the charts of the conditional 
quantile curves. Interestingly, it can also be noticed in Fig. 4 that regression lines 
are approximately linear for the Logistic model, and we prove that this indeed is 
the case for large x; see Appendix C.

Figure  4 also anticipates a feature that we will revisit in Sect.  4.2, i.e. that 
the more the regression lines change with q, the larger is the uncertainty; this 
explains why the bands of the regression lines for Scenario  3 are wide, while 
those of Scenario 1 are narrow. Similarly, the more abruptly the regression lines 
change with q, the larger is the uncertainty. For example, for Scenario 2 it can be 
noticed that the true regression line for q = 0.9 attains values much larger than the 
cross sections q = 0.1, 0.45, 0.55 , and indeed the bands are wider for q = 0.9.

Motivated by the computational experience of one of the authors on a recent 
paper (Galasso et al. 2022), we have opted not to set a prior on J. This allows for 
any user to replicate our Monte Carlo simulation studies, and not just those who 
have access to Google Cloud, Amazon Web Services or a University server, as our 
methods are easy to code and can be readily implemented in a standard desktop 
machine; for example, the full Monte Carlo simulation study reported in Sect. 4.2 
takes around 5 hours to run on a 3,2 GHz 6-Core Intel Core i7 (64 GB) machine. 
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Fig. 3   True regression manifold L  , as defined in (5), along with its posterior mean estimate obtained using the 
methods from Sect. 3 for Husler–Reiss, Logistic, and Coles–Tawn bivariate extreme value models (top to bot-
tom) on a single-run experiment. Simulated data are overlaid on one of the faces of the box
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Fig. 4   Posterior mean regression lines L
q
 for q ∈ {0.1, 0.5, 0.9} and x ∈ (0, 20] (left) and conditional 

quantile curves {y
q∣x ∶ q ∈ (0, 1)} along with credible bands, for x = {1, 10, 20} (right) for Husler–Reiss, 

Logistic, and Coles–Tawn bivariate extreme value models (top to bottom) on a single-run experiment. 
The dashed lines represent the true



610	 M. de Carvalho et al.

1 3

Hence, rather than setting a prior on J, we have opted for the computationally 
appealing and effective approach of Hanson et  al. (2017) where J is chosen to be 
maximized subject to the number of basis functions being smaller or equal to the 
number of pseudo-angles. Part of the rationale for setting a large J is the well-known 
fact that, as J → ∞ , Bernstein polynomials can uniformly approximate any continu-
ous and bounded density on the unit interval (Altomare and Campiti 1994, p. 333) 
and multivariate Bernstein polynomials obey a similar property (Barrientos et  al. 
2015, Sect. 4.1). As shown in Sect. 3 of the supplementary material, this strategy of 
choosing J of Hanson et al. (2017) leads to comparable performance, if not superior, 
with respect to the likelihood ratio changepoint approach of Guan (2016).

4.2 � Monte Carlo simulations

To conduct a simulation study we generate 500 Monte Carlo samples of size 
n = 5 000 thresholded at the 98% quantile for the three scenarios described in 
Sect. 4.1. We use the MCMC algorithm as described in Sect. 4.1 with the same prior 
specification. The performance of our methods will be visualized via a comparison 
of posterior mean estimates of the regression lines with the true regression lines Lq 
for a few fixed q ∈ (0, 1) . We focus on the region x ∈ (0, 20] as the bivariate extreme 
value concentrates most of its mass (at least 90%) in the set (0, 20] × (0, 20].

The regression lines corresponding to the described scenarios are shown in Fig. 5. 
Figure  5 shows that the model fits the data for all scenarios reasonably well but 
again it can be noticed that the fit is slightly less accurate in Scenario 3 for q = 0.9 . 
As mentioned in Sect. 4.1, our computational experience with the method leads us 
to believe that this is due to how suddenly the cross section changes for higher q, as 
indeed the true regression line for q = 0.9 attains values much larger than those of 
q = 0.1, 0.45 , and 0.55. Interestingly, while the Monte Carlo means for Scenario 1 
are in line with the true there is some asymmetry visible in the rare outlying fits in 
Fig. 5 though their frequency is not sufficient to shift the Monte Carlo means away 
from the true.

