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Statistical modelling of the magnitude and the frequency of extreme observations is

fundamental for a variety of sciences. In this paper, we develop statistical methods

of similarity-based clustering for heteroscedastic extremes, which allow us to group

time series of independent observations according to their extreme-value index and

scedasis function (i.e., the magnitude and frequency of extreme values, respec-

tively). Clustering scedasis functions and extreme-value indices involves the

challenge of grouping objects composed of both a function (scedasis) and a scalar

(extreme-value index), and thus the need to partition a product-space. Our analysis

reveals an interesting mismatch between the magnitude and frequency of extreme

losses on the London Stock Exchange and the corresponding economic sectors of

the affected stocks. The analysis further suggests that the dynamics governing the

comovement of extreme losses in the exchange contains information on the

business cycle.
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1 | INTRODUCTION

Small-probability events—such as a stock market crash—often lead to devastating economic and financial aftershocks. The need to assess the like-

lihood of such rare events is now widely understood, and statistics of extremes (Balkema & Embrechts, 2007; Beirlant et al., 2004; Coles, 2001;

Davison & Huser, 2015; de Haan & Ferreira, 2006; Embrechts et al., 1997; Resnick, 2007) provides an appropriate probabilistic framework to

address this issue in a mathematically rigorous manner. An overarching principle of statistics of extremes is that any sensible assessment of risk

requires the application of resilient methods that are able to extrapolate into the tails of a distribution—often beyond observed extremes in a

dataset. For random samples, a key result in statistics of extremes is that if there is a nontrivial limiting distribution for the normalized sample max-

ima, then it must be a generalized extreme-value (GEV) distribution (McNeil et al., 2015, Theorem 7.3). The shape parameter of the GEV distribu-

tion governs the rate of tail decay, and is also known as extreme-value index, or tail index.

The main goal of this paper is to develop cluster analysis methods for highly volatile time series of extremes. Applying methods from statistics

of extremes to finance has a long history, including, Danielsson and de Vries (1997), Longin and Solnik (2001), Poon et al. (2003), Herrera and

Schipp (2013), Hilal et al. (2014), and Chavez-Demoulin et al. (2014). The monograph recently edited by Longin (2016) contains an up-to-date sur-

vey of methods and applications for statistical modelling of extreme values in finance. To model the dynamics of extremes over time, parametric

methods to handle nonstationary data have been proposed by Davison and Smith (1990), Chavez-Demoulin and Davison (2005), and Eastoe and

Tawn (2009), among others. More recently, Einmahl et al. (2016) have developed a semiparametric modelling and inference framework for hetero-

scedastic extremes; their two main objects of interest being the scedasis function, which describes the dynamics of extremes over time, and the

extreme-value index, which describes the magnitude of extremes.
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A recent paper by Ando and Bai (2017), which relates to ours in terms of applied motivation, considers the issue of clustering financial time

series based on observable and unobservable factors. In contrast, our approach clusters financial time series based on their resemblance in terms

of risk. More precisely, we build on Einmahl et al. (2016) and develop a clustering algorithm that allows us to group stocks that share similarities in

their univariate distribution in terms of the overall magnitude and the frequency of extreme losses. Since the extreme-value index carries informa-

tion on the rate of tail decay while the scedasis tracks the evolution of extreme losses over time, these parameters form a natural basis for cluster-

ing stocks to address our motivating question.

Clustering is an unsupervised learning problem, in the sense that the ‘true’ cluster labels are unknown and need to be estimated from the

data. Introductions to the subject of cluster analysis include Hastie et al. (2009), Everitt et al. (2011), and King (2014). The huge literature on data

clustering is difficult to survey in a few paragraphs, but a concise description of mainstream approaches is offered by Hennig and Liao (2013). The

most popular clustering approaches may be classified among similarity-based, model-based, and/or hierarchical clustering techniques. Similarity-

based methods include K-means (MacQueen, 1967) and K-medoids (Kaufman & Rousseeuw, 1987). Model-based clustering is typically based on

mixture models (Fraley & Raftery, 2002), whereas hierarchical clustering builds hierarchies of clusters, often represented in so-called dendograms

(Hastie et al., 2009). Hennig and Liao (2013) recently highlighted the lack of clear guidance on choosing an appropriate clustering algorithm for a

given problem, despite the many approaches that have been proposed in the literature. The literature discussing extremes is much sparser,

although much has been written about the clustering of extreme events within time series induced by short-term temporal dependence (see,

e.g., Leadbetter et al., 1983). Clustering algorithms for parallel time series, tailored to specific extreme-value applications, are often intrinsically

related to the concept of dimension reduction. For example, Bernard et al. (2013) developed a clustering method for spatial climate extremes, and

Chautru (2015) and Vettori et al. (2020) proposed clustering and dimension reduction techniques for multivariate extreme events based on tree

mixtures.

Clustering stocks with a similar scedasis function and extreme-value index entails clustering objects defined by the combination of a

function (scedasis) and a scalar (extreme-value index); recently, there has been much interest in clustering complex objects such as functions, and

the development of methods for clustering functional data is still an area of ongoing research, both from applied and theoretical viewpoints

(Delaigle et al., 2012; Peng & Müller, 2008; Wang et al., 2015).

To our knowledge, our paper is pioneer on tackling the challenging problem of performing a cluster analysis of both functions and scalars; to

tackle this problem, we develop a clustering approach that can be seen as a K-means method, but where clustering is executed in a product-space

defined in terms of the space of all scedasis functions and the positive real line. A weight parameter is then applied as defined by the analyst to

control whether the clustering algorithm should prioritize the frequency or the magnitude of extreme losses, which are respectively controlled by

the scedasis function and the extreme-value index. The proposed approach also allows for clustering stocks with similar risk loss patterns, by iden-

tifying affinities in time-varying value-at-risk functions. To examine the periods of highest market uncertainty and how these affect different

stocks, we also explore how the maxima of the stocks' scedasis functions are spread over time. Intuitively, if the maxima of all scedasis functions

coincided at a single time point, this would imply a perfect synchronization among all the examined stocks, and thus the largest market fluctua-

tions would reflect similarly on all stocks. To summarize this information, we define the mode mass function, which can be used to assess the

degree of synchronization of the maximum frequency of extreme losses between stocks. The latter approach has some connections with multivar-

iate extreme value modelling, which has been widely used by practitioners after the seminal papers of Longin and Solnik (2001) and Poon et al.

(2004). Note, however, that in the current paper we focus on univariate, but time-varying, characteristics of extremes, and as such we do not esti-

mate extremal dependence.

In Section 2, we discuss a K-cluster configuration for statistics of heteroscedastic extremes, and we introduce our similarity-based clustering

algorithm, as well as the mode mass function. Numerical experiments are reported in Section 3, and the analysis of the London Stock Exchange

data is documented in Section 4. Section 5 concludes with a discussion.

