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Summary. Motivated by the hype surrounding AI and big tech stocks, we develop a model for
tracking the dynamics of their combined extreme losses over time. Specifically, we propose
a novel Bayesian model for inferring about the intensity of observations in the joint tail over
time, and for assessing if two stochastic processes are asymptotically dependent. To model
the intensity of observations exceeding a high threshold, we develop a Bayesian nonparametric
approach that defines a prior on the space of what we define as EDI (Extremal Dependence
Intensity) functions. In addition, a parametric prior is set on the coefficient of tail dependence.
An extensive battery of experiments on simulated data show that the proposed method are able
to recover the true targets in a variety of scenarios. An application of the proposed methodology
to a set of big tech stocks—known as FAANG—sheds light on some interesting features on the
dynamics of their combined losses over time.

Keywords: FAANG stocks, Mixture of finite Polya trees, Statistics of extremes, Multivariate
extreme values, Nonparametric prior, Nonstationary extremal dependence.

1. Introduction

1.1. Data, financial rationale, and applied motivation
The rapid evolution of AI prompts serious concerns about its role in the next financial crisis
(Financial Times—Editorial Board, 2023). While new developments offer benefits, some
investors fear trading algorithms could cause the next market crash, while others worry an
AI bubble—with everything AI-related getting inflated—could lead to a global meltdown.
The substantial investments by major corporations in AI offer new opportunities, yet they
also increase integration hence raising systemic risk. While many of these companies have
been presenting in recent years steady financial results, the risk of another tech bubble like
the 2 000 dot-com bubble cannot be ignored.

Motivated by this financial landscape, this paper will shed light on how the combined
losses of a set of major AI tech stocks—known as FAANG (Meta’s Facebook, Apple,
Amazon, Netflix and Alphabet’s Google)—has been evolving in recent years. Fig. 1 de-
picts the raw FAANG data over the period under analysis. Given the importance of FAANG
stocks in the financial landscape—attracting everyone from retail investors to professional
stakeholders—our empirical findings on how FAANG comove during periods of financial
stress may be of broader interest in themselves.

Adding to the risks mentioned earlier, there is also the traditional risk of herd behav-
ior according to which investors might irrationally follow market trends or the actions of
peers, potentially leading to inflated asset prices and subsequent market bubbles (Avery
and Zemsky, 1998; Chiang and Zheng, 2010; Cipriani and Guarino, 2014). Beyond FAANG,
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Fig. 1. FAANG prices at close over 2012–2024.

the stock market has embraced catchy names acronyms for top AI tech stocks, like The
Magnificent Seven (Microsoft, Tesla, Nvidia, and FAANG minus Netflix), and BAT (Baidu,
Alibaba, Tencent). While these labels streamline discussions, they also oversimplify the
tech sector’s complexity, prompting ‘thinking fast’—akin to Kahneman’s System 1 concept
(Montier, 2010; Kahneman, 2011)—which is inadequate for complex decisions in settings like
financial markets.

Stock market comovements have been widely studied in the financial literature (e.g.,
Forbes and Rigobon, 2002; Brooks and Del Negro, 2004; Morana and Beltratti, 2008; Rua
and Nunes, 2009; Albuquerque and Vega, 2009; Jach, 2017; Ehrmann and Jansen, 2020).
Despite this, and the fact that methodologies for modeling conditional copulas are well-
known (e.g., Patton, 2006), few attempts (e.g., Poon et al., 2003; Castro et al., 2018; Lee
et al., 2024) have been made however to examine the dynamics governing the comovement
of extreme losses on stock markets. The current paper naturally allows for the latter inquiry
as will be put forward by our FAANG data application.

1.2. Background and main contributions
Extreme value theory offers a sound probabilistic and statistical setup for dealing with record-
breaking extreme events—such as stock market crashes, widespread flooding, wildfires and
heatwaves—given its ability to extrapolate into the tails of a distribution (e.g., Embrechts
et al., 1997; Coles, 2001; Beirlant et al., 2004). In a multivariate context, the degree of
association between the extreme observations of a random vector with common margins,
(X,Y ), is often evaluated by,

χ = lim
z→∞

P (X > z | Y > z). (1)

The measure χ in (1) quantifies the probability of X being extreme, given that Y is extreme.
If 0 < χ ≤ 1 the variables are asymptotically dependent (AD), whereas if χ = 0 they are
said to be asymptotically independent (AI).

In this paper we develop a flexible Bayesian model for learning about the intensity of
extreme observations of a random vector over time, as well as for assessing if two stochastic
processes are asymptotically dependent. As it will be shown below, our methods have some
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links with a time-varying version of (1). This paper contributes to the recent literature on
nonstationary multivariate extremes that has been developed for tracking how the extremal
dependence within a random vector evolves over time or another covariate (e.g., de Carvalho,
2016; Mhalla et al., 2019; Castro et al., 2018; Gong and Huser, 2022). Our focus differs from
that of the latter papers in a number of important ways. A key difference is that here the
focus will be placed on the intensity of joint extreme observations—via a novel object which
we refer to as the EDI (Extremal Dependence Intensity) function—whereas the approaches in
the latter papers are mainly based on indexing the parameter of a multivariate extreme value
distribution over time. As it will be shown later, the EDI can be interpreted as a measure of
intensity for joint extremes, thereby learning about their frequency from the data. Contrarily
to the latter approaches on nonstationary multivariate extremes, the proposed method do not
require a componentwise block maxima framework and hence are not restricted to asymptotic
dependence. Finally, the proposed approach does not require estimating an angular measure
or a Pickands dependence function—which need to obey constraints that may be complicated
to include in the inferences.