In addition to the numerical experiments reported above we have conducted a 
battery of other studies. Section 3 of the supplementary material includes a sensi-
tivity analysis on the selected threshold as well as a similar Monte Carlo study for 
n = 10 000 . The results in the supplementary material suggest similar findings when 
the 95% quantile is used for thresholding the data, but with the asymmetry effect 
mentioned above being slightly attenuated; one can also notice in that additional 
study a moderate improvement in the fits when n = 10 000 . Beyond the simulation 
scenarios examined above, we also report in the supplementary material an addi-
tional scenario with a discrete angular measure; despite the fact that our prior is 
defined on the space of continuous angular measures the results available from the 
supplementary material indicate a satisfactory performance even on the latter case.
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5 � Real data illustration

5.1 � Data, preprocessing, and applied rationale for the analysis

5.1.1 � Description and scope

We now apply the proposed method to two of the world’s biggest stock markets—
the NASDAQ (National Association of Securities Dealers Automated Quotations) 
and the NYSE (New York Stock Exchange). According to the Statistics Portal of 
the World Federation of Exchanges (https://​stati​stics.​world-​excha​nges.​org), the total 
equity market capitalization of NASDAQ and NYSE are respectively 20.99 and 
24.67 trillion US$, as of April 2021, thus illustrating well the scale of these play-
ers in the worldwide stock-exchange industry. The data, available from the R pack-
age DATAstudio, were gathered from Yahoo Finance, and consist of daily closing 
prices of the NASDAQ and NYSE composite indices over the period from February 

Fig. 5   Posterior mean regression lines L
q
 for q ∈ {0.1, 0.45, 0.55, 0.9} and x ∈ (0, 20] for each of the 500 

Monte Carlo samples (gray lines) plotted against the true (dashed line) for Husler–Reiss, Logistic, and 
Coles–Tawn bivariate extreme value models (top to bottom). The solid black line represents the Monte 
Carlo mean

https://statistics.world-exchanges.org
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5, 1971 to June 9, 2021. A key goal of the analysis to be reported in Sect. 5.2 is 
to showcase how our model can be used to learn about the conditional risk of an 
extreme loss in the NYSE, given an extreme loss in the NASDAQ. Before we pre-
sent the bulk of the conditional risk analysis via our methods we first offer below 
some remarks on the data.

We will focus on negative log returns, which can be regarded as a proxy for losses 
and which consist of first differences of prices on a log-scale; the resulting sequence of 
n componentwise weekly maxima losses for NASDAQ and NYSE is denoted below as 
{(Xi,Yi)}

n
i=1

 . The sample period under analysis is sufficiently broad to cover a variety of 
major downturns and selloffs including, for example, those related with the 2007–2010 
subprime mortgage crisis, the ongoing China–US trade war, and with the 2020 COVID-
19 pandemic. Similarly to Sect. 4, we convert negative log returns to unit Fréchet mar-
gins via the transformation (X̂i, Ŷi) = (−1∕ log{F̂X(Xi)},−1∕ log{F̂Y(Yi)}), where F̂X 
and F̂Y respectively denote the empirical distribution functions (normalized by n + 1 
rather than by n to avoid division by zero) of negative log returns for NASDAQ ( X  ) 
and NYSE ( Y ); the supplementary material includes the reverse analysis that swaps the 
roles of NASDAQ and NYSE (i.e. NASDAQ becomes Y and NYSE becomes X  ). To 
validate the use of our model we further test negative log returns on NYSE and NAS-
DAQ for multivariate regular variation (MRV) following methodology introduced by 
Einmahl et al. (2021). The results of the conducted analysis are presented in Sect. 4 of 
the supplementary material and suggest that at a 5% significance level there is no evi-
dence to reject that the pair (NYSE, NASDAQ) follows a MRV distribution for a broad 
range of thresholds.