2 | CLUSTER ANALYSIS FOR PATTERNS OF EXTREME VALUES

2.1 | Cluster-based proportional tails model

Our starting point for modelling relies on an extended version of Einmahl et al. (2016) formulated for K time series clusters. We assume that the

true data generating process consists of N time series partitioned into blocks with homogeneous scedasis functions and extreme-value indices.

Specifically, the N time series are partitioned into K ⩽N blocks Y ½1� ,…,Y ½K�, where the kth block consists of N½k� time series of length T, that is,

Y ½k� ¼
Y ½k,1�1 … Y ½k,1�T

..

. ..
. ..

.

Y ½k,N
½k� �

1 … Y ½k,N
½k� �

T

2664
3775: ð1Þ
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In Section 2.2, we assume that we observe all time series, but we ignore their underlying cluster labels (i.e., the first element in the super-

scripts in (1)), which need to be estimated. Here, we assume that the jth time series in the kth cluster, that is, the jth row in group Y ½k�, is formed

by independent random variables with infinite upper endpoints

Y ½k,j�1 ,…,Y ½k,j�T

and with respective continuous distributions F½k,j�1 ,…,F½k,j�T .

Following Einmahl et al. (2016), we assume that there exists a non-negative limit function c½k�, called the scedasis function, such that for each

time series j in the kth cluster,

c½k�
t
T

� �
¼ lim

y!∞

1�F½k,j�t ðyÞ
1�F½k,j�ðyÞ , ð2Þ

for some unknown continuous baseline distribution function F½k,j� with an infinite upper endpoint. Notice that in each cluster (k) the different

time series may possess various baseline distributions, but they share the same scedasis function (c½k�), as the left-hand side of (2) does not

depend on j. For identifiability reasons, we assume that
Ð 1
0c
½k�ðwÞdw¼1, such that c½k� is a valid density on the unit interval ½0,1�. Generally

speaking, the scedasis density carries information on the time dynamics of extremes; for instance, a uniform scedasis function (for which

c½k�ðwÞ¼1, w� ½0,1�) corresponds to a constant frequency of extremes over time. We further assume that for each cluster k, time series j, and time

point t, one has

lim
m!∞

U½k,j�t ðmyÞ
U½k,j�0 ðmÞfc½k�ðt=TÞgγ

½k� ¼ yγ
½k� ð3Þ

for some constant γ½k� > 0, where U½k,j�t ¼f1=ð1�F½k,j�t Þg
 

and ‘ ’ is the left continuous inverse function. In other words, the data in each cluster k

are heavy-tailed with rate of tail decay controlled by the extreme-value index γ½k�. Thus, despite the fact that all variables in cluster k have their

own distributions, we assume that their tail behaviour is characterized by the pair ðc½k� ,γ½k�Þ. Therefore, the extremal behaviour of these N½k� time

series can be summarized by a single function c½k�, describing the time variation in the frequency of extremes and a scalar γ½k� >0, controlling the

overall amplitude of the largest extremes.

For example, (2) and (3) are satisfied when the data have a Pareto-like tail, that is,

1�F½k,j�t ðyÞ�
y

a½k,j�c½k�ðt=TÞ
� ��1=γ½k�

, y!∞, ð4Þ

where a½k,j� >0 is an overall scale parameter, in which case the baseline distribution may be chosen as the Pareto distribution

F½k,j�0 ðyÞ¼1�ðy=a½k,j�Þ�1=γ
½k�
, with y > a½k,j�. From this example, it is clear that the extreme-value index γ½k� controls the tail weight, while c½k�ðt=TÞ is a

time-varying relative scale component, both specific to the kth cluster. The extra time-invariant overall scale parameter a½k,j� >0 accounts for possi-

ble differences in scales between the different time series grouped together in the same cluster.

2.2 | Estimation and inference

As mentioned above, in practice the cluster labels are unknown, so instead of having data partitioned as in (1), we observe N time series

written as Yi
1,…,Yi

T , which consist of independent observations respectively distributed as Fi1,…,FiT , for all i, but we ignore the data structure

and their tail properties. Instead, the first step of our approach targets estimations for a family of scedasis densities and extreme-value indices

denoted by

fðci ,γiÞgNi¼1:

Under the K-cluster proportional tails model described in Section 2.1, some of these scedasis functions and extreme-value indices are the same,

but we estimate them separately.

Let Yi
ð1Þ ⩽…⩽Yi

ðTÞ be the order statistics from the ith time series, Yi
1,…,Y

i
T , and k� kT be an intermediate sequence, that is, kT!∞ and

kT=T!0, as T!∞. To estimate each element in the family of scedasis functions, we use the nonparametric kernel-based estimator of Einmahl

et al. (2016) for all i, that is

DE CARVALHO ET AL. 3 of 18
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ĉiðwÞ¼1
k

XT
t¼1

IðYi
t >Y

i
ðT�kÞÞKbðw� t=TÞ, w� ½0,1�, ð5Þ

where Kbð�Þ¼Kð�=bÞ=b is a kernel with bandwidth b� bT >0 such that bT!0 and bTkT!∞ as T!∞. It is well known that the choice of kernel

does not affect the inference much, whereas bandwidth selection is crucial. Following Marron (2001, p. 533), we advocate conducting inference

over a wide range of bandwidths as a way to assess the sensitivity and reliability of the inference to the bandwidth.

To estimate the family of extreme-value indices, we follow Einmahl et al. (2016) and use the Hill estimator defined as

γ̂i¼1
k

Xk
t¼1

log
Yi
ðT�tþ1Þ
Yi
ðT�kÞ

 !
, ð6Þ

for all i. As shown in Einmahl et al. (2016), the estimator (6) is strongly consistent and asymptotically normal under the heteroscedastic propor-

tional tail model described in Section 2.1 and mild additional regularity conditions. Furthermore, it does not depend on the associated scedasis

function ci as T!∞.

Asymptotic normality, and thus weak consistency, for the kernel-based estimator (5) is also established in Einmahl et al. (2016, p. 49), but

under rather stringent conditions. These appealing large sample properties suggest that our clustering algorithm developed in Section 2.3 should

perform well in practice, which is confirmed by our numerical experiments in Section 3, especially for a large sample size T. The outcome of this

estimation stage yields N pairs of scedasis and extreme-value estimates, fðĉi , γ̂iÞgNi¼1, and we next describe how such pairs can be partitioned into

K clusters.

