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1. Supplementary simulation studies

1.1. EDI kernel density estimator
The Monte Carlo experiments to be reported next illustrate: i) the boundary-bias issue of
the EDI kernel density estimator; ii) superior performance of the Polya tree-based EDI over
the kernel approach. The EDI kernel density estimator is

f̂(t) =
1

k

k∑
j=1

Kh (t− τj) , (1)

where h > 0 is the bandwidth and Kh(·) = K(·/h)/h, with K denoting a kernel. Fig. 1
emphasizes the well-known boundary-bias issue of kernel density estimators. For the ex-
periments in Fig. 1, we use h = 0.1 along with an Epanechnikov kernel which is known to
be optimal under mild conditions (Wand and Jones, 1995, Section 2.7); a similar poor fit
at the boundary is visible using other bandwidth selection methods such as, for example,
Silverman’s rule of thumb (Silverman, 1986).
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Fig. 1. Boundary-bias issue of the EDI kernel density estimator.

To compare the performance of the EDI Polya tree-based estimator versus the kernel ap-
proach in (1), we compute the MISE (Mean Integrated Squared Error) for Scenarios A–C
under the different sample sizes. Table 1 reports the results and it suggests that the mixture
of finite Polya trees method provides a better fit in general.
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Table 1. Monte Carlo mean MISE for Scenarios A–C for EDI Polya tree-based estimator versus
kernel density estimator.

Scenario A T = 500 T = 1000 T = 5000 T = 10 000

Polya 0.0207 0.0182 0.0120 0.0103
Kernel 0.2575 0.1390 0.0928 0.0853

Scenario B T = 500 T = 1000 T = 5000 T = 10 000

Polya 0.0152 0.0106 0.0070 0.0057
Kernel 0.0261 0.0229 0.0078 0.0067

Scenario C T = 500 T = 1000 T = 5000 T = 10 000

Polya 0.0265 0.0126 0.0089 0.0080
Kernel 0.0272 0.0186 0.0090 0.0086

Table 2. Monte Carlo posterior median coefficient of tail dependence and coverage proba-
bilities Ix at levels x = 0.90, 0.95. The true coefficients of tail dependence for Scenarios D
and E are γ = 0.3 and γ = 0.5, respectively.

Scenario Sample size (T ) Monte Carlo posterior median I.90 I.95
D 500 0.3039 0.810 0.910
E 500 0.5048 0.802 0.896
D 1 000 0.3037 0.860 0.970
E 1 000 0.5027 0.864 0.908
D 5 000 0.3001 0.897 0.983
E 5 000 0.5000 0.900 0.959
D 10 000 0.3000 0.924 0.999
E 10 000 0.5000 0.910 0.969

1.2. Asymptotic independence
This section considers two additional simulation scenarios with 0 < γ < 1. The data gener-
ating processes stem from the time-varying Pareto-type model from Section 2.1 in the paper,
that is,

P (Zt > z) = z−1/γLt(z).

Specifically, T = 500 observations over {tj ≡ j/T}Tj=1 are simulated from:

• Scenario D: Lt(z) = t and γ = 0.3.

• Scenario E: Lt(z) =
√
t and γ = 0.5.

Since these are scenarios of asymptotic independence the key parameter of interest is the
coefficient of tail dependence. Again, we proceed as in Poon et al. (2003, 2004), i.e., only
if there is no significant evidence to reject γ = 1 would we compute f(t); otherwise, the
processes is inferred to be asymptotically independent, and depending on the level γ they
will be positively or negatively associated at the extremes. The Monte Carlo posterior median
estimates of the coefficient of tail dependence are reported in Table 2 and provide an overall
good fit.

To supplement these numerical experiments we also computed the EDIs for these scenar-
ios. While the EDI is mostly tailored for AD it may also be computed under AI in some cases,
such as in Scenarios D–E. For example, consider the Hall class of slowly-varying functions
(Hall, 1982),

Lt(z) = c0(t) + c1(t)z
−β(t) + o(z−β(t)), (2)

where c0(t) > 0, β(t) > 0, and o(z−β(t)) is a remainder term. Under (2), it can be shown that

f(t) = c0(t)/
∫ 1

0
c0(τ) dτ . Scenarios D–E are particular cases of the Hall class with c0(t) = t

and c0(t) =
√
t, respectively. The posterior median EDI is presented in Fig. 2 and closely

follows the target.
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Scenario D
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Fig. 2. Monte Carlo simulation study under asymptotic independence (T = 500): 150 randomly
selected trajectories of EDI density estimates obtained via the posterior median of a mixture of finite
Polya trees over the Monte Carlo simulation study (gray) plotted against true (black).