5.1.2 � Visualization

The raw data and resulting preprocessed data are depicted in Fig. 6. As can be seen 
from the latter figure the composite indices exhibit a similar dynamics reacting to 
different economic shocks (9/11 attacks, 2001; 2008 financial crisis; China-US trade 
war started in 2018) alike. Also, as can be seen from Fig. 6, the shape of the scat-
terplot of the negative log returns brought to unit Fréchet margins in log-log scale 
above the boundary threshold evidences intermediate level of extremal dependence 
between negative log returns.

Before we focus on conditional risk (Sect.  5.2), we start by fitting the angu-
lar density via the Bernstein polynomial-based approach from Sect.  3.1. We fol-
low essentially the same settings for prior specification and MCMC as in Sect. 4, 
threshold the unit Fréchet data at its 95% quantile, set the number of basis functions 
using once more the approach of Hanson et al. (2017), and run an MCMC chain of 
length 25 000 with a burn-in period of 10 000 . The specified chain has the multi-
variate effective sample size of 1 726 657 . The obtained fit for the angular density is 
reported in Fig. 6 (right). As is illustrated by this plot most of the observed pseudo-
angles lie closer to the middle of the interval (0,  1) and the estimate resembles a 
bell-shaped right-skewed density which suggests there is an asymmetric intermedi-
ate dependence between extremal losses on NASDAQ and NYSE composite indices. 
Such asymmetry suggests a tendency for the losses of the NYSE to be more extreme 
than those of NASDAQ, when both are extreme.
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5.2 � Modeling conditional risk via regression manifolds

This section presents the bulk of the conditional risk analysis. Specifically, we 
will show how the regression manifold can be used to model the conditional 
risk of an extreme loss on the NYSE, given an extreme loss on the NASDAQ. 
Figure  7a represents the resulting estimates of the regression manifold on the 
original scale together with cross-sections in q and x, respectively in (b) and (d) 
for negative log-returns on NASDAQ and NYSE composite indices in the origi-
nal margins. Having evaluated the regression manifold, we are now ready to 
extract from its cross sections information on by how much the NYSE can plum-
met, conditionally on the NASDAQ plummeting. To examine this, we report in 
Table 1 predicted 75% , 90% and 95% quantiles of losses on NYSE evaluated for 
1% , 2% and 3% weekly maxima losses on NASDAQ. This table follows from the 
regression manifold, and its interpretation is as follows. First, from a qualitative 

(a)

(b) (c)

Fig. 6   (a) NASDAQ (red) and NYSE (blue) composite indices. (b) Scatterplot of negative log returns of 
NASDAQ and NYSE composite indices converted to unit Fréchet margins; the solid line corresponds to 
the boundary threshold in the log-log scale, with both axes being logarithmic. (c) Angular density estimate  
with 95% credible band along with a rug of pseudo-angles
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Table 1   Predicted 75% , 90% 
and 95% quantiles of losses on 
NYSE evaluated for 1% , 2% and 
3% weekly maxima losses on 
NASDAQ, with 95% credible 
intervals in brackets; negative 
log-returns used as proxy for 
losses

NYSE NASDAQ

0.01 0.02 0.03

75% 0.0129 0.0194 0.0266
(0.0125, 0.0134) (0.0187, 0.0201) (0.0259, 0.0274)

90% 0.0156 0.0233 0.0315
(0.0153, 0.0159) (0.0229, 0.0237) (0.0309, 0.0319)