2.3 | Similarity-based clustering for heteroscedastic extremes

Clustering scedasis functions and extreme-value indices requires overcoming the challenge of clustering objects composed of both a function

(scedasis) and a scalar (extreme-value index). To approach this problem, we consider a similarity-based clustering algorithm. Similarity-based clus-

tering methods usually require the true number of clusters K ⩽N to be either known or specified a priori. For these methods, a data point xi¼
ðxi1,…,xidÞ

T
should be assigned to a certain cluster if its distance to the cluster centre

m½k� ¼ ðm½k�1 ,…,m½k�d Þ
T

is minimal. Different variants lead to different concepts of a cluster centre, the most well-known being K-means (MacQueen, 1967) and

K-medoids (Kaufman & Rousseeuw, 1987). Whereas in the case of the K-means algorithm a cluster centre m½k� is defined by a statistic (e.g., a clus-

ter mean), in the K-medoids algorithm a cluster centre is defined by a data point itself. To measure the dissimilarity of a data point xi from a cluster

centre m½k�, it is common to resort to a dissimilarity function D :ℝ2d!½0,∞Þ, such that for all possible data points and cluster centres the following

properties are satisfied:

1. Non-negativity: Dðxi,m½k�Þ⩾0;

2. Identifiability: Dðxi ,m½k�Þ ¼0 if and only if xi¼m½k�;

3. Symmetry: Dðxi,m½k�Þ ¼Dðm½k�,xiÞ.

The most widely used dissimilarity function is the squared Euclidean distance

Dðxi ,m½k�Þ ¼
Xd
j¼1
ðxij�m½k�j Þ

2
:

As mentioned above, here we are faced with the need of extending the standard similarity-based clustering framework so to be able to

cluster both a function (scedasis) and a scalar (extreme value index). We mostly focus on the case where each cluster Y ½k� in (1) is characterized

by both the same scedasis function and extreme-value index, which we refer to as partitioning in the product-space Π¼C�ð0,∞Þ, where C
denotes the space of all scedasis functions (i.e., all densities defined on the unit interval). However, it might also be interesting in practice to

cluster time series according to their scedasis function—resulting in Kc clusters—or extreme-value index—resulting in Kγ clusters. We refer to

these cases as partitioning in the profile-spacesC and ð0,∞Þ. Clearly, K does not necessarily coincide with Kc and Kγ . This is the case when there

are no two time series that have the same scedasis function but a different extreme-value index, or vice versa. In general, one has

maxðKc,KγÞ⩽K ⩽KcKγ .

4 of 18 DE CARVALHO ET AL.
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Clustering is performed here with the aid of an encoder, that is, a map L : f1,…,Ng!f1,…,Kg assigning each time series i¼1,…,N to a cluster

label k� f1,…,Kg. Standard encoders assign single observations to a cluster (Hastie et al., 2009), while here whole sets of observations are

assigned simultaneously to a cluster.

In the time series context of heteroscedastic extremes, suppose that we are given a family of estimated scedasis functions and extreme-value

indices, fðĉi, γ̂iÞgNi¼1, obtained using the procedure discussed in Section 2.2. We measure dissimilarity by relying on a family of functions

Dα :Π�Π!½0,∞Þ, α� ð0,1Þ, Π¼C�ð0,∞Þ,

such that

lim
α!1

Dαðπi,πjÞ¼Dcðci,cjÞ, lim
α!0

Dαðπi,πjÞ¼Dγðγi,γjÞ, ð7Þ

where πi¼ðci,γiÞ�Π and πj¼ðcj,γjÞ�Π; with

Dc : C�C! ½0,∞Þ, Dγ : ð0,∞Þ�ð0,∞Þ! ½0,∞Þ,

being dissimilarity measures specific to the scedasis function and to the extreme-value index, respectively. Equation (7) requires dissimilarity in

the product-space to be compatible with the dissimilarities in the corresponding profile-spaces, when α!0 and α!1. Roughly speaking,

α� ð0,1Þ can also be interpreted as a tuning parameter, controlling whether the dissimilarity function should apply more weight to the dissimilarity

in terms of the scedasis density or the extreme-value index. Examples 1 and 2 below are two possible valid families of dissimilarity functions obey-

ing (7), although many others may be designed.

Example 1. (Convex linear dissimilarity in product-space). Let Dconv
α ðπi,πjÞ¼ αDcðci,cjÞþð1�αÞDγðγi,γjÞ,

where πi¼ðci,γiÞ�Π and πj¼ðcj,γjÞ�Π, with Dc : C!C and Dγ : ð0,∞Þ! ½0,∞Þ being dissimilarity measures.

Example 2. (Max-linear dissimilarity in product-space). Let Dmax
α ðπi,πjÞ¼ maxfαDcðci ,cjÞ,ð1�αÞDγðγi ,γjÞg,

where πi¼ðci,γiÞ�Π and πj¼ðcj,γjÞ�Π, with Dc : C!C and Dγ : ð0,∞Þ! ½0,∞Þ being dissimilarity measures.

It can be shown that if Dc and Dγ are distance functions, then so are Dconv
α and Dmax

α in Examples 1 and 2, respectively, for every value of

α� ð0,1Þ.
Algorithm 1 describes the K-means type of algorithm underlying our clustering procedure, detailing the three main steps: Initialization, cluster

(re)assignment and cluster-centre updating, of which the last two need to be recursively iterated until convergence. Below, we focus on

Dconv
α ðπi,πjÞ, with Dcðci,cjÞ¼ Ð 10fciðwÞ�cjðwÞg2dw and Dγðγi,γjÞ¼ ðγi� γjÞ2, although there are many other variants, for example, replacing the ℓ2

dissimilarity with the ℓ1 dissimilarity, or focusing on specific features of the scedasis function (e.g., its maximum) rather than its overall behaviour.

Unreported results show that the choice of dissimilarity measure (e.g., ℓ1 versus ℓ2) does not affect the results much. With our choice of

DE CARVALHO ET AL. 5 of 18
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dissimilarity measure, the algorithm outlined in Algorithm 1 becomes a genuine K-means algorithm in the sense that cluster centres are indeed

found using the actual means; more precisely, Step 2 can be replaced with μðnewÞ ¼ fðc½k� ,γ½k�ÞgKk¼1, where

c½k�ðwÞ¼ 1

N̂
½k�
X
LðiÞ¼k

ĉiðwÞ, γ½k� ¼ 1

N̂
½k�
X
LðiÞ¼k

γ̂i , ð8Þ

with N̂
½k� ¼PN

i¼1IðLðiÞ¼ kÞ, for all k; see Appendix A for a proof. Note that c½k�ðwÞ and γ½k� are compatible with the assumptions made in Section 2.1,

namely,
Ð 1
0c
½k�ðwÞdw¼1 and γ½k� >0. This implies that the cluster centres are formed by valid scedasis functions and extreme-value indices,

corresponding to a distribution in the maximum domain of attraction of the Fréchet distribution.

A K-medoids type of algorithm can also be applied, in which case the cluster centres correspond to the scedasis and extreme-value index of

the observed time series. In practice, this implies that Steps 0 and 1 are the same as for the K-means algorithm but that the cluster-centre

updating rule in Step 2 needs to be modified as follows: For each cluster k, search for the time series in this cluster that minimizes the total dissim-

ilarity to other time series in the same cluster

i ∗k ¼ arg min
fi:LðiÞ¼kg

X
Lði0 Þ¼k

Dαððĉi , γ̂iÞ,ðĉi
0
, γ̂i
0 ÞÞ,

and set c½k� � ĉi
∗
k , γ½k� � γ̂i

∗
k , for all k, and μðnewÞ ¼ ððĉi ∗1 , γ̂i ∗1 Þ,…,ðĉi ∗K , γ̂i ∗K ÞÞ. The K-medoids algorithm requires however a larger computational invest-

ment than the K-means approach.

