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1 Clustering performance measures employed in Section 3

In this appendix we give details on the precise definition of the measures used to assess the performance

of our methods in Section 3 of the paper. Let Ω = {π1, . . . , πN} ⊆ Π be a set of N points in the product-

space Π = C × (0,∞), and let P = {C [1], . . . , C [K]} and P ′ = {C ′[1], . . . , C ′[K]′} be two partitions of Ω

that we want to compare. Here, P partitions Ω into K subsets (i.e., clusters), while P ′ partitions Ω into K ′

(possibly different) subsets. Then, the Rand index R is defined as

R =
n1 + n2(

N
2

) ∈ [0, 1],

where n1 is the number of pairs of elements in Ω that are simultaneously in the same set in P and in the

same set in P ′, and n2 is the number of pairs of elements in Ω that are simultaneously in different sets

in P and in different sets in P ′. Roughly speaking, the Rand index measures the percentage of identical

decisions made by two separate clustering algorithms leading to P and P ′, respectively. It takes values

between 0 and 1, with R = 0 indicating that the two algorithms do not agree on any pair of points, and

R = 1 indicating that they agree on all pairs. If the true data structure is known, then the Rand index can

be used to assess the performance of a clustering algorithm, with higher Rand indices corresponding to

better results.

To define the silhouette index, let P = {C [1], . . . , C [K]} be a partition of

Ω = {π1, . . . , πN} ⊆ Π,

denoting the outcome of a similarity-based clustering algorithm (e.g., as in Section 2) based on the dis-

similarity measure Dα : Π × Π 7→ [0,∞) (e.g., from Example 1). Let a(i) be the average dissimilarity

of the ith point πi ∈ Π with respect to all other points classified within the same cluster. Mathematically,

assuming that πi belongs to the kth cluster, one has

a(i) =
1

N [k] − 1

∑
j∈I[k],i ̸=j

Dα(π
i, πj),

where I [k] is the index set corresponding to the kth cluster C [k] and N [k] is the cardinality of C [k], i.e.,

N [k] = |C [k]|. Furthermore, let M(πi, C [k′]) denote the average dissimilarity of the ith point πi ∈ Π with

respect to all points classified in a different cluster C [k′], k′ ̸= k, i.e.,

M(πi, C [k′]) =
1

N [k′]

∑
j∈I[k′]

Dα(π
i, πj),

where I [k
′] is the index set corresponding to the cluster C [k′] and N [k′] = |C [k′]|. Let also b(i) be the

smallest of these average dissimilarities, i.e., b(i) = mink′ ̸=k M(πi, C [k′]). Then, the silhouette index of

the ith point πi is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
∈ [−1, 1].
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Table 1: Extremal index estimate θ̂ for the stocks under analysis. The threshold is chosen as in the application in Section 4 of

the main paper.

1 2 3 4 5 6 7 8 9 10 11 12 13

0.474 0.329 0.351 0.613 0.241 0.426 0.468 0.627 0.501 0.407 0.232 0.602 0.706

14 15 16 17 18 19 20 21 22 23 24 25 26

0.392 0.458 0.493 0.573 0.314 0.315 0.496 0.288 0.486 0.282 0.458 0.594 0.249

Intuitively, s(i) is a normalized measure of adequacy of the ith point to its assigned cluster; high values

indicate that πi is a good match for its own cluster and a poor match for the other clusters. The cluster-mean

silhouette index, and overall silhouette index are respectively defined as

s[k] =
1

N [k]

∑
i∈I[k]

s(i), S =
1

K

K∑
k=1

s[k].

The overall silhouette index S, used in Section 3 of the paper as a measure of clustering quality, lies within

the interval [−1, 1] and tells us if the estimated clusters are well separated.

2 Additional empirical reports supplementing Section 4

2.1 Temporal dependence analysis

We present here some supplementary diagnostics providing further details on temporal dependence for the

case study in Section 4 of the paper (London Stock Exchange case study). We report tables and charts with

estimates of the extremal index θ (Coles, 2001, Ch. 5), which measures the strength of dependence at ex-

treme levels. In particular, we use an estimator based on inter-exceedance times series using the approach

proposed by Ferro and Segers (2003)—using the functions exi and exiplot from the R package evd—

and plot the extremogram, i.e., the empirical conditional probability P (Yt+h > u | Yt > u) as function of

the time lag h = 0, 1, 2, . . ., and for a high threshold u (Davis and Mikosch, 2009)—using the R package

extremogram. In Table 1, we report the extremal index estimates for each stock, and in Figure 1 we

plot the estimates of these values over a grid of high thresholds u. Figures 2 and 3 show the extremograms

for the negative loss returns for the stocks analyzed in the data application, using the threshold chosen in

Section 4 of the main paper.

From Figures 1–3 one can see that extremal dependence in each time series is quite weak. This is exac-

erbated by considering that these diagnostics were computed from the original time series, which exhibit

some degree of heteroscedasticity, therefore potentially suggesting stronger extremal dependence than

there is in reality. This indicates that extremal dependence can be neglected in our real data application.
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Figure 1: Extremal index estimate for the stocks under analysis for different values of the threshold u.
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Figure 2: Empirical extremogram for stocks 1–12 (left to right, top to bottom). The threshold is chosen as in the application

in Section 4 of the main paper.
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Figure 3: Empirical extremogram for stocks 13–26 (left to right, top to bottom). The threshold is chosen as in the application

in Section 4 of the main paper.
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Figure 4: Scedasis functions (grey) partitioned per cluster, and cluster center scedasis functions (blue); clustering is obtained

with the K-means algorithm for heteroscedastic extremes using K = 3 and with α = 0, 0.1, 0.3 and 0.5, from top to bottom,

respectively.