In addition, we develop Bayesian estimators for the two parameters in our framework,
that is, the EDI and the coefficient of tail dependence. The proposed approach is suitable for
modeling nonstationary joint extremes, as it has been conceived for tracking the dynamics
of the intensity of extreme observations in the joint tail, and for assessing if two stochastic
processes are asymptotically dependent. The EDI measures the intensity of extreme obser-
vations in the joint tail over time, and it is thus a measure of the degree of association of the
extremes over time.

To learn the EDI from data, we define a prior on the space of all EDIs using a mixture
of finite Polya trees (Müller et al., 2015, Section 3). The proposed inferences for the EDI are
fully supported on the unit interval, and do not suffer from boundary bias. In the context of
EDIs, our Polya tree-based approach relies on a parametric approach as a baseline model for
the EDI, while allowing for deviations from it whenever the data provide evidence for that.
As a byproduct, this paper also contributes to the relatively novel literature that interfaces
non- and semiparametric Bayesian modeling with extreme value theory (e.g., Kottas et al.,
2012; Fuentes et al., 2013; Marcon et al., 2016; Hanson et al., 2017; Padoan and Rizzelli,
2022).

1.3. Structure and organization
Section 2 introduces the proposed modeling framework. Bayesian inference for the proposed
approach is developed in Section 3. Section 4 reports the main findings of a Monte Carlo
simulation study, and Section 5 showcases an application of the proposed method to FAANG
stocks. Finally, Section 6 discusses the main results and concludes the paper.

2. Modeling Time-Changing Joint Extremes

2.1. Framework
To streamline the presentation of the novel concepts to be introduced below, we start with a
bivariate framework. Comments on how to proceed when the analysis involves more than two
processes are given in Section 2.3. Let {(Xt, Yt) : t ∈ [0, 1]} be a collection of independent
random vectors, and following standard practice in multivariate extreme value theory suppose
that {Xt} and {Yt} are unit Fréchet distributed; that is, Xs (Ys) is independent of Xt (Yt)
for any s < t, and P (Xt < z) = P (Yt < z) = exp(−1/z), with z > 0 for all t. Let
χ(t) = limz→∞ P (Xt > z | Yt > z) be a time-varying version of (1). The setup below can be
used for modeling ‘partially’ as well as ‘fully’ AD processes (χ(t)∈(0, 1], for some t; or for all
t, respectively), and AI processes (χ(t) = 0, for all t).
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To embed AI in our framework, we consider the following time-varying version of the
assumption of Ledford and Tawn (1996),

P (Xt > z, Yt > z) =
Lt(z)

z1/γ
, (2)

where γ ∈ (0, 1] is the coefficient of tail dependence and Lt(z) is a time-varying slowly
varying function (Lt(zu)/Lt(z) → 1 as z → ∞, for any u > 0). The processes {Xt} and
{Yt} are said to be positively associated at the extremes if γ ∈ (1/2, 1), negatively associated
if γ ∈ (0, 1/2), and independent if γ = 1/2. For the sake of parsimony, we assume that
γ is constant over time, and evidence presented in the Supporting Information (Section 2)
suggests that this assumption seems reasonable for our case study.

For AD processes, the degree of dependence can be characterized by what we will refer
to as the EDI (Extremal Dependence Intensity) function,

f(t) =
χ(t)∫ 1

0
χ(τ) dτ

=
limz→∞ P (Xt > z, Yt > z)∫ 1

0
limz→∞ P (Xτ > z, Yτ > z) dτ

. (3)

The EDI carries information on the intensity of observations in the joint tail over time,
defined as A = [u,∞)2 × [0, t]. This follows from the fact that for a sufficiently large u,

f(t) ∝ lim
z→∞

P (Xt > z, Yt > z) ≈ P (Xt > u, Yt > u) =
dΛ

dt
(A), (4)

since the intensity measure

Λ(A) = E

(∫ t

0

Jτ dτ

)
=

∫ t

0

P (Xτ > u, Yτ > u) dτ,

as Jτ = 1{Xτ>u,Yτ>u} ∼ Bern{P (Xτ > u, Yτ > u)}, where 1 is the indicator function. A
flat EDI, f(t) ∝ 1, indicates a constant intensity of joint extreme observations over time,
whereas if the EDI peaks at some period, it provides an indication of an higher intensity of
joint extreme observations during that period. In other words, a flat EDI implies a pattern
of stationary bivariate extremes, whereas a peak in the EDI implies an increase in the level
of extremal dependence during that period. In the context of the current application, the
point process of interest is that of joint extreme losses between pairs of stocks. Eq. (4) shows
that the EDI, as defined in (3), can be regarded as the standardized intensity function for a
given sufficiently large u.

2.2. Examples of EDIs based on time-varying extreme value copulas
Next, we illustrate some instances of EDIs based on time-varying extreme value copulas (de
Carvalho, 2016; Castro et al., 2018). Recall that the time-varying bivariate extreme value
copula is defined as

Ct(u, v) = Gt

(
−1

log(1− u)
,

−1

log(1− v)

)
, (u, v) ∈ [0, 1]2.

Here, Gt(x, y) is a time-varying bivariate extreme value distribution. That is,

Gt(x, y) = exp

{
−ℓt

(
1

x
,
1

y

)}
,

for x, y > 0, where the time-varying tail dependence function is

ℓt(x, y) =

∫ 1

0

2max{wx, (1− w)y}Ht(dw), (5)
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and Ht is a time-varying angular measure that obeys the following moment constraint for
all t, ∫ 1

0

wHt(dw) =
1

2
.