The cluster centres of the K-medoids algorithm, c½k� ¼ ĉi
∗
k and γ½k� ¼ γ̂i

∗
k , are obviously compatible with the assumptions made in Section 2.1;

that is, c½k� is a valid scedasis function and γ½k� > 0, for all k. Other variants of the K-means and K-medoids algorithms for clustering heteroscedastic

extremes can also be constructed similarly, for example, using Partition Around Medoid (PAM) and Clustering Large Applications (CLARA)

(Kaufman & Rousseeuw, 2009, Ch. 2–3).

2.4 | Clustering risk loss patterns

This section capitalizes on the setup introduced so far to offer another natural way to cluster financial time series. Time-varying value-at-risk

(VaR), at confidence level p� ð0,1Þ, can be defined as VaRtðpÞ¼ inffy : FtðyÞ⩾pg, where p is typically taken as a high probability such as p¼0:95

or p¼0:99.

More specifically, using the scedasis function and extreme-value index estimators (5) and (6), respectively, we can obtain an estimator for the

(functional) value-at-risk for each time series i¼1,…,N, by

dVaRi

wðpÞ¼
âi

ð1�pÞγ̂i
ĉiðwÞ, w� ½0,1�, p!1, ð9Þ

where the estimated scale parameter âi¼YðT�kÞk
γ̂i=

PT
t¼1ĉ

iðt=TÞ1=γ̂i
n oγ̂i

is obtained in closed form by setting k=T¼ T�1
PT

t¼1f1�FitðYðT�kÞÞg, com-

bined with the Pareto-like tail specification (4).

6 of 18 DE CARVALHO ET AL.
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Below, we focus on DðdVaRi

wðpÞ, dVaRj

wðpÞÞ¼
Ð 1
0flogdVaRi

wðpÞ� logdVaRj

wðpÞg
2

dw. With this choice of dissimilarity measure, Algorithm 2

becomes a K-geometric means algorithm in the sense that cluster centres can be shown to be geometric means; more precisely, Step 2 can be

replaced with μðnewÞ ¼ fVaR½k�w ðpÞg
K

k¼1, where

VaR
½k�
w ðpÞ¼

Y
fi:LðiÞ¼kg

dVaRi

wðpÞ
0@ 1A1=N̂

½k�

, ð10Þ

with N̂
½k� ¼PN

i¼1IðLðiÞ¼ kÞ; the proof is tantamount to that in Appendix A.

2.5 | Mode mass function

To summarize the periods of highest market uncertainty and to see how these periods reflect on each specific stock, we suggest studying how

the modes of the various scedasis functions for different stocks are spread over time through the mode mass function. Assume that each estimated

scedasis function ĉi has a unique global maximum and define its unique mode mi � ½0,1� as

mi¼ arg max
w � ½0,1�

ĉiðwÞ, i¼1,…,N: ð11Þ

Note that (11) can also be written as mi¼ argmaxw � ½0,1�dVaRi

wðpÞ, under the Pareto-like tail specification in (4); recall Equation (9). A smoothed

version of the mode mass function may be computed using a beta kernel density as

M̂ðwÞ¼ 1
N

XN
i¼1

β w;νmi ,νð1�miÞ� �
, w� ½0,1�, ð12Þ

where βðw;a,bÞ denotes the Beta density function with parameters a,b>0. In the parametrization (12), the beta kernels have mean mi and ν>0 is

a concentration parameter. From an analytical perspective, the smoothed mode mass function in (12) is related to the smooth Euclidean likelihood

spectral density estimator proposed by de Carvalho et al. (2013, p. 16). Conceptually, it operates similarly to standard kernel smoothing, in the

sense that it ‘centres’ a beta kernel at each scedasis mode, but here the kernels are asymmetric for mi ≠0:5 and they are tailored for observations

defined in the unit interval.

If the modes of all scedasis functions coincide at a single point in time, that is, M̂ðwÞ concentrate around a certain w0 � ½0,1�, then the periods

at which the frequencies of extreme losses are the largest for the different stocks are perfectly synchronized; on the other hand, if the modes of

the scedasis functions are uniformly spread over time, that is, M̂ðwÞ≈1, w� ½0,1�, then this suggests that the different stocks' maximum frequen-

cies of extremes are not related at all.

3 | NUMERICAL EXPERIMENTS

3.1 | Simulation setting and preliminary experiments

We start by describing the data-generating processes used to assess the performance of our clustering algorithm. We simulate independent

observations according to the structure (1) using a generalized extreme-value distribution defined as

F½k,j�t ðyÞ¼ exp � 1þ γ½k�
y�c½k�ðt=TÞ
c½k�ðt=TÞ

� �� ��1=γ½k�
þ

" #
,

for time t¼1,…,T, clusters k¼1,…,K, and time series j¼1,…,N½k�, where aþ ¼ maxð0,aÞ. We consider three simulation scenarios.

In Scenario A, the true scedasis densities are defined as c½k�ðwÞ¼ τðw;pkÞ, pk � ½0,1�, where,

τðw;pkÞ¼
4ð1�pkÞwþpk , 0⩽w <0:5;

�4ð1�pkÞðw�1Þþpk , 0:5⩽w <1,

�
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yielding triangular-shaped scedasis functions with peaks at the centre point w¼0:5, and the true extreme-value indices are set to γ½k� ¼0:7 or

1. In Scenario B, the true scedasis functions c½k�ðwÞ¼ βðw;αk ,βkÞ are Betaðαk ,βkÞ densities and the extreme-value indices are set to γ½k� ¼0:7 or

1. In Scenario C, the scedasis densities are either τðw;pkÞ or βðw;αk ,βkÞ, and the extreme-value index is set to γ½k� ¼0:7.

The simulation settings and our choice of parameter values are reported in Table 1 and illustrated in Figure 1; for Scenarios A and B, we con-

sider K¼4 true clusters in the product-space, but Kc¼Kγ ¼2 clusters in the respective profile-spaces, comprising a total of N¼30 time series.

We simulate five independent time series with parameters ðc1,γ1Þ, five with ðc2,γ1Þ, 10 with ðc1,γ2Þ, and 10 with ðc2,γ2Þ; the scedasis densities

c1,c2 with their parameters and the extreme-value indices γ1,γ2 are specified in Table 1. Scenario C differs from this setting, as it is characterized

by three different scedasis functions and a single extreme-value index, which yields K¼Kc¼3 and Kγ ¼1. For each cluster, we simulate N½k� ¼10

time series independently for a total of N¼30 time series.