95% 0.0171 0.0249 0.0333
(0.0166, 0.0177) (0.0245, 0.0255) (0.0328, 0.0339)
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Fig. 7   (a) Posterior mean regression manifold on the original scale for NYSE given NASDAQ along with  
joint negative log returns overlaid on one of the faces of the box. (b)  QQ-plot of randomized quantile 
residuals; the dashed line represents the posterior mean plotted along with credible bands. (c)  Poste-
rior mean regression lines L

q
 for q ∈ {0.1, 0.5, 0.9} for NYSE given NASDAQ along with 95% cred-

ible bands and plotted against joint negative log returns. (d) Posterior mean conditional quantile curves 
{y

q∣x ∶ q ∈ (0, 1)} of negative log returns on NYSE for x ∈ {0.01, 0.02, 0.03} , along with 95% credible 
bands, corresponding to negative log returns on NASDAQ in the original margins
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viewpoint, Table  1 indicates that conditionally on the NASDAQ plummeting, 
the NYSE tends to plummet reasonably by the same amount. Second—and more 
interesting from a financial outlook—are the quantitative claims that can be made 
from the analysis. For example, Table  1 indicates that whenever there is a 1% 
weekly maximum loss on the NASDAQ, only in 5% of the times we expect to suf-
fer a loss in the NYSE above 1.71% . As another example, Table 1 indicates that 
whenever there is a 3% weekly loss on the NASDAQ, only in 5% of the times we 
expect to suffer a loss in the NYSE above 3.33%.

As can be seen from Fig.  7 the regression manifold is highly non-linear and 
the regression lines on the middle graph substantially differ from those corre-
sponding to independence and tend to be closer to the identity line. Moreover, the 
cross-sections for different values of x reveal considerable variation in quantiles 
of y supporting the conclusion about presence of the dependence between nega-
tive log-returns. To assess the quality of the fitted regression manifold we depict 
in Fig. 6b a QQ-plot of a version of Dunn and Smyth (1996) randomized quantile 
residuals adapted to our model, defined as �i = Φ−1(GH(Yi ∣ Xi)) , for Yi + Xi > u , 
with u denoting the 95% quantile of the pseudo-radius. The latter chart depicts 
randomized quantile residuals against the theoretical standard Normal quantiles, 
and it suggests an acceptably good fit of the proposed model. Beyond the results 
shown above we have conducted a variety of other empirical analysis which are 
available from the supplementary material (Sect.  5). In particular, we report in 
the supplementary material the fitted regression manifold that results from com-
bining our random Bernstein model with the approximation from Sect.  3.2. As 
expected, the results are tantamount to the ones presented herein.

6 � Closing remarks

We propose a regression-type model for the setup where both the response and 
the covariate are extreme. The modeling starting point is the result that the limit-
ing behavior of the vector of properly standardized componentwise maxima is 
given by a multivariate extreme value distribution. Conceptually, the model is 
then constructed in a similar fashion as in quantile regression, that is, by assess-
ing how the conditional quantile of the response reacts to changes in the covari-
ate while it takes into account the latter asymptotic result. An important target 
in the proposed framework is the regression manifold, which consists of a fam-
ily of regression lines obeying the proviso of multivariate extreme value theory. 
A Bernstein polynomial prior on the space of angular densities is used to learn 
about the model from data, with numerical studies showcasing its flexibility. 
While it is not too difficult to show that a variant of our model for the angu-
lar density is consistent under the same proviso as that of Sabourin and Naveau 
(2014, Sect. 3.3), as can be seen from Sect. 1 of the supplementary material, the 
large sample behavior of the proposed methods under a more realistic asymp-
totic framework remains an open question for future analysis. A comprehensive 
asymptotic analysis related with the current framework can be found in Padoan 
and Rizzelli (2022).
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One could wonder why not to resort to statistical models for nonstationary 
extremes (e.g. Coles 2001, Sect. 6) as an alternative to methods proposed herein, 
as these can be used for assessing the effect of covariates on an extreme-valued 
response, by indexing the parameters of the GEV distribution with a covari-
ate. Yet, since the latter models are built from the univariate theory of extremes 
they are not tailored for conditioning on another variable being extreme, as they 
fail to take on board information from the dependence structure between the 
extremes. Other related approaches include extremal quantile regression methods 
(Chernozhukov 2005), which similarly to the statistical models for nonstation-
ary extremes, have not been designed for conditioning on another variable being 
extreme, as they do not take into account the dependence structure between the 
extremes.