Some parametric instances will be considered below to shed light on the interpretation of the
EDI function. The coefficient of tail dependence of all models below is γ = 1; see Heffernan
(2000).
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Fig. 2. EDI (Extremal Dependence Intensity) function for time-varying logistic extreme value copulas
from Examples 1–2 along with simulated data (T = 1000). Left: Data above threshold. Middle: Rug
of times of exceedances of Zt above threshold and corresponding exceedances. Right: EDI function.

Example 1 (Logistic). The tail dependence function for the time-varying logistic ex-
treme value copula is ℓt(x, y) = (x1/αt+y1/αt)αt , for x, y > 0, where 0 < αt ≤ 1 and t ∈ [0, 1].
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The EDI for this model is

f(t) =
2− 2αt

2−
∫ 1

0
2ατ dτ

. (6)

A more general framework is provided by the following setup.

Example 2 (Bi-extremal). The tail dependence function for the time-varying bi-extremal
extreme value copula is ℓt(x, y) = (1 − ψt)x + {(ψtx)

1/αt + y1/αt}αt , for x, y > 0, where
0 < αt ≤ 1 and 0 ≤ ψt ≤ 1 with t ∈ [0, 1]. The EDI for this model is

f(t) =
1 + ψt − {(ψt)

1/αt + 1}αt

1 +
∫ 1

0
ψτ − {(ψτ )1/ατ + 1}ατ dτ

. (7)

Examples 1 and 2 can be nested in the more general framework of a time-varying asymmetric
logistic extreme value copula.

Example 3 (Asymmetric logistic). The tail dependence function for the time-varying
asymmetric logistic extreme value copula is ℓt(x, y) = (1−ψ1,t)x+(1−ψ2,t)y+{(ψ1,tx)

1/αt+
(ψ2,ty)

1/αt}αt , for x, y > 0, where 0 < αt ≤ 1 and 0 ≤ ψj,t ≤ 1, for j = 1, 2 and t ∈ [0, 1].
The EDI for this model is

f(t) =
2 + ψ1,t + ψ2,t − {(ψ1,t)

1/αt + (ψ2,t)
1/αt}αt

2 +
∫ 1

0
ψ1,τ + ψ2,τ − {(ψ1,τ )1/ατ + (ψ2,τ )1/ατ }ατ dτ

. (8)

Fig. 2 shows the EDI underlying the three examples above along with T = 1000 simulated
data points over {tj ≡ j/T}Tj=1. We set αt = sin(πt) for Example 1; also, we set αt = 0.5
and ψt = sin(πt) for Example 2; finally, we take αt = 0.5, ψ1,t = t and ψ2,t = sin(πt) for
Example 3. As it can be seen from Fig. 2, the more mass the EDI allocates to a period, the
higher the degree of extremal dependence between Xt and Yt.

2.3. Pairwise and multiwise analyses
Section 2.1 covered the case of two stochastic processes. When more than two processes are
available, there are two options that complement themselves—the pairwise and the multiwise
analyses. Let Yt = (Y1,t, . . . , Yd,t), where each {Y1,t}, . . . , {Yd,t} is a collection of indepen-
dent random variables with unit Fréchet margins. The pairwise analysis entails applying
the principles from Section 2.1 to all

(
d
2

)
pairs. The pairwise structure characterizes the

so-called tail-dependence matrix of a d-dimensional vector Yt = (Y1,t, . . . , Yd,t) (Embrechts
et al., 2016, Definition 3.2) for all t, and it follows from Berman (1961) that Yt is asymp-
totically independent at time t if all pairs (Yi,t, Yj,t) are asymptotically independent, with
i ̸= j. Another appealing aspect of the pairwise analysis is that it is rather convenient for
visualizations. The pairwise structure is however insufficient to determine the higher order
structure (e.g., not much of P (Y1,t > u, . . . , Yd,t > u) can be learned from from the pairs).
Hence, we suggest complementing it with the following multiwise approach.

To embed AI in the multiwise setup, we set Zt = min{Y1,t, . . . , Yd,t} and additionally
consider the following extension of (2),

P (Zt > z) =
Lt(z)

z1/γ
. (9)

Independence in the multiwise approach corresponds to the case γ = 1/d.
For AD processes, the EDI function for that case naturally extends (3) as follows

f(t) =
limz→∞ P (Y1,t > z, . . . , Yd,t > z)∫ 1

0
limz→∞ P (Y1,τ > z, . . . , Yd,τ > z) dτ

=
limz→∞ P (Zt > z)∫ 1

0
limz→∞ P (Zt > z) dτ

. (10)
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Similarly to Section 2.1, f(t) carries information on the intensity of observations in the joint
tail over time, as the argument in (4) can be easily extended for A = [u,∞)d × [0, t], with u
large.

3. Bayesian semiparametric inference for time-changing joint extremes

Our Bayesian approach is semiparametric, as it entails setting a prior on the coefficient of
tail dependence and on the EDI. The proposed model can be completely characterized by
the parameters (F, γ) ∈ F × (0, 1], where F (t) ≡

∫ t

0
f(u) du is the cumulative EDI, and F is

the space of all continuous distribution functions supported over the unit interval. Similarly
to Poon et al. (2003), we suggest to first estimate γ and only if there is evidence in favor of
asymptotic dependence do we infer about f .