For Scenarios A, B, and C, a single-run experiment was performed using our methods to obtain the estimated cluster centres and scedasis

functions. These are compared with the true scedasis functions in Figure 1. To estimate each scedasis function, we consider the sample sizes T¼
500,1000,2000,5000 with the number of upper order statistics k¼34,62,112,250, chosen according to the intermediate sequence

kT /bT=logTc, which corresponds to the increasing threshold probabilities 93.2%, 93.8%, 94.4%, and 95.0%, respectively. We use the kernel-based

estimator of Einmahl et al. (2016) with KbðwÞ¼15f1�ðw=bÞ2g2=ð16bÞ, for w� ½�1,1�. We select the bandwidth values based on b¼Ak�1=5, with

the constant A>0 set by visual inspection in order to improve estimation in a sensitivity analysis (not shown) considering a grid of possible values

for A; using this approach, the values of the bandwidth b that we consider here are 0.2, 0.15, 0.1, and 0.1 for each sample size, respectively. The

extreme-value index is estimated using the Hill estimator.

Here and below, we use the convex linear combination dissimilarity from Example 1, that is, Dconv
α ðπi ,πjÞ¼ αDcðci ,cjÞþð1�αÞDγðγi,γjÞ, with

Dcðci ,cjÞ¼ Ð 10fciðwÞ� cjðwÞg2dw, and Dγðγi,γjÞ¼ ðγi� γjÞ2; recall that in such a case the cluster centres can be obtained as in (8). In Figure 1, we set

α¼0:5. While Figure 1 suggests that our clustering method performs rather well, firm conclusions can only be drawn from a rigorous Monte Carlo

study. This is investigated in the next section.

3.2 | Monte Carlo simulations

Here, we conduct an extensive simulation study to assess the performance of our clustering algorithm in grouping different time series into sepa-

rate clusters defined in terms of magnitude and dynamics of the extremes. We calculate the Rand (Rand, 1971) and silhouette indices

(Rousseeuw, 1987), whose mathematical definition are given in the Supporting Information, based on 1000 runs of our algorithm under the set-

tings described in Section 3.1. Notice that the silhouette index can be computed even if the true data partition is unknown. By contrast, the Rand

index is used to measure the similarity between two different partitions, one of which is considered the true partition in our simulation study.

Table 2 reports the Monte Carlo means of the Rand and silhouette indices for the simulation settings described in Section 3.1, as a function

of the sample size T and the weight parameter α. We can observe that both validity measures are almost always maximized when α¼0:5 for all

scenarios (i.e., ‘weighting’ equally the scedasis density and the extreme-value index). However, as T!∞, the clustering performance in

Scenario C should improve as α!1 (i.e., more weight on the scedasis density than on the extreme-value index), because Kγ ¼1 and therefore all

information for identifying distinct clusters is contained in the scedasis profile space. At subasymptotic levels (in this case, T¼5000 and k¼250),

values of α close to 0.5 seem to work better. Furthermore, as expected, performance improves as T increases; so with larger sample sizes, the esti-

mation of the scedasis functions and extreme-value indices in the first step of our procedure is more accurate, which then in the second step

reflects on the estimated clusters.

When the number of clusters K is unknown or uncertain, as is typically the case in practice, it is useful to perform clustering over a range of

values for K, and then compare the resulting diagnostics. We now explore the use of the elbow method, proposed by Tibshirani et al. (2001) and

adapt it to clustering heteroscedastic extremes. The method is presented here specifically for the K-means algorithm and convex combination Dα

of ℓ2 dissimilarity measures (recall Example 1), but it can also be designed more generically. The elbow method is based on the statistic D½k� ,

defined as

TABLE 1 Data-generating scenarios. For Scenarios A, B, and C, each row reports the number of clusters in the product-space (K), the number
of clusters in the respective profile-spaces (Kc and Kγ ), the different scedasis functions and extreme-value indices involved, and the cluster sizes.

Scenario

Number of clusters Scedasis density Extreme-value index Cluster size

ðK,Kc,KγÞ ci γj Ni,j

A ð4,2,2Þ τðw;0:001Þ;τðw;0:8Þ 0.7;1 N1,1 ¼N2,1 ¼5,N1,2 ¼N2,2 ¼10

B ð4,2,2Þ βðw;2,5Þ;βðw;5,2Þ 0.7;1 N1,1 ¼N2,1 ¼5,N1,2 ¼N2,2 ¼10

C ð3,3,1Þ βðw;2,5Þ;βðw;5,2Þ;τðw;0:5Þ 0.7 N1,1 ¼10,N2,1 ¼10,N3,1 ¼10

Note: Ni,j is the number of time series simulated independently in a specific cluster characterized by the scedasis ci and extreme-value index γj.

8 of 18 DE CARVALHO ET AL.

 20491573, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.560 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [20/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



D½k� ¼
X
i, j � I½k�

Dαðπi,πjÞ¼2N½k�
X
i � I½k�

Dαðπi,μ½k�Þ, μ½k� ¼ ðc½k� ,γ½k�Þ,

where I½k� is the index set corresponding to the kth cluster C½k�, and μ½k� ¼ ðc½k� ,γ½k�Þ is the cluster centre obtained using the K-means algorithm; D½k�

represents the sum of intracluster dissimilarities between ‘points’ in a given cluster C½k�, and the corresponding cluster centres. The sum of nor-

malized intracluster sums of squares measures the overall ‘compactness’ of our clustering procedure:

F IGURE 1 The dashed blue lines depict the cluster centre estimates produced by our method, plotted against the true scedasis functions
(solid black) defined in Table 1; the scedasis function estimates are depicted in grey. Scenarios A, B, and C (left to right) are presented for sample
sizes T¼500,1000,2000,5000 (top to bottom).
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WK ¼
XK
k¼1

1

2N½k�
D½k�: ð13Þ

The elbow method runs the K-means algorithm for heteroscedastic extremes on the dataset for a range of values of K and then plots the sum

of squared errors WK as a function of K. The plot should, in principle, be monotonically decreasing with K until the true value of K is reached, and

then stabilize for larger values of K. The optimal number of clusters is therefore found at the ‘elbow’ of the plotted curve. To illustrate this

approach, we consider the three aforementioned simulation Scenarios A, B, and C with a sample size T¼5000 and weight parameter α¼0:5. The

results are displayed in Figure 2. As expected, the ‘elbow’ is found at K¼4 for Scenarios A and B, but at K¼3 for Scenario C, which all corre-

spond to the true number of clusters.

4 | ANALYSIS OF STOCK MARKET DATA FROM THE LONDON STOCK EXCHANGE

4.1 | London Stock Exchange: Data and main modelling goals

We gathered the data from Yahoo Finance. After some preliminary analysis detailed in Section 4.2, we retained 139 stocks from the London Stock

Exchange, and Figure 3 presents the daily negative log-returns for a selection of 26 stocks, including GlaxoSmithKline, Royal Dutch Shell B, Tesco,

among others. The stocks displayed in Figure 3 cover nine economic sectors of the exchange, namely, oil and gas, basic materials, industrials,

healthcare, consumer goods, consumer services, financials, utilities, and technology; about 40% of these selected stocks are FTSE 100 companies.