While not explored here, the comparison of the fitted models for both Y ∣ X = x 
and X ∣ Y = y , would look natural for some applied settings of interest so to get an 
idea of cause and effects, and indeed related ideas are analyzed by Mhalla et  al. 
(2020). We close the paper with some comments on future research. For regressions 
with many predictors, it is likely that most covariates will have little effect on the 
response and thus one could wonder how to devise a version of the proposed method 
that shrinks towards zero the effect of such irrelevant covariates; the development of 
a Lasso (Tibshirani 1996) version of the proposed model would thus seem natural 
for such situation, and is left as an open problem for future research. Another natural 
avenue for future research would be to devise regression-type methods for exceed-
ances on exceedances by resorting to the so-called multivariate generalized Pareto 
distribution (Kiriliouk et al. 2019), rather than with the multivariate extreme value 
distribution as herein. Additionally, the development of a version of the model that 
could take into account asymptotic independence by resorting to the hidden angular 
measure (Ramos and Ledford 2009), rather than the standard angular measure as 
herein, would seem natural as well. Finally, while the proposed inference methods 
apply to both the block maxima and threshold exceedance frameworks for multi-
variate extremes, if only block maxima are available there is still room for further 
improving the inferences of regression manifolds, and such topic might be worth 
further investigation and future analysis; a natural starting point would be to work 
directly with the likelihood of the multivariate extreme value distribution along the 
lines of what is discussed, for instance, in Coles (2001,  Sect.  8.2.2) and Dombry 
et al. (2017).

Appendix

Appendix A. Conditional bivariate extreme value distribution

Here we derive the expression for the conditional bivariate extreme value distribu-
tion function in (10). Sklar’s theorem (Nelsen  2006,  Theorem  2.3.3), implies that a 
joint bivariate distribution function G ∶ ℝ

2
→ [0, 1] with continuous marginal distri-

butions GX ∶ ℝ → [0, 1] and GY ∶ ℝ → [0, 1] can be uniquely represented through 
a copula function C for (x, y) ∈ ℝ

2 G(x, y) = C(GX(x),GY (y)), or, equivalently, 
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C(u, v) = G(G−1
X
(u),G−1

Y
(v)) , for (u, v) ∈ [0, 1]2 , where G−1

X
(q) = inf

{
x ∶ GX(x) ≥ q

}
 . 

Using the following well-known property of copulas,

we calculate the conditional distribution (Y ∣ X) as

In our setting

Assuming H is absolutely continuous with density h, we have

where �(u, v) = log v∕ log uv . Then, the conditional copula has the following form

which in turn yields

where w(x, y) = x∕(x + y).

Appendix B. Soft‑maximum approximation for regression manifold of perfectly 
dependent extremes

Here we give details on the soft maximum approximation for the regression lines for 
perfectly dependent extremes claimed in (12). We use a smooth approximation of a 
maximum function called soft-maximum,

CV∣U(v ∣ u) ∶= ℙ(V ≤ v ∣ U = u) =
�C(u, v)

�u
, (u, v) ∈ [0, 1]2,

GY∣X(y ∣ x) = CV∣U(e
−1∕y ∣ e−1∕x).

C(u, v) = exp

[
−2∫

1

0

max{−w log u,−(1 − w) log v}H(dw)

]
.