3.1. Bayesian inference for the coefficient of tail dependence
Consider the standardized exceedances {E1, . . . , Ek} = {Zt/u : Zt > u}, for a sufficiently
large u. Then, it follows from (9) that P (Zt/u > z | Zt > u) ≈ z−1/γ ; that is, for a sufficiently
large u the likelihood of the standardized exceedances E = (E1, . . . , Ek)

T is approximately
that of a standard Pareto distribution. To conduct Bayesian inference for the coefficient of
tail dependence γ, we need to set a prior on (0, 1]. Our prior consists of the mixture of a
distribution supported on (0, 1) along with a point mass at {1} to induce shrinkage if there is
evidence in favor of asymptotic dependence. This motivates the following hierarchical model,{

p(E | γ) = γ−k
∏k

j=1E
−(1+1/γ)
j (Likelihood)

p(γ | π) = π1{1}(γ) + (1− π)β(γ; aγ , bγ), p(π) = β(π; aπ, bπ) (Prior)
(11)

where β(·; a, b) is the density of a Beta distribution with parameters a, b > 0. For details on
the posterior sampling algorithm see the Appendix.

3.2. Polya tree-based inference for the EDI function

Preparations
Bayesian inference for the EDI function involves defining a prior over F . Our prior consists
of a mixture of finite Polya trees (Hanson, 2006), and thus we start with some preparations on
Polya trees (Lavine et al., 1992, 1994; Hanson and Johnson, 2002; Hanson, 2006; Christensen
et al., 2008). It is well known that Polya trees can be regarded as random histograms (e.g.,
Rodriguez and Müller, 2013, Chapter 4), and like histograms they also involve bins. EDIs are
supported on the unit interval after standardizing time, hence here we focus on distributions
supported on [0, 1]. Since the EDI can be understood as a standardized intensity function,
in our context bins correspond to subperiods of time.

To illustrate how Polya trees provide a natural extension of parametric models, below we
consider the process of generalizing a family of distributions on the unit interval via a Polya
tree; other statistical models can be generalized in a similar fashion (e.g., Christensen et al.,
2008). A Polya tree entails a number of stages (J), a centering distribution function (F0,θ),
and each stage involves a certain number of parameters. In the first stage, the unit interval
is partitioned into two bins, B1,1 = (0,m] and B1,2 = (m, 1), where m is the median of the
centering distribution. See Fig. 3 for the case of a Beta(5, 2) centering distribution, which
will be used as a running example.

Let T1 follow the first stage distribution; the parameters of the first stage quantify the
amount of mass of T1 that lies below and above the median of the centering distribution,
that is

p1,1 ≡ P (T1 ∈ B1,1), p1,2 ≡ P (T1 ∈ B1,2) = 1− p1,1.
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Fig. 3. Example of Polya tree densities centred at a Beta(5, 2) density over stages 1–3; the third stage
also shows a mixture of Polya trees mixing over a ∼ LN(log 2, .05) and b ∼ LN(log 5, .05). The dashed
line represents the quantiles defining the bins.

Let’s now move to the second stage; let T2 follow the second stage distribution. We proceed as
in the first stage but break the unit interval into four pieces with equal mass B2,1 = (0, q1],
B2,2 = (q1,m], B2,3 = (m, q3], B2,4 = (q3, 1), where q1 and q3 are respectively the first
and third quartiles of the centering distribution. The parameters of the second stage are
conditional probabilities given the bins of the first stage, that is,

p2,1 ≡ P (T2 ∈ B2,1 | T2 ∈ B1,1), p2,2 ≡ P (T2 ∈ B2,2 | T2 ∈ B1,1),

p2,3 ≡ P (T2 ∈ B2,3 | T2 ∈ B1,2), p2,4 ≡ P (T2 ∈ B2,4 | T2 ∈ B1,2).

The probability of each bin on the second stage is then

P (T2 ∈ B2,1) = p1,1p2,1, P (T2 ∈ B2,2) = p1,1p2,2,

P (T2 ∈ B2,3) = p1,2p2,3, P (T2 ∈ B2,4) = p1,2p2,4.

See Fig. 3 for a blueprint of these stages; the subsequent stages extend analogously, and in
general we would consider a sequence of bins (nested partitions), Π = {Πj ; j = 1, . . . , J},
such that the jth level, Πj = {Bj,l : l = 1, . . . , 2j}, partitions the unit interval using the
quantiles of the centering as above.

Extending the principles and ideas discussed above, in a Polya tree the conditional dis-
tribution of the bins in the jth stage, given the bins of the previous stage, is

pj,2l−1 ≡ P (Tj ∈ Bj,2l−1 | Tj ∈ Bj−1,l), pj,2l ≡ P (Tj ∈ Bj,2l | Tj ∈ Bj−1,l),

for every j and l. These conditional probabilities verify pj,2l−1 + pj,2l = 1. Since the
parameters of a Polya tree are all probabilities it is common to use independent Beta priors,
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pj,2l−1 ∼ Beta(αj,2l−1, αj,2l). Below, we set αj,l = αj2 as this guarantees an absolutely
continuous P with probability one in an infinite tree (Kraft, 1964).

The description above is for a Polya tree prior. A mixture of finite Polya trees completes
the model by adding a prior on θ. This has the effect of introducing randomness on the
starting and endpoints of the bins, which then smooths out the jumps noticeable in stages
1–3 of Fig. 3.