The period under analysis ranges from December 1989 to May 2016, and thus it includes stock market crashes clearly visible from the time series

plots, such as black Wednesday (1992), the dot-com bubble (2000), and the most recent financial crisis (2008–2009); it also takes into account

the turbulence in the eminence of the Brexit referendum, which took place on 23 June 2016. The preparations for post-Brexit have actually been

creating a wealth of challenges and opportunities for institutional investors, professional money managers, and traders; for example, there are

plans for the exchange to take on board further companies from the Middle East in a near future (Reuters, 2017). One of our applied goals is to

develop and apply statistical methods that can be used to partition stocks such as those presented in Figure 3 into meaningful clusters from the

TABLE 2 Validity measures for Scenarios A, B, and C as defined in Section 3.1 obtained from 1000 Monte Carlo simulations. The Rand and
silhouette indices evaluate the clustering of the K-means algorithm for heteroscedastic extremes as a function of the sample size (T) and the
weight parameter (α).

α ∖ T

Rand index Silhouette index

500 1000 2000 5000 500 1000 2000 5000

Scenario A

0.1 0.74 0.85 0.86 0.87 0.47 0.52 0.64 0.76

0.3 0.77 0.79 0.86 0.88 0.49 0.64 0.81 0.81

0.5 0.79 0.83 0.89 0.93 0.50 0.72 0.87 0.95

0.7 0.78 0.81 0.85 0.87 0.42 0.44 0.53 0.92

0.9 0.68 0.73 0.78 0.81 0.31 0.42 0.51 0.74

Scenario B

0.1 0.76 0.86 0.88 0.90 0.33 0.50 0.76 0.79

0.3 0.80 0.83 0.87 0.94 0.48 0.61 0.79 0.86

0.5 0.79 0.89 0.90 0.92 0.41 0.65 0.77 0.95

0.7 0.74 0.81 0.85 0.88 0.40 0.53 0.75 0.85

0.9 0.70 0.74 0.77 0.82 0.36 0.43 0.62 0.80

Scenario C

0.1 0.77 0.81 0.86 0.90 0.54 0.66 0.74 0.82

0.3 0.80 0.83 0.89 0.92 0.65 0.71 0.82 0.88

0.5 0.82 0.84 0.90 0.94 0.70 0.64 0.90 0.94

0.7 0.79 0.82 0.85 0.91 0.68 0.66 0.85 0.89

0.9 0.74 0.79 0.86 0.88 0.65 0.69 0.74 0.80

Note: Values closer to one correspond to better performance.
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viewpoint of risk; the latter might, or might not, reflect the nine economic sectors. More precisely, an overall objective of our analysis is to group

stocks according to the magnitude and frequency of univariate extreme losses. As negative log-returns can be regarded as a proxy for losses, we

focus on the right tail of the data shown in Figure 3. Our quantitative analysis is here intended to complement the overall picture provided by

exploratory, qualitative or expert-based diagnostics. For example, a quick visual inspection of Figure 3 could perhaps suggest that Stocks 1 (Royal

Dutch Shell B) and 5 (Johnson Matthey) look reasonably similar in terms of magnitude of extreme losses, but whether the dynamics of their

extreme losses over time is similar is far from clear. The methods presented in this paper will offer answers to these and related questions.

4.2 | Preliminary analysis and selection of stocks

We now apply our model to the London Stock Exchange data briefly presented in Section 4.1. To use our model, we need to test whether the

extreme-value index γ is constant over time for each stock. For this, we consider Test 4 of Einmahl et al. (2016, p. 37), based on the comparison

of γ estimates from four subperiods. For each stock, we assume that the negative log-returns on each day follow possibly different heavy-tailed

distributions as in (1), and we test whether the extreme-value index of the negative log-returns is constant between 1989 and 2016. More con-

cretely, first, we identify the stocks for which we had data available in the period between 1989 and 2016, obtaining 240 companies; second, we

consider all stocks for which we do not reject the null hypothesis of constant extreme-value index using the same criteria as in Einmahl et al.

(2016, Test 4, p. 37). The main findings are similar for the analysis for the 139 stocks retained according to these two step procedure and for the

selection of 26 stocks displayed in Figure 3; therefore, we focus below on the latter for presentation clarity; in the Supporting Information, we

also present the extended analysis based on the full dataset with 139 stocks. The 26 selected time series, plotted in Figure 3, are of length T¼
6893 days. In the Supporting Information, we show that extremes of these stocks are weakly dependent, and that thus that the methodology pro-

posed in Section 2 can be applied. Table 3 presents a list of the 26 selected firms, their economic sectors, their estimated scedasis functions

(recall (5)) and the Hill estimates (recall (6)) corresponding to the negative log-returns of each of these stocks, setting k¼332 (corresponding

approximately to taking the threshold as the 95%-percentile) and b¼0:1. At first glance, we can see that the estimated scedasis functions and

extreme-value indices do not appear to be homogeneous within each economic sector, but rather there is a remarkable match between each

stock's estimated scedasis function and its corresponding cluster centre as determined by our new clustering procedure; more details about our

results are provided in Section 4.3.

4.3 | Do clusters mirror economic sectors?

In this section, we examine whether the clusters obtained through our approach have any connection with the stocks' economic sectors. Ex-ante,

an investor could be tempted to believe that stocks belonging to the same economic sector might be characterized by similar extreme-value prop-

erties, but whether this actually holds true is another matter.

To conduct the proposed inquiry, we run the proposed K-means algorithm for heteroscedastic extremes from Section 2.3 to group the

selected companies into new clusters. To run our clustering procedure, we first need to choose the number of clusters K; Figure 4 displays the

F IGURE 2 Sum of squared errors WK in (13) for Scenarios A, B (left), and C (right) described in Section 3.1 with T¼5000 and α¼0:5, as a
function of the number of clusters and averaged over 1000 Monte Carlo simulations. The blue and red curves correspond to Scenarios A and B
respectively, while the magenta curve corresponds to Scenario C.
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F IGURE 3 Negative log-returns for 26 selected stocks from the London Stock Exchange.
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sum of squared errors WK defined in (13) as a function of K¼1,…,20 for various weight parameters α¼0,0:1,…,0:9,1. Following the elbow

method described in Section 3.2, the number of clusters K should be only about two or three when α is small (placing heavier weight on the

extreme-value index), perhaps due to the high variability in the estimation of the extreme-value index γ. For larger values of α (placing heavier

weight on the scedasis function), the elbow method suggests that K >3. However, the optimal value of K is not obvious as the curve does not

completely stabilize. Here, we fix K¼9 for the rest of the analysis to contrast our results with the nine economic sectors. To reduce the possibility

that the K-means algorithm for heteroscedastic extremes generates a suboptimal clustering, we set the initial cluster centres using the approach

by Arthur and Vassilvitskii (2007). In addition, for each value of α, we run the algorithm 500 times and select the solution L ∗ with the smallest

value of the objective function

TABLE 3 Estimated scale parameters (â), extreme-value indices (γ̂), and scedasis functions (ĉ) (solid black) plotted over time, for the stocks
under analysis and corresponding economic sectors. The dashed blue curves correspond to the scedasis' cluster centres estimated by our
algorithm. The daggers (†) represent FTSE 100 companies.