�

�u ∫
1

0

max{−w log u,−(1 − w) log v}H(dw)

= −
�

�u

(
log u∫

1

�(u,v)

wH(dw) + log v∫
�(u,v)

0

(1 − w)H(dw)

)

= −u−1 ∫
1

�(u,v)

wh(w) dw − (log u log2 v − log2 v log u)
u−1

log3 uv
h(�(u, v))

= −u−1 ∫
1

�(u,v)

wh(w) dw,

CV∣U(v ∣ u) = 2u−1C(u, v)∫
1

w(u,v)

wh(w) dw,

GY|X(y ∣ x) = 2 exp

{
−2∫

1

0

max

(
w

x
,
1 − w

y

)
h(w) dw + x−1

}
∫

1

w(x,y)

wh(w) dw, x, y > 0,
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which is infinitely differentiable everywhere and converges to the maximum function 
as N → ∞ (Cook 2011). Then, the approximation of a multivariate GEV distribution 
function for the case of perfect dependent extremes, G(�, y) = max{x−1

1
,… , x−1

p
, y−1} 

is

and its partial derivative of order d is

This yields the following approximation of the conditional multivariate GEV den-
sity for perfectly dependent extremes,

and the following approximation for the corresponding conditional cumulative dis-
tribution function

f (z1,… , zd;N) =
1

N
log(eNz1 +⋯ + eNzd ),

G̃(�, y;N) = exp
{
−
1

N
log(eNy

−1

+ eNx
−1
1 +⋯ + e

Nx−1
p )

}

= (eNy
−1

+ eNx
−1
1 +⋯ + e

Nx−1
p )−1∕N ,

g̃(�, y;N) =
𝜕d

𝜕x1 ⋯ 𝜕xp𝜕y
G̃(�, y;N)

= y−2
p∏
i=1

(1 + iN)x−2
i

exp

(
Ny−1 +

p∑
i=1

x−1
i

)
(eNy

−1

+ eNx
−1
1 +⋯ + e

Nx−1
p )−1∕N−d.

g̃Y∣�(y ∣ �;N) =

y−2
p∏
i=1

(1 + iN)x−2
i

exp

�
Ny−1 +

p∑
i=1

x−1
i

�
(eNy

−1

+ eNx
−1
1 +⋯ + e

Nx−1
p )−1∕N−d

p−1∏
i=1

(1 + iN)
p∏
i=1

x−2
i

exp

�
p∑
i=1

x−1
i

�
(eNx

−1
1 +⋯ + e

Nx−1
p )−1∕N−p

= (1 + pN)y−2eNy
−1 (eNy

−1

+ eNx
−1
1 +⋯ + e

Nx−1
p )−1∕N−d

(eNx
−1
1 ⋯ + e

Nx−1
p )−1∕N−p

,

G̃Y∣�(y ∣ �;N) = ∫
y

0

g̃Y∣�(z ∣ �) dz

=(1 + pN)(eNx
−1
1 +⋯ + e

Nx−1
p )1∕N+p

∫
y

0

z−2eNz
−1

(eNz
−1

+ eNx
−1
1 +⋯ + e

Nx−1
p )−1∕N−d dz

=
(1 + pN)(−1∕N)

−1∕N − d + 1
(eNx

−1
1 +⋯ + e

Nx−1
p )1∕N+p

(eNy
−1

+ eNx
−1
1 +⋯ + e

Nx−1
p )−1∕N−d+1

=

(
eNy

−1

+ eNx
−1
1 +⋯ + e

Nx−1
p

eNx
−1
1 +⋯ + e

Nx−1
p

)−1∕N−p

.
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Passing the last expression to the limit as N → ∞ provides an ansatz for the true 
conditional distribution function

with x1,… , xp, y > 0 , from where (12) follows.

Appendix C. Exact and limiting regression manifolds for logistic model

Here we give details on how the exact (15) and approximated (14) regression mani-
folds for the logistic model can be derived. The derivations below require the use of 
Lampert W function (Borwein and Lindstrom 2016) on which some properties and 
details can be found in the supplementary material.