Bayesian inference for the EDI function via mixture of finite Polya trees
Inference is conducted by assuming that a realization of the process {Zt} is observed over a
grid on the unit interval, T = {t1, . . . , tT }. Let I = {t ∈ T : Zt > u} = {τ1, . . . , τk} be the
times of k joint observations exceeding a high threshold. The hierarchical representation of
our model for the EDI is as follows

I | F ∼ F, F | θ,Π ∼ PTJ(α, F0,θ), θ ∼ p(θ). (12)

Here, PTJ(α, F0,θ) is a Polya tree with two parameters: A centering cumulative EDI (F0,θ(t));
a precision parameter (α > 0). The parameter α controls how much deviations from the
centering will be allowed, in the sense that the smaller the α the more we allow for deviations
from the centering distribution. Following Hanson (2006), the Polya tree EDI density is

f(t | Π, θ) = 2JF (BJ,l(t) | Π, θ)f0,θ(t), (13)

where f0,θ = dF0,θ/dt, and where l(t) ∈ {1, . . . , 2J} identifies the bin at level J containing
t ∈ (0, 1). Note that (13) implies that the Polya tree EDI, f , is a suitably ‘tilted’ version of
the centering EDI, f0,θ. Some final comments on posterior sampling are in order. MCMC
can be used to sample all parameters. For the conditional probabilities of the bins, a full
conditional is available, allowing Gibbs sampling to be used. That is, the parameters α
and θ can be updated by Metropolis–Hastings, whereas the conditional probabilities can be
updated through,

pj,2l−1 | {τ1, . . . , τk}, α, θ ∼ Beta(αj2 + kj,2l−1, αj
2 + kj,2l),

where kj,l is the number of observations from I that lie on the jth bin, Bj,l, for j = 1, . . . , J
and l = 1, . . . , 2j−1.

3.3. Preprocessing margins
The starting point of Section 2 has been that the random vector Yt has unit Fréchet marginal
distributions; in practice, this is achieved by using a suitable transformation of the raw
process {Rt = (R1,t, . . . , Rd,t)} that sets

Yt = −(1/ log{F1,t(R1,t)}, . . . , 1/ log{Fd,t(Rd,t)}), (14)

where Fi,t(r) = P (Ri,t ≤ r), for all i. Below, we mainly focus on the case where marginals of
Rt are time invariant (i.e. Fi ≡ Fi,t, for all i) as time invariance on the margins is sensible for
applied settings such as the one examined in Section 5, and thus the practical implementation
of mapping data into unit Fréchet distribution via (14) can be easily achieved by either using
the empirical distribution function or a mixture of Polya trees for learning about Fi. Still, for
situations where there is evidence of nonstationary margins, one may always implement (14),
converting the raw data to unit Fréchet margins using a time-varying distribution function
estimator (e.g., Harvey and Oryshchenko, 2012; Nieto-Barajas et al., 2012) to learn about
Fi,t.
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Fig. 4. Single sample experiment (T = 1000): Posterior median EDI obtained via the mixture of finite
Polya trees over a single sample experiment (dashed) plotted against true (solid).

4. Numerical experiments on simulated data

4.1. Data generating processes and preliminary analysis
We now assess the performance of the proposed method using simulated data. First, we
illustrate the methods on a single sample experiment and describe the simulation scenarios;
a Monte Carlo simulation study will be presented in Section 4.2. The scenarios under which
data are generated stem from Examples 1–3. Similarly to Fig. 2, T = 1000 observations over
{tj ≡ j/T}Tj=1 are simulated from:

• Scenario A: Logistic extreme value copula from Example 1, with αt = sin(πt).

• Scenario B: Bi-extremal copula from Example 2, with αt = 0.5, and ψt = sin(πt).

• Scenario C: Asymmetric logistic extreme value copula from Example 3, with α = 0.5,
ψ1,t = t, and ψ2,t = sin(πt).

We have transformed the simulated data to unit Fréchet margins using the empirical dis-
tribution function. Some comments on learning about the EDI via a mixture of Polya
trees are in order. We use a Beta distribution as the baseline distribution, that is F0,θ =
Beta(a, b), and we set a ∼ Log-normal(m0, s0) and b ∼ Log-normal(τ1, τ2); finally, we
set α ∼ Gamma(a0, b0). In terms of J , while earlier literature suggested rules such as
J = ⌈log2 k⌉ (Hanson and Johnson, 2002), it is by now well known that setting J around 5–8
provides identical inferences as larger values of J , regardless of k (e.g., Cipolli and Hanson,
2017). Keeping this in mind, we set J = 8. In terms of hyperparameters, we set a0 = 0.1,
b0 = .1, J = 8, m0 = 0.5, s0 = 1, τ1 = .01, and τ2 = .01 for the EDI and aγ = 1, bγ = 1,
aπ = 1 and bπ = 1 for the coefficient of tail dependence. For the threshold, u in Eq. (4),
we consider the 0.95 quantile of min(Xt, Yt) and run a burn-in period of 5 000 iterates, after
which we saved 5 000 posterior iterates.

The outcome of a single-run experiment conducted according to the settings above is
presented in Fig. 4. Such experiment allows us to anticipate some strengths and limitations
of the proposed method. As it can be seen from this figure, our estimator is overall close
to the true EDI and it thus captures the intensity of joint extreme observations. Also, the
proposed Polya tree-based method does not suffer from boundary bias neither at {0} nor at
{1}.