Stocks and economic sectors (â, γ̂) ĉ Stocks and economic sectors (â, γ̂) ĉ

Oil and gas Basic materials

1. Royal Dutch Shell B† (0.006,0.363) 5. Johnson Matthey† (0.007,0.377)

2. Cape (0,005,0.551) 6. Croda International† (0.007,0.363)

3. Premier Oil (0.011,0.385) 7. Cropper (James) (0.003,0.603)

4. Amec Foster Wheeler (0.009,0.382)

Industrial Health care

8. Fenner (0.006,0.467) 12. Smith and Nephew† (0.006,0.369)

9. Chemring Group (0.006,0.432) 13. Bioquell (0.006,0.499)

10. Rolls-Royce Holdings† (0.009,0.343) 14. GlaxoSmithKline† (0.007,0.310)

11. Bae Systems† (0.007,0.377)

Consumer goods Consumer services

15. Tate and Lyle (0.005,0.410) 17. Tesco† (0.008,0.327)

16. Rea Holdings (0.005,0.499) 18. Daily Mail A (0.006,0.404)

Technology 19. Balfour Beatty (0.010,0.332)

25. Elecosoft (0.007,0.503) 20. Morrison (Wm) Spmkts† (0.007,0.353)

26. Crimson tide (0.002,0.843) 21. Caffyns (0.002,0.695)

22. Low and Bonar (0.005,0.449)

Financials Utilities

23. Standard Chartered B† (0.009,0.392) 24. Severn Trent† (0.006,0.364)
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WðL ∗ Þ¼
XN
i¼1

XK
k¼1

IðL ∗ ðiÞ¼ kÞDαððĉi, γ̂iÞ,ðc½k�,γ½k�ÞÞ:

Figure 5(i) and Table 4 show the scedasis function estimates of the selected companies and the cluster centre estimates produced by our

method, when α¼0:5. The choice of the latter value is motivated by the numerical experiments reported in Section 3, which suggest that the

validity measures are almost always maximized when α¼0:5; a sensitivity analysis with respect to the choice of α is reported in the Supporting

Information. We can see a significant difference between the grouping of companies in Table 3 and the new classifications given in Table 5,

suggesting that there is no direct connection between the stocks' economic sectors and their classification in terms of magnitude and frequency

of extreme losses.

F IGURE 4 Sum of squared errors WK in (13) for the data described in Section 4.2, plotted as a function of the number of clusters for various
values of the weight parameter α¼0,0:1,…,0:9,1 (bottom to top).

F IGURE 5 (i) The dashed blue lines correspond to cluster centres estimates obtained by our method, plotted against the scedasis function
estimates (grey lines) for the stocks under analysis. (ii) The mode mass function using ν¼75 (solid), ν¼100 (dashed), and ν¼120 (dotted); the
grey rectangles correspond to contraction periods in the US economy as dated by the NBER, and the rug corresponds to the modes of the
estimated scedasis functions.
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Our algorithm defines new ‘sectors’, which are more homogeneous in terms of the magnitude and frequency of extreme losses, and high-

lights an interesting mismatch between stocks' economics sectors and clusters of risk in terms of frequency and magnitude of extreme losses. In

more detail, Table 5 shows the partition of stocks on the product and profile spaces obtained using our clustering method. Here, α¼0:5 corre-

sponds to the scenario where we put equal interest on the frequency and magnitude of the extremes losses. If an investor is more interested in

the magnitude of extreme losses than their frequency, then (s)he should consider a classification from Table 5 with α¼0; on the other hand, if (s)

he is more interested in the frequency of extreme losses than in their magnitude, then (s)he should consider a classification from Table 5 with

α¼1. All in all, either in the product-space or in the profile-space, our analysis suggests that clusters of magnitude and dynamics of extreme losses

present no straightforward connection with the economic sectors of the corresponding stocks. The same finding holds if clustering is based on

risk loss patterns as introduced in Section 2.4. Table 6 contains the partition of stocks obtained using time-varying value-at-risk. Although the two

clustering algorithms in Tables 5 and 6 are based on different criteria, they still produce remarkably similar results. In addition, as can be seen from

Table 6 the partition of stocks obtained using time-varying value-at-risk is quite robust to changes in the confidence levels. All in all, both results

in Tables 5 and 6 agree that the estimated clustering of stocks presents no straightforward connection with the economic sectors of the

corresponding stocks, which implies that stocks from the same economic sector may have very different risk loss patterns.

4.4 | Economic contraction periods and the mode mass function

In this section, we examine the mode mass function as defined in (12) and compare its shape with the contraction periods for the UK and US

economies. Stylized facts on the UK business cycle can be found in Chadha and Nolan (2002). Business cycle dating for the US economy is con-

ducted by the National Bureau of Economic Research (NBER). While it might seem odd to compare financial information from one country

(UK) with economic figures from another country (US), it is well known that the US economy is a major player in the world economy, and some

studies suggest that the UK business cycle is actually more synchronized with the US than with countries in the Euro area zone, such as Germany

(Albulescu, 2017). Figure 5(ii) shows how the modes of the scedasis functions are spread over time. The mode mass function in this figure sug-

gests four periods of great synchronization in terms of the maximum frequency of extremes losses. The grey rectangles represent contraction

periods of the US economy, from peak (P) to trough (T). We can see that the local maxima of the mode mass function are relatively close to these

economic contraction periods. The scedasis function maxima tend to be reasonably well aligned with the contraction periods dated by the NBER,

which appears compatible with the hypothesis that around periods of contraction, the maximum frequencies of extremes losses are more syn-

chronized. Our findings are also in line with the business cycle peak to through dates for the UK from the Economic Cycle Research Institute

(ECRI). Interestingly, however, for the period under analysis, ECRI only identifies the peak and through dates May 1990–March 1992 and May

2008–January 2010, and thus their chronology does not consider that the 2000 dot-com bubble has left its footprint on the cycle.

TABLE 5 Nine clusters of heteroscedastic extremes of companies over a grid of values of α. Ticker symbols are the same as in Table 3.

Tuning parameter (α)

Groups 0 0.5 1

1 3, 4, 5, 11, 15, 18, 23 1, 5, 12, 15, 18 1, 5, 10, 11, 15, 18, 20, 23, 24

2 8, 9, 22 2, 6, 8, 16, 22 2, 6, 9, 22

3 13, 16, 25 7, 13, 21, 25 13

4 1, 6, 12, 20, 24 10, 14, 17, 19, 20, 23, 24 14, 17, 19, 21, 25

5 26 26 26

6 2 3 3

7 21 9 8, 16

8 10, 14, 17, 19 4 4

9 7 11 7, 12

TABLE 4 Cluster centre estimates corresponding to the nine extreme-value indices, for the partition of stocks obtained with α¼0:5. Ticker
symbols are the same as in Table 3.