1.3. Multiwise EDI
The goal of this Monte Carlo simulation study is to assesses how the performance of the Polya
tree-based EDI varies with the dimension of the multivariate vector. We extend Scenario A
from the main paper by considering a time-varying multivariate logistic model

Gt(y1, . . . , yd) = exp

{
−ℓt

(
1

y1
, . . . ,

1

yd

)}
,

for y1, . . . , yd > 0, with

ℓt(y1, . . . , yd) = (y
1/αt

1 + · · ·+ y
1/αt

d )αt ,

for y1, . . . , yd > 0, where 0 < αt ≤ 1. The true EDI can be derived using Di Bernardino and
Rullière (2016, Theorem 2.2), and is given by

f(t) =
−
∑d

i=1(−1)i
(
d
i

)
iαt∫ 1

0
{−

∑d
i=1(−1)i

(
d
i

)
iατ } dτ

, (3)

where
(
d
i

)
is the binomial coefficient. Data ({Y1,t, . . . , Yd,t}) are simulated from a multi-

variate logistic extreme value copula with αt = sin(πt/T ). Similar MCMC settings and
prior information as in the paper are considered and we set u to be the 0.95 quantile of
min{Y1,t, . . . , Yd,t}. Table 3 shows the performance of the Polya tree-based EDI fits over
different dimensions. As expected, for a fixed sample size, the accuracy of the fits is higher
in the bivariate case.

1.4. Sensitivity analysis
In this section we conduct a prior sensitivity analysis via a Monte Carlo simulation study; the
main results are tantamount to the ones obtained in Section 5 of the paper. We consider once
again Scenarios A–C with T = 1000, where the baseline distribution is F0,θ(t) = β(t; a, b),
with a ∼ Log-normal(m0, s0), b ∼ Log-normal(τ1, τ2); for the precision parameter, we set
α ∼ Gamma(a0, b0). In terms of hyperparameters, we consider:

• Prior 1: a0 = .1, b0 = .1, m0 = .5, s0 = 1, τ1 = .01, and τ2 = .01.

• Prior 2: a0 = 1, b0 = 1, m0 = 1, s0 = 1, τ1 = .01, and τ2 = .01.
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Table 3. Monte Carlo mean MISE (Mean Integrated Squared
Error) for Scenarios A–C for Polya tree-based EDI.

Scenario A

Dimension (d)
Sample size (T ) 2 3 4 5

500 0.0207 0.0781 0.1931 0.2187
1 000 0.0182 0.0589 0.1021 0.1597
5 000 0.0120 0.0519 0.0974 0.1252
10 000 0.0103 0.0496 0.0912 0.1150

Scenario B

Dimension (d)
Sample size (T ) 2 3 4 5

500 0.0152 0.0437 0.0916 0.1711
1 000 0.0106 0.0309 0.0747 0.1084
5 000 0.0070 0.0159 0.0694 0.0901
10 000 0.0057 0.0063 0.0095 0.0193

Scenario C

Dimension (d)
Sample size (T ) 2 3 4 5

500 0.0265 0.0546 0.0806 0.1467
1 000 0.0126 0.0192 0.0694 0.0946
5 000 0.0089 0.0125 0.0738 0.0974
10 000 0.0080 0.0091 0.0149 0.0237

Table 4. Test for the null hypothesis of a constant coeffi-
cient of tail dependence.

Pair of FAANG stocks p-value

Facebook–Amazon 0.6064
Facebook–Apple 0.9084
Facebook–Netflix 0.7291
Facebook–Google 0.6930
Amazon–Apple 0.9979
Amazon–Netflix 0.4471
Amazon–Google 0.8669
Apple–Netflix 0.8148
Apple–Google 0.9661
Netflix–Google 0.3972

• Prior 3: a0 = .1, b0 = .1, m0 = µ̂, s0 = σ̂, τ1 = .01, and τ2 = .01,

where (µ̂, σ̂) is the maximum likelihood estimator of α ∼ Gamma(a0, b0). For the threshold,
we set once more u as the 0.95 quantile, and run a burn-in period of 5 000 iterates, after
which we saved 5 000 posterior iterates. Fig. 3 reports the main findings of this Monte Carlo
simulation study.