A final comment is in order. For Scenarios A–C the true coefficient of tail dependence is
γ = 1. We include in the Supporting Information (Section 1.2) Scenarios D and E for which
γ < 1. As can be seen from the Supporting Information, the performance of the proposed
method is also satisfactory for that setting, especially for higher T .

4.2. Monte Carlo simulation study
Here we report the main numerical findings from a Monte Carlo simulation study. We
simulated 1 000 time series of length T = 500, 1 000, 5 000, and 10 000 from Scenarios A–
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Table 1. Monte Carlo MISE (Mean Integrated Squared Error) for
Scenarios A–C for the Polya tree-based EDI.

Sample size (T )
Scenario 500 1 000 5 000 10 000

A 0.0207 0.0182 0.0120 0.0103
B 0.0152 0.0106 0.0070 0.0057
C 0.0265 0.0126 0.0089 0.0080

C introduced in Section 4.1. Fig. 5 shows the EDI estimates obtained with the proposed
method for Scenarios A–C over this Monte Carlo simulation study; we used the same prior
as in Section 4.1, and have also transformed once more the simulated data to unit Fréchet
margins using the empirical distribution function.

Scenario A

Scenario B

Scenario C

Fig. 5. Monte Carlo simulation study (T = 1000): 150 randomly selected posterior median EDI density
estimates, resulting from the the Monte Carlo simulation study, obtained via a mixture of finite Polya
trees (gray), compared with the true EDI (black).

We start with the EDI function. Fig. 5 suggests that the proposed Polya tree-based es-
timator for the EDI function performs well over Scenarios A–C, in line with the preliminary
experiments from Section 4.1. Next, we move to the Bayesian estimator of the coefficient
of tail dependence from Section 3. The Monte Carlo posterior median estimates reported
in Table 2 suggest an overall good accuracy of the proposed Bayesian approach for learning
about the coefficient of tail dependence. In an attempt to examine the frequentist properties
of our Bayesian method from a numerical viewpoint, we also report in Table 2 the coverage
probabilities, i.e. the number of times the true value γ was contained in the credible interval.
As it can be seen from Table 2 the coverage probabilities reasonably follow the significance
levels, especially for higher T , thus suggesting a good frequentist behavior of the proposed
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Table 2. Monte Carlo posterior median coefficient of tail dependence and coverage probabilities
Ix at levels x = 0.90, 0.95. For all scenarios γ = 1.

Scenario Sample size (T ) Monte Carlo posterior median (γ̂) I.90 I.95
A 500 0.985 0.998 1.000
B 500 0.985 0.996 0.998
C 500 0.967 0.996 0.996

A 1 000 0.994 1.000 0.999
B 1 000 0.989 0.999 1.000
C 1 000 0.969 0.998 0.996

A 5 000 0.999 1.000 1.000
B 5 000 0.998 1.000 1.000
C 5 000 0.983 0.990 0.999

A 10 000 1.000 1.000 1.000
B 10 000 0.999 0.989 1.000
C 10 000 0.995 0.993 1.000

Bayesian approach. The appealing frequentist performance of the proposed method is rein-
forced by the Monte Carlo evidence from Table 1 that shows that the MISE (Mean Integrated
Squared Error) decreases as the sample size increases across all simulation scenarios. In the
Supporting Information (Section 1.2), we report an additional Monte Carlo experiment that
assesses how performance varies when the dimension of the multivariate vector increases. As
expected, for a fixed sample size, the accuracy of the fits is higher in the bivariate case.

5. Tracking extreme joint losses of FAANG stocks

5.1. Financial context and preprocessing

In this section we apply the proposed method to track the dynamics governing extreme
joint losses of FAANG stocks. These stocks trade on the NASDAQ stock market and have
attracted retail investors, money managers, and other professional stakeholders. For example,
Warren Buffett was a key financial player investing on these stocks (Apple) in 2019; see the
2019 Hathaway’s 13-F filing available from the Securities and Exchange Commission (SEC)
webpage (www.sec.gov). The data were gathered from Yahoo Finance and consist of weekly
closing prices from 1 Jan. 2012 to 1 Feb. 2024; this is mostly a period of sustained growth,
and with a few sharp sell-offs over the COVID-19 era. The period under analysis also includes
the beginning of the COVID-19 era, which some speculate will get these big tech companies
to become even bigger (Wigglesworth, 2020).

Fig. 1 depicts the raw data. Since the focus of the analysis is on extreme losses, we use
weekly negative returns as a unit of analysis. Some comments on preprocessing are in order.
We transform the bivariate returns (RX

t , R
Y
t ) to unit Fréchet marginals (Xt, Yt) using the

transformation:

(Xt, Yt) = −(1/ logG(RX
t ), 1/ logH(RY

t )),

where G and H are the respective marginal distribution functions for RX
t and RY

t . We then
work with exceedances of Zt = min(Xt, Yt) above the 0.95 quantile. We estimate G andH us-

ing a suitably rescaled empirical distribution function, that is Ĝ(x) = 1/(T+1)
∑T