2.2 Sensitivity analysis

Here, we present a sensitivity analysis to assess how the clustering of stocks in the London Stock Exchange

changes as a function of the tuning parameter α and the number of clusters K. We consider values of α

in the grid {0, 0.1, . . . , 0.9, 1} and use K = 3 and K = 5. Figures 4 and 7 plot the partition of scedasis

functions obtained using the K-means algorithm described in Section 2.3 of paper. Figure 4 shows that

the clustering changes slightly but not significantly when using different values of α; from Figure 7, there

are only noteworthy changes when α = 1 (focus is fully on the dynamics of extreme losses) or α = 0

(focus is fully on the magnitude of extreme losses). Figures 8 and 9 represent the partition of value-at-risk

functions obtained using the K-geometric means algorithm described in Section 2.4 of paper.
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Figure 5: Scedasis functions (grey) partitioned per cluster, and cluster center scedasis functions (blue); clustering is obtained

with the K-means algorithm for heteroscedastic extremes using K = 3 and with α = 0.7, 0.9 and 1, from top to bottom,

respectively.

Figure 8: Value-at-risk functions (grey) partitioned per cluster, and value-at-risk cluster center function (blue), obtained with

the K-geometric means algorithm for heteroscedastic extremes with K = 3 and p = 0.95.
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Figure 9: Value-at-risk functions (grey) partitioned per cluster, and value-at-risk cluster center function (blue); clustering is

obtained with the K-geometric means algorithm for heteroscedastic extremes with K = 5 and p = 0.95.

2.3 Extended analysis

This section revisits the inquiries conducted in Sections 4.2–4.3 of the paper, but now considering all 139

stocks retained according the criteria described in Section 4.1. We recall that a main goal in Section 4.2

was to assess whether or not our estimated clusters of risk mirror the nine economic sectors of the London

Stock Exchange, namely: oil and gas, basic materials, industrials, healthcare, consumer goods, consumer

services, financials, utilities, and technology. Figures 10 and 11 respectively depict the K-means clustering

with respect to the scedasis function and extreme-value index, and the K-geometric means clustering with

respect to the time-varying value-at-risk, both using K = 9. Figure 10 reveals a fairly homogeneous

distribution of number of curves within the estimated clusters, as opposed to the clustering displayed in

Figure 11. The main finding from Section 4.2 in the paper also holds here: The partition of the stocks

available from Figure 10 suggests that clusters of magnitude and frequency of extreme losses present no

straightforward connection with the economic sectors of the corresponding stocks; the same finding holds

if we examine the clusters of value-at-risk functions available from Figure 11. Figures 10 and 11 also

corroborate the analysis reported in Section 4.3. In particular, as it can be seen from these figures, the

modes of the scedasis and value-at-risk functions line up with periods of economic stress as dated by the

business cycle chronologies from the National Bureau of Economic Research (NBER) and the Economic

Cycle Research Institute (ECRI).
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Figure 10: Extended analysis: Scedasis functions (grey) partitioned per cluster and cluster center scedasis functions (blue),

obtained with the K-means algorithm for heteroscedastic extremes using K = 9 and with α = 0.5.

Figure 11: Extended analysis: Value-at-risk functions (grey) partitioned per cluster and value-at-risk cluster (blue), obtained

with the K-geometric means algorithm for heteroscedastic extremes with K = 9 and p = 0.95.
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3 R package extremis

Below we present the code used for replicating a one-shot experiment for fitting our K-means clustering

method for heteroscedastic extremes. The core function is khetmeans from the R package extremis;

the code below also requires the package evd for simulating the data.

## Load packages and set specifications

require(extremis)

require(evd)

set.seed(12)

T <- 5000

n <- 30

## True scedasis and extreme value index

c2 <- function(s)

dbeta(s, 2, 5)

c3 <- function(s)

dbeta(s, 5, 2)

gamma1 <- 0.7

gamma2 <- 1

## Simulate data

X <- matrix(0, ncol = T, nrow = n)

for(i in 1:5)

for(j in 1:T)

X[i, j] <- rgev(1, c2(j / T), c2(j / T), gamma1)

for(i in 6:15)

for(j in 1:T)

X[i, j] <- rgev(1, c2(j / T), c2(j / T), gamma2)

for(i in 16:20)

for(j in 1:T)

X[i, j] <- rgev(1, c3(j / T), c3(j / T), gamma1)

for(i in 21:30)

for(j in 1:T)

X[i, j] <- rgev(1, c3(j / T), c3(j / T), gamma2)

Y <- t(X)

## K-means for heteroscedastic extremes

fit <- khetmeans(Y, centers = 4)

##

## Rendering

## =========

## 1

## 2

## 3

plot(fit, c.c = TRUE, xlab = "w", ylab = "Scedasis Density",

ylim = c(0, 4), main = "T = 5000",

mgp = c(2, 0.5, 0))

## add lines with true scedasis
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grid <- seq(0, 1, length = 100)

lines(grid, c2(grid), type = ’l’)

lines(grid, c3(grid), type = ’l’)
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Figure 12: Reproducing part of Figure 2 (Scenario C, T = 5000) in the manuscript.
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