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1 Introduction

Clustering is an unsupervised learning approach for the task of partitioning data into meaningful

subsets. The huge literature on cluster analysis is difficult to survey in a few sentences, but a concise

description of well-known approaches is offered by [1–3]. True clusters, can be regarded in a number

of different ways, each offering unique insights into the underlying patterns and relationships [4].

Examples of mainstream methods for clustering data include model-based (i.e., via mixture models),

similarity-based (i.e., via K-means and K-medoids), and hierarchical clustering (i.e., clustering via

dendograms).

Model-based clustering is a fast-evolving and intradisciplinary research topic as can be seen from

the recent papers of [5, 6], the survey papers of [7–9], and the Handbook on Mixture Analysis [10].

Despite decades of development in similarity-based clustering, K-means algorithms also remains in

widespread use, with refined versions continually emerging [11, 12].

In this paper we propose a novel game-inspired method for cluster analysis that lies at the

interface of model-based and similarity-based clustering. The proposed approach aims to benefit

from the flexibility and soundness of clustering via mixture models, while attempting to mitigate

Pitfalls 1 and 2 below. In words, Pitfall 1 refers to an often overlooked aspect of model-based

clustering: it usually leads to the same number of clusters for each margin—an assumption that

may not align with practical applications. Pitfall 2 constrains the applicability of model-based

clustering in high-dimensional data settings.

1.1 Pitfall 1: The single K problem

The idea of thinking of a cluster as a component of a mixture model has a long tradition in cluster

analysis, that has its roots in Tiedeman’s work in 1955 [8]. Despite the resilience and flexibility of

this paradigm, it is often unnoticed that multivariate model-based clustering may induce the same

number of clusters on each margin. For many applied contexts of interest it is however unnatural

to believe that all margins should have exactly the same number of components—and hence the

same number of marginal clusters. To appreciate this issue, let’s revisit the Gaussian finite-mixture

model,

fpxq “

K
ÿ

k“1

πkϕdpx;µk,Σkq, x “ px1, . . . , xdq, (1)

where and pπ1, . . . , πKq are mixture weights, ϕdpx;µk,Σkq is the density function of a d-dimensional

multivariate Normal distribution with mean µk “ pµk,1, . . . , µk,dq and variance-covariance matrix
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Σk, with diagonal elements pσ2
k,1, . . . , σ

2
k,dq. The marginal distributions stemming from (1) are

fjpxq “

K
ÿ

k“1

πkϕpx;µk,j, σ
2
k,jq, (2)

for j “ 1, . . . , d. As can be seen from (2), model-based clustering as in (1) implies that all margins

have K clusters per margin, except if µk,j “ µk1,j and σk,j “ σk1,j for some k1 ‰ k. Since in practice

it is challenging to learn from data if this (i.e., µk,j “ µk1,j and σk,j “ σk1,j) holds exactly, we will

refer to this challenge as the single K problem.

1.2 Pitfall 2: Curse of dimensionality

The Gaussian mixture model in (1) has pK´1q`Kd`Kdpd`1q{2 parameters, and hence the number

of parameters increases quadratically with d. This shortcoming is well known to limit the scope of

application of model-based clustering on high-dimensional data [13]. Some approaches have been

developed with the aim of providing a more parsimonious specification, and hence as byproduct this

paper will also contribute to that literature. A key paper on parsimonious model-based clustering

is that of [14] who suggest a latent Gaussian model that can be regarded as a mixture of factor

models.

1.3 Main Contributions

Motivated by these two pitfalls, the main contributions of this paper are as follows:

• We pioneer the development of a model-based solution for the single K problem outlined in

(2), by specifying an individual finite mixture model for each of the margins, but making no

assumptions on the joint distribution. The sample space is then partitioned via a strategy

game-inspired algorithm, which can be used for clustering data, both marginally as well as in

a multivariate fashion.

• We develop a computationally appealing and partially parallelizable model-based approach

that bypasses the need to learn about Kdpd`1q{2 parameters used in the covariance matrices

Σ1, . . . ,ΣK required for a ‘full’ (joint) Gaussian model-based clustering approach.

• The proposed data-driven approach for partitioning the sample space, automatically sieves

regions that only have a residual amount of mass—via a minimum entry-level requirement

that is specified by the user or set in a data-driven manner. In addition, we assess numerically

the