t=1 1(R
X
t ≤

x) with Ĝ being analogously defined. Ljung–Box tests (Tsay, 2002, Chapter 2) were applied
to the Zt and no evidence in favor of Zt being seriously correlated was found.
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5.2. Learning about the dynamics of pairwise extreme losses
As noted in Section 3, similarly to Poon et al. (2003), we first estimate γ and only if there is
evidence in favor of asymptotic dependence we estimate f . We recall that our prior for the
coefficient of tail dependence includes a point mass at 1 to induce shrinkage if there is evidence
in favor of asymptotic dependence. The obtained posterior summaries for the coefficient of
tail dependence for all pairs of stocks are presented in Table 5.2 and suggest evidence in favor
of asymptotic dependence for each pair of stocks. Given this, we next proceed to learn about
the EDI. Bayesian inference for the EDI for all pairs of FAANG stocks is presented in Fig. 6.
Some comments on implementation are in order. As in Section 4 we assume the number of
levels to be J = 8. In terms of prior information, for the parameter α ∼ Gamma(a0, b0) we
use a non-informative prior (a0, b0) = (0.1, 0.1), whereas for the parameter of the centring
Beta distribution we set a ∼ Log-normal(µ̂z, σ̂z) and b ∼ Log-normal(0.1, 0.1), where µ̂z and
σ̂z are respectively the sample mean and standard deviation. In terms of MCMC, we run
a burn-in period of 5 000 iterates, after which we saved 5 000 posterior iterates. As can be
seen from Fig. 6, most EDIs tend to peak around 2018–22 thus indicating that extreme joint
losses have occurred mostly around that time. This aligns with several noteworthy financial
episodes that took place over this turbulent period. Firstly, notable sell-offs occurred in 2018,
attributed in part to regulatory concerns, with the tech sector already perceived at that time
as vulnerable to herd investing (Bullock et al., 2018; Bullock and Williams, 2018). Secondly,
the stock markets faced considerable turbulence in 2020–21 due to COVID-19, marked by
events such as Black Monday (I–II) and Black Thursday. Thirdly, the onset of the pandemic
era triggered various supply chain bottlenecks paving the way for a rising inflation rise and
a decreased demand. The analysis presented above is for the raw returns. Yet, it is well
known that returns can display dependence through higher moments, for example, via the
volatility clustering phenomenon (e.g., Mandelbrot and Mandelbrot, 1997; Jondeau et al.,
2007) Motivated by this, we performed the same analysis after prewhitening the returns using
a GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model; the results
are presented in the Supporting Information (Section 2.2). The main empirical findings on
the key dynamics of extremal dependence are largely consistent with those reported above,
though as expected the resulting EDIs show slight variations.

In the Supporting Information we additionally comment on some links between the
EDI and the subperiod estimator of Poon et al. (2003, Section 3.3.2) for χ(t). While
the subperiod estimator Poon et al. is not a fair comparison to the EDI (by definition,

f(t) = χ(t)/
∫ 1

0
χ(τ) dτ) there are some links between the two that can easily established

through an histogram estimator of the EDI. This is clarified through conceptual considera-
tions and Monte Carlo evidence provided in the Supporting Information.

Finally, while the analysis in Fig. 6 offers an insightful post-mortem outlook on the
frequency of joint extreme losses, an important practical question arises regarding predictive
insights for the future. The future evolution of tail-dependence structure can be predicted
by treating each MCMC trajectory of the EDI as a stochastic process to be forecasted. The
forecasted EDI can be found in Supporting Information (Section 2.5), along with further
technical details.

5.3. Multiwise analysis
Section 5.2 offered a pairwise analysis but in practice the interest often lies in more than two
stocks. Here we focus on d = 5 FAANG stocks and conduct a multiwise analysis following the
principles from Section 2.3. The reported analysis used the same prior and MCMC setup as
in Section 5.2. Fig. 7 depicts the EDI associated with such time-varying minimum computed
for all FAANG stocks. The EDI of this Zt again showcases that the frequency of extreme
joint losses was actually higher around late 2018. This is perhaps not surprising give that as
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Fig. 6. Pairwise EDI for FAANG stocks: Posterior median of EDI based on a mixture of finite Polya
trees along with pointwise credible bands.
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Table 3. Coefficient of tail dependence for FAANG stocks:
Posterior median and 95% credible intervals for pairwise
analysis.

Pair of Lower Posterior Upper
FAANG stocks limit median limit

Facebook–Amazon 0.983 1.000 1.000
Facebook–Apple 0.999 1.000 1.000
Facebook–Netflix 1.000 1.000 1.000
Facebook–Google 1.000 1.000 1.000
Amazon–Apple 1.000 1.000 1.000
Amazon–Netflix 0.976 1.000 1.000
Amazon–Google 0.990 1.000 1.000
Apple–Netflix 0.970 1.000 1.000
Apple–Google 1.000 1.000 1.000
Netflix–Google 0.984 1.000 1.000

noted earlier a variety of joint sell-offs occurred in 2018 (Bullock et al., 2018; Bullock and
Williams, 2018).
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Fig. 7. Multiwise EDI for FAANG stocks: Posterior median EDI based on a mixture of finite Polya trees
along with pointwise credible bands.

Also, many geopolitical issues, such as the US-China trade war (Liu and Woo, 2018; Li
et al., 2018), along with US policy issues, including the impeachment of former President
Trump (Jackman, 2017), may have been drivers behind some of these joint sell-offs. The
posterior median coefficient of tail dependence for this multivariate analysis is 0.70 (CI =
(0.60, 0.83)), thus suggesting that despite the sturdy growth of FAANG stocks over time, the
comovements of their extreme losses is substantial; this matches the intuition from Fig. 1
where it can be seen that sharp dips for these stocks tend to be synchronized.