Cluster centre extreme-value index (γk)

0.385 0.466 0.575 0.346 0.843 0.385 0.432 0.382 0.377

Stocks 1, 5, 12, 15, 18 2, 6, 8, 16, 22 7, 13, 21, 25 10, 14, 17, 19, 20, 23, 24 26 3 9 4 11
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5 | DISCUSSION

This paper develops and applies statistical similarity-based clustering techniques for heteroscedastic extremes, which can be used to group time

series of independent observations that are alike in terms of magnitude and dynamics of extreme observations. Our method yields a data-driven

partition of stocks into clusters of risk, and can be used to uncover which stocks resemble each other the most in terms of probabilistic features

that are critical from a risk management perspective.

Clustering scedasis functions and extreme-value indices involves the challenge of grouping objects composed of both a function (scedasis)

and a scalar (extreme-value index), and thus the need to partition a product-space. To address this issue, we have proposed valid dissimilarity

measures able to transition from one profile-space to the other, characterized by a tuning parameter to be set by the analyst, deciding where the

clustering algorithm should place more weight. To our knowledge, this is the first paper tackling the challenging problem of conducting a cluster

analysis of both functions and scalars. Similarly to Einmahl et al. (2016), our approach cannot treat stocks for which the extreme-value index varies

in time.

Our clustering algorithm is designed to group stocks whose marginal distributions of extremes over time have similar characteristics. In partic-

ular, considering the scedasis function and extreme-value index as objects of interest, our clustering method puts strong focus on the dynamics of

univariate extremes over time (through the scedasis function) and the overall magnitude of the most extreme losses (through the extremal index);

in addition to the scedasis function (‘relative’ scale parameter) and extreme-value index (tail shape parameter), it is possible to use a Pareto-like

tail specification to estimate the ‘overall’ scale parameter and deduce the time-varying value-at-risk, which provides a more complete description

of extreme losses. As described in our paper, this can be used to cluster univariate risk loss patterns. In future work, it would also be interesting to

devise a clustering algorithm that takes extremal dependence into account as a way of tracing and outlining portfolios exhibiting joint

(i.e., simultaneous) extreme losses. In particular, the characterization of extremal dependence among stocks is crucial for assessing the risk of an

index, defined for example as a weighted sum of the prices of the individual stocks. We leave such an important question for future research.

Some final remarks on our financial illustration are in order. In practice, return series may exhibit serial dependence and volatility clustering.

While an option to come closer to the independence assumption is to work with monthly returns, that also leads to a substantial reduction in the

amount of data, hence weakening the case for learning about limiting objects—such as the scedasis and the extreme value index. In addition, it

should be noted that the allocations devised via our method are not static as the scedasis evolves over time. Thus, recent events such as the

COVID-19 pandemic, the Black Monday 2020 crashes, rising inflation and the war in Ukraine, can naturally impact the allocations reported in our

illustration—and so can any other future event that influences stock markets. Finally, we acknowledge survivorship bias in our empirical findings,

as the analysis focuses on companies that have succeeded in the market—while ignoring those that have failed.
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TABLE 6 Nine clusters of value-at-risk functions of companies over a grid of values of p. Ticker symbols are the same as in Table 3.

Confidence level (p)

Groups 0.95 0.98 0.99 0.995 0.999

1 1, 5, 12, 15, 18, 22 1, 5, 12, 15, 18, 22 1, 5, 12, 15, 18 1, 12, 15 1, 5, 12, 14, 15

2 6, 8, 9 6, 8, 9 6, 8, 9, 22 8, 9, 16 8, 9, 16

3 13, 19 13, 19 13 13 13

4 4, 10, 11, 14, 17 4, 10, 11, 14, 17 4, 10, 11, 14, 17, 19 4, 10, 11, 14, 17, 19 4, 10, 11, 17, 19

20, 23, 24 20, 23, 24 20, 23, 24 20, 23, 24 20, 23, 24

5 26 26 26 26 26

6 3 3 3 3 3

7 2, 16 2, 16 2, 16 2, 5, 6, 18, 22 2, 6, 18, 22

8 25 25 25 25 25

9 7, 21 7, 21 7, 21 7, 21 7, 21
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APPENDIX A: DERIVATION OF CLUSTER CENTRES IN PRODUCT-SPACE

This appendix provides details on the cluster-centre updating step in the K-means algorithm for heteroscedastic extremes. Recall that in Step 0 of

the K-means algorithm in Section 2.3, we select K cluster centres randomly, μðoldÞ ¼ ððc½1� ,γ½1�ÞðoldÞ,…,ðc½K� ,γ½K�ÞðoldÞÞ in the product-space

Π¼C�ð0,∞Þ, then we classify all times series using the estimates fðĉi , γ̂iÞgNi¼1, and in the last step we update the cluster centres

μðnewÞ ¼ ððc½1� ,γ½1�ÞðnewÞ,…,ðc½K�,γ½K�ÞðnewÞÞ, as

μðnewÞ ¼ argmin
μ � Π

XN
i¼1

XK
k¼1

IðLðnewÞðiÞ¼ kÞDαððĉi , γ̂iÞ,ðc½k� ,γ½k�ÞÞ

¼ argmin
μ � Π

XK
k¼1

α
X

fi:LðnewÞðiÞ¼kg

ð1
0
fĉiðwÞ�c½k�ðwÞg2dwþð1�αÞ

X
fi:LðnewÞðiÞ¼kg

ðγ̂i� γ½k�Þ2
8<:

9=;
¼ argmin

μ � Π

XK
k¼1

α
X

fi:LðnewÞðiÞ¼kg

ð1
0
fĉiðwÞ� s½k�ðwÞg2dwþ N̂

½k�
ð1
0
fs½k�ðwÞ�c½k�ðwÞg2dw

8<:
9=;

24
þð1�αÞ

X
fi:LðnewÞðiÞ¼kg

ðγ̂i�ψ ½k�Þ2þ N̂
½k�ðψ ½k� � γ½k�Þ2

8<:
9=;
35,

where s½k�ðwÞ¼ ðN̂½k�Þ
�1P

fi:LðnewÞðiÞ¼kgĉ
iðwÞ, ψ ½k� ¼ ðN̂½k�Þ

�1P
fi:LðnewÞðiÞ¼kg γ̂

i, and N̂
½k� ¼PN

i¼1IðLðnewÞðiÞ¼ kÞ. Since,

X
fi:LðnewÞðiÞ¼kg

ð1
0
fĉiðwÞ� s½k�ðwÞg2dw⩾0,

X
fi:LðnewÞðiÞ¼kg

ðγ̂i�ψ ½k�Þ2⩾0,

for each k� f1,…,Kg, the expression in Step 2 of the K-means algorithm outlined in Section 2.3 is indeed minimized with c½k� and γ½k� as in (8).
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