C.1. Exact regression manifold  Here we compute the conditional quantiles for bivar-
iate extreme value distribution and their linear approximation for large x. Using 
(10), we calculate the conditional distribution function for the logistic model; for 
(x, y) ∈ (0,∞)2 , it follows that

The conditional quantiles behave differently depending on the strength of depend-
ence between extremes. The special case of the logistic model is for � = 1 , corre-
sponding to independence between extremes for which the family of regression lines 
are known to be given by (11). We now derive conditional quantiles for bivariate 
dependent extremes, i.e. when � ∈ [0, 1) . Since y ↦ GY|X is continuous, a condi-
tional quantile is a solution to

which can be written in terms of the Lambert W function. Rewriting (22) as

gives

G̃Y∣�(y ∣ �) =

{
1, y ≥ min(x1,… , xp)

0, y < min(x1,… , xp)

GY|X(y ∣ x) = G(x, y)(x−1∕� + y−1∕�)�−1x−1∕�−1x2 exp(x−1)

= exp{−(x−1∕� + y−1∕�)� + x−1}(x−1∕� + y−1∕�)�−1x1−1∕� .

(22)exp{−(x−1∕� + y−1∕�)�}(x−1∕� + y−1∕�)�−1x1−1∕� exp(x−1) = q,

exp
{
−

�

� − 1
(x−1∕� + y−1∕�)�

}
(x−1∕� + y−1∕�)(�−1)�∕(�−1)x(�−1)∕��∕(�−1)

× exp
{

�

� − 1
x−1

}
= q�∕(�−1)

⇔ exp
{

�

1 − �
(x−1∕� + y−1∕�)�

}
�

1 − �
(x−1∕� + y−1∕�)� =

�

1 − �
x−1 exp

{
�

1 − �
x−1

}
q�∕(�−1)

⇔
�

1 − �
(x−1∕� + y−1∕�)� = W

(
�

1 − �
x−1e�∕(1−�)x

−1

q�∕(�−1)
)
,

(23)yq∣x =

[{
1 − 𝛼

𝛼
xW

(
𝛼

1 − 𝛼
x−1e𝛼∕(1−𝛼)x

−1

q𝛼∕(𝛼−1)
)}1∕𝛼

− 1

]−𝛼
x, x > 0.
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From properties of the Lambert W function (see supplementary material for details) 
it follows that

and that the conditional quantiles tend to infinity as x → ∞.

C.2. Limiting regression manifold  Below we show that (14) holds. To find �q and �q 
we use the expansion of the principal branch of the Lambert W function, a solution 
to z = wew when z > 0 , around 0, that is

where O(z) is big-O of z. Substituting in (23) the expansion of W leads to

and taking x → ∞ we find the linear asymptote of x ↦ yq∣x which is based on

and, the more involved calculation of �q . The derivative of the asymptotic expansion 
of a function does not necessarily correspond to the asymptotic expansion of the 
derivative of the function; hence, we use L’Hospital with (23) and only then inject 
the asymptotic expansions. We have then after some tedious derivations that

The resulting linear approximation is as follows, for q ∈ (0, 1) and x ≫ 1:

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10687-​022-​00446-6.
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lim
x→∞

xW
(

�

1 − �
x−1 e�∕(1−�)x

−1

q�∕(�−1)
)
=

�

1 − �
q�∕(�−1),

W(z) =

∞∑
n=1

(−n)n−1

n!
zn = z + O(z2),

yq∣x =

[{
1 − �

�
x

(
�

1 − �
x−1e�∕(1−�)x

−1

q�∕(�−1) + O(x−2e2�∕(1−�)x
−1

)

)}1∕�
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]−�
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[{
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]−�
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(24)�q = lim
x→∞

yq∣x

x
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(25)�q = lim
x→∞

(
yq∣x − �qx
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=

�

1 − �
{q1∕(�−1) − 1}−�−1{q�∕(1−�) − 1}q1∕(�−1).

ỹq∣x =
𝛼

1 − 𝛼
{q1∕(𝛼−1) − 1}−𝛼−1{q𝛼∕(1−𝛼) − 1}q1∕(𝛼−1) + {q−1∕(1−𝛼) − 1}−𝛼x = 𝛼q + 𝛽qx.
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