6. Discussion and closing remarks

This paper introduces a flexible Bayesian approach for modeling the time-changing nature
of extreme observations of a random vector. The proposed framework is suitable for mod-
eling time-varying extremal dependence, as it has been designed for tracking the dynamics
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governing the intensity of extreme observations in the joint tail, as well as for assessing if
two stochastic processes are asymptotically dependent. In addition, we develop Bayesian es-
timators for the two targets of interest—the EDI and the coefficient of tail dependence. The
EDI describes the intensity of the extreme observations in the joint tail over time, and it is
thus a measure of the degree of association of the extremes over time. For learning about the
EDI from data, we define a prior on the space of all EDIs using mixture of finite Polya trees.
Our Polya tree-based approach relies on a parametric approach as a baseline model (say, a
Beta centering distribution), while allowing for deviations from it whenever the data provide
evidence for that. The application of our model to the so-called FAANG stocks revealed
some interesting dynamics on the frequency of joint extremes over time, especially the fact
the relative frequency of extreme joint losses has been higher over 2016–2019, than over the
2020 pandemic outbreak. Time-varying parameters have a long tradition in Econometrics
and Statistics (e.g., Cooley and Prescott, 1976). In line with that tradition, the approach in
this paper recognizes the time-changing nature of joint extreme events over time, in terms
of their frequency, magnitude, and dependence.

Another natural avenue for future research entails modeling changepoints or structural
changes in the intensity of extreme observations in the joint tail. While it is known that
breaks in tail behavior are key in applications (e.g., Quintos et al., 2001; Lin and Kao, 2008,
and references therein), most attention has been focused on modeling structural changes in
the magnitude of the extreme observations rather than on their intensity function, and with
the exception of de Carvalho et al. (2020) all previous developments are for the univariate
setting. Modeling changepoints in the intensity of extreme observations in the joint tail
would require setting a prior on the space of discontinuous EDI functions, and with the
times of the breaks being themselves treated as a parameter . The assumptions in Section 2
accommodate both continuous and discontinuous EDIs; yet, instead of the mixtures of Polya
trees that we have considered in this paper, perhaps Polya trees themselves may have a
higher potential for learning about structural breaks in the intensity as they allow for jumps
(see stages 1–3 in Fig. 3). Finally, the assumption of a constant γ was made for parsimony
but could in principle be extended using the tail index regression framework of Wang and
Tsai (2009), with the time index as a covariate and Zt = min{Y1,t, . . . , Yd,t} as a response.
Beyond the EDI, such extension involves specifying a second prior on a function space (as γt
would become a function) and a rescaled Gaussian process could be a natural prior for that
framework (Ghosal and Van der Vaart, 2015, Chapter 2). We leave such open problems for
future analysis.
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Appendix A: Posterior sampling for the coefficient of tail dependence

This section derives the posterior inference algorithm for learning about the coefficient of tail de-
pendence. The hierarchical model from Section 3.1, implies that, given γ and π, it follows that
E1, . . . , Ek are independent with a distribution that depends only on γ, but not on π; that is,
p(E | γ, π) = γ−k ∏k

j=1 E
−(1+1/γ)
j = p(E | γ), where E = (E1, . . . , Ek)

T. Hence, the full conditional
density of γ ∈ (0, 1] is

p(γ | π,E) ∝ p(E, γ, π)

= p(E | γ, π) p(π, γ)

= p(E | γ) p(γ | π) p(π)

∝ p(E | γ) p(γ | π)

= γ−k
k∏

j=1

E
−(1+1/γ)
j {π1{1}(γ) + (1− π)β(γ; aγ , bγ)}.

(15)

To update γ we use a Metropolis–Hastings step based on (15) where the proposal distribution is
a mixture, q(γ∗ | γ) = ω1{1}(γ

∗) + (1 − ω)TN(γ∗ | γ, 1); here, TN( · | γ, 1) is the density of the
truncated Normal distribution on (0, 1), with mean γ and variance 1.

It follows from (11) that γ | π is a mixture of a continuous and a discrete part ({1}), hence
implying that

γ =

{
1, w.p. π,

γ′, w.p. 1− π,

where γ′ ∼ Beta(aγ , bγ). Let δ = 1{1}(γ) be a binary latent indicator so that δ ∼ Bern(π). Beta–
Bernoulli conjugacy implies that

p(π | δ) ∝ p(δ | π) p(π) = β(π, aπ + 1{1}(γ), bπ + 1(0,1)(γ)),

which motivates approximating the full conditional of (π | δ(1), . . . , δ(i)) via a Beta(aπ + |ri|, bπ + i−
|ri|) distribution, where ri = {1 ≤ j ≤ i : γ(j) = 1}. The quality of the latter approximation can be
improved via thinning so to attenuate the dependence of the chain of δ’s; in all results in the paper
we used a thinning of 5. We found this approximation to a Gibbs step to work well in the Monte
Carlo simulations of Section 3 and in the Supporting Information (Section 1.4).

Algorithm 1 summarizes the computational procedure based on the above derivations.

Algorithm 1 Monte Carlo posterior sampling for coefficient of tail dependence

1. Initialize (γ(1), π(1)).
2. Sample γ∗ ∼ π(i)

1{1} + (1− π(i))TN(γ(i), 1) and compute the ratio

R =
p(γ∗ | π,E) q(γ | γ∗)

p(γ | π,E) q(γ∗ | γ) .

Accept γ(i+1) ≡ γ∗ with probability min{R, 1}; else, set γ(i+1) ≡ γ(i).
3. Sample π(i+1) from Beta(aπ + |ri|, bπ + i− |ri|), where ri = {j ≤ i+ 1 : γ(j) = 1}.
4. Repeat Steps 2 and 3 until reaching stationarity.
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