2. Supplementary empirical results

This section presents some supplementary empirical results complementing Section 5 of the
paper. Section 2.1 provides the same empirical analysis as in the paper but allowing for
the margins to be nonstationary. Section 2.4 summarizes results on goodness of fit, whereas
Section 2.5 discusses EDI forecasts. Finally, Table 4 suggests that according to test T4 in
Einmahl et al. (2016, Corollary 2) there is no evidence to reject the null hypothesis of a
constant coefficient of tail dependence.
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Scenario A

Scenario B

Scenario C

Fig. 3. Monte Carlo simulation study for sensitivity analysis (T = 1000): 150 randomly selected
posterior median EDI density estimates, resulting from the the Monte Carlo simulation study, obtained
via a mixture of finite Polya trees (gray), compared with the true EDI (black). From left to right: Priors
1, 2, and 3.
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Table 5. Coefficient of tail dependence for FAANG stocks:
Posterior median and 95% credible intervals for pairwise
analysis.

Pair of Lower Posterior Upper
FAANG stocks limit median limit

Facebook–Amazon 0.982 1.000 1.000
Facebook–Apple 0.990 1.000 1.000
Facebook–Netflix 1.000 1.000 1.000
Facebook–Google 1.000 1.000 1.000
Amazon–Apple 1.000 1.000 1.000
Amazon–Netflix 0.968 1.000 1.000
Amazon–Google 0.988 1.000 1.000
Apple–Netflix 0.971 1.000 1.000
Apple–Google 0.998 1.000 1.000
Netflix–Google 0.964 1.000 1.000

2.1. Nonstationary margins
We transform the bivariate returns (RX

t , RY
t ) to unit Fréchet margins (Xt, Yt) using the

transformation:

(Xt, Yt) = (−1/ logGt(R
X
t ),−1/ logHt(R

Y
t )), (4)

where Gt and Ht are the respective marginal time-varying distribution functions for RX
t and

RY
t . To transform the data as in (4) we compute the time-varying distribution function

estimator of Harvey and Oryshchenko (2012). That is

Ĝt(x) =

T∑
i=1

K

(
x−RX

i

h

)
wt,i, t = 1, . . . , T,

where K(·) is a kernel distribution function, and
∑T

i=1 wt,i = 1 for all t. We use the Gaussian
kernel and the weights are computed using the algorithm of Koopman and Harvey (2003),
where it follows that wt,i ≈ (1 − w)/(1 + w)w|t−i| for i = 1, . . . , T and 0 ≤ w < 1. We
tried different values of the parameter w and obtained similar findings; the results reported
here are those for w = 0.6. Trivially, Ĥt is analogously defined. Fig. 4 shows the pairwise
EDI and Fig. 5 depicts the multiwise EDI. As can be seen from the latter charts, the key
empirical findings are the same as those reported in Section 5 of the paper. Table 2.1 presents
the posterior median and credible bands of the coefficient of tail dependence. The posterior
median coefficient of tail dependence for this multivariate analysis is 0.68 (CI = (0.60, 0.83)).
Again, the results are tantamount to the ones obtained in the paper.

2.2. GARCH filtering
Fig. 6 shows the pairwise EDI’s after prewhitening the returns using an asymmetric version
of the GARCH (AGARCH) model, following Poon et al. (2003, Appendix A.2). Fig. 9
depicts the multiwise EDI after prewhitening the returns using the AGARCH approach. The
main empirical findings on the key dynamics of extremal dependence are largely consistent
with those reported in the main paper, though as expected the resulting EDIs show slight
variations.

2.3. Subperiod analysis
This section comments on some links between the EDI and the subperiod estimator of Poon
et al. (2003, Section 3.3.2) for χ(t). Specifically, we show that an histogram-type of estimator
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Fig. 4. Pairwise EDI for FAANG stocks: Posterior median of EDI based on a mixture of finite Polya
trees along with pointwise credible bands.
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Fig. 5. Multiwise EDI for FAANG stocks: Posterior median EDI based on a mixture of finite Polya trees
along with pointwise credible bands.

for the EDI is related with the subperiod estimator. To show this, let I = {τ1, . . . , τk} be
the times of the exceedances and partition the unit interval (0, 1) into m bins,

B1 =

(
0,

1

m

)
, . . . , Bm =

(
m− 1

m
, 1

)
.

The subperiod estimator of Poon et al. can be written as

χ(t) =

m∑
j=1

χ̂j1{t∈Bj} =

m∑
j=1

unj
u

nj
1{t∈Bj} =

m∑
j=1

nj
u

nj/u
1{t∈Bj}. (5)

Here, χ̂j = (unj
u)/nj , n

j
u =

∑
t∈I 1{t∈Bj}, and nj =

∑
t∈T 1{t∈Bj} with j = 1, . . . ,m.

Yet, (5) is not a density estimator and hence it is not a fair comparison to the EDI, as

by definition f(t) = χ(t)/
∫ 1

0
χ(t) dt. Still, as shown below, the estimator of χ(t) in (5) has

some links with the histogram estimator of the EDI, which is defined as

f(t) =

m∑
j=1

nj
u

k/m
1{t∈Bj}. (6)

This is similar to the subperiod estimator, but the need for f(t) to integrate to one is
what justifies the different denominators when comparing (5) against (6). Fig. 8 shows the
histogram estimator of the pairwise EDI, along with the proposed mixture of finite Polya
trees estimator; Sturge’s rule was used to set the number of bins. As can be seen from Fig. 8
the fitted histogram EDIs are in line with those reported in the paper.

2.4. QQ-plots from randomized quantile residuals
To assess the fit of the proposed methods we resort to a version of randomized quantile
residuals (Dunn and Smyth, 1996), where residuals are defined as εj = Φ−1{F (τj)}, for
j = 1, . . . , k; here, F is the integrated EDI function and τj the standardized time of the
exceedances. The rationale for such residuals is that if F is the true distribution of the time
of the exceedances, then τj | F iid∼ F , implying that F (τj) should be Uniform, and thus εj



Supporting information 9

0.0

0.5

1.0

1.5

2.0

2013 2015 2017 2019 2021 2023
Time (in years)

E
D

I

Amazon & Apple

0.0

0.5

1.0

1.5

2.0

2013 2015 2017 2019 2021 2023
Time (in years)

E
D

I

Amazon & Google

0.0

0.5

1.0

1.5

2.0

2013 2015 2017 2019
Time (in years)

E
D

I

Amazon & Netflix

0.0

0.5

1.0

1.5

2.0

2013 2015 2017 2019 2021 2023
Time (in years)

E
D

I

Facebook & Amazon

0.0

0.5

1.0

1.5

2.0

2013 2015 2017 2019 2021 2023
Time (in years)

E
D

I

Apple & Netflix

0.0

0.5

1.0

1.5

2.0

2013 2015 2017 2019 2021 2023
Time (in years)

E
D

I

Apple & Google

0.0

0.5

1.0

1.5

2.0

2013 2015 2017 2019 2021 2023
Time (in years)

E
D

I

Facebook & Apple

0.0

0.5

1.0

1.5

2.0

2013 2015 2017 2019 2021 2023
Time (in years)

E
D

I

Facebook & Google

0.0

0.5

1.0

1.5

2.0

2013 2015 2017 2019 2021 2023
Time (in years)

E
D

I

Netflix & Google

0.0

0.5

1.0

1.5

2.0

2013 2015 2017 2019 2021 2023
Time (in years)

E
D

I

Facebook & Netflix

Fig. 6. Pairwise EDI for FAANG stocks: Posterior median of EDI based on a mixture of finite Polya
trees along with pointwise credible bands, when filtering the margins using an AGARCH.
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Fig. 7. Multiwise EDI for FAANG stocks: Posterior median EDI based on a mixture of finite Polya trees
along with pointwise credible band, when filtering the margins using an AGARCH.

should be Normal distributed, for all j. Figs. 10–11 depict QQ-plots of randomized quantile
residuals plotted against the theoretical standard Normal quantiles, and suggest acceptably
good fits of the proposed model—both in the Monte Carlo simulation study from Section 5
and in the real data analysis from Section 6.

2.5. A discretized Holt–Winters forecasting approach for the EDI function
The future evolution of tail-dependence structure can be predicted by treating each MCMC
trajectory of the EDI as a stochastic process to be forecasted. Specifically, we consider
an Holt–Winters additive method based on three smoothing equations (level, trend, and
seasonality). Related approaches can be found in Hyndman et al. (2008, Section 2.3.4); in
principle, other forecasting methods for continuous time processes (Harvey, 1990, Chapter 9)
can also be applied with the due modifications.

Specifically, let {ℓ(t)}t∈T0
= {log f(t)}t∈T0

be a log posterior sampled EDI over an equally-
spaced grid T0 = {1/T, . . . , (T−1)/T, 1}. Before obtaining the resulting EDI, we first elongate
the EDI outside the unit interval; then, later below we will map back time back to the unit
interval. To elongate the EDI to [1, 1 + h/T ], for any h > 0, we consider following Holter–
Winter specification,

exp{ℓ̃(1 + h/T )} = l(1) + b(1)h/T + s(1− p+ h+
p /T ), (7)

where p is the length of seasonality, and the smoothing equations are
l(1) = α{f(1)− s(1− p)}+ (1− α){l(1− 1/T ) + b(1− 1/T )},
b(1) = β{l(1)− l(1− 1/T )}+ (1− β)b(1− 1/T ),

s(1) = γ{f(1)− l(1− 1/T )− b(1− 1/T )}+ (1− γ)s(1− p).

Here, h+
p = {(h− 1) mod p}+ 1 and 0 < α, β, γ < 1 are smoothing constants, one for each

of the respective smoothing equations. The elongation obtained in (7) will now be blended
with the original EDI, f(t). Hence, the EDI resulting from this will include the forecast for
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Fig. 8. Pairwise EDI for FAANG stocks: Posterior median of EDI based on a mixture of finite Polya
trees with pointwise credible bands, along with histogram estimator of the pairwise EDI.
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Fig. 9. Multiwise EDI for FAANG stocks: Posterior median EDI based on a mixture of finite Polya trees
with pointwise credible bands, along with histogram estimator of the pairwise EDI.

Scenario A

Scenario B

Scenario C

Fig. 10. Goodness of EDI fits for Monte Carlo simulation: QQ-plots of randomized quantile residuals
for 150 randomly selected trajectories of EDI density estimates obtained via the posterior median of a
mixture of finite Polya trees over the Monte Carlo simulation study from Section 4 in the paper.



Supporting information 13

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Amazon & Apple

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Amazon & Google

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Amazon & Netflix

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Amazon & Facebook

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Apple & Netflix

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Apple & Google

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Apple & Facebook

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Facebook & Google

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Netflix & Google

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Facebook & Netflix

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

FAANG

Fig. 11. Goodness of EDI fits for FAANG stocks: QQ-plots of randomized quantile residuals (for
pairwise and multiwise analyses) of fitted mixture of finite Polya trees for FAANG stocks over 2012–
2024.
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h periods ahead, and is given by

f̃

(
i

T + h

)
∝

{
f(i/T ), i ∈ {1, . . . , T},
exp{ℓ̃(i/T )}, i ∈ {T + 1, . . . , T + h}.

(8)

That is, from (8), we derive an EDI that visually corresponds to f(t) across the first T
points on a newly rescaled time grid; beyond that point, it is determined by the Holter–
Winter prediction. Formally, the resulting f̃(t) is evaluated over the grid,

T1 =

{
1

T + h
, . . . ,

T

T + h︸ ︷︷ ︸
adjusted times for observed

,
T + 1

T + h
, . . . , 1︸ ︷︷ ︸

h forecasts

}
.

The construction of EDI forecasts above has taken into account the need for incorporating

a positivity and a normalization constraint (i.e., f̃(t) > 0 and
∫ 1

0
f̃(t) dt = 1). Trivially it

follows from (8) that f̃(t) > 0, while the normalizing constant in (8) can be made precise
and is given by

1 +

∫ 1+h/T

1

exp{ℓ̃(1 + u)} du =
1

T

[
T∑

i=1

f(i/T ) +

T+h∑
i=T+1

exp{ℓ̃(i/T )}

]
+ o(1),

as T → ∞.
Fig. 12 shows the resulting EDI forecast; following standard practices in the literature

(e.g., Hyndman et al., 2008), α, β and γ are set to minimize the squared one-step prediction
error. The fits are illustrated in Fig. 12; for instance, the EDI forecast for Amazon–Apple
suggests a potential increase in the frequency of joint extreme losses for this pair in 2025.
Conversely, as indicated in the same figure, a decrease in the frequency of joint extreme losses
is anticipated over the same period for other pairs (e.g., Facebook–Google).
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Fig. 12. Pairwise EDI for FAANG stocks: EDI Holt–Winters forecast with pointwise credible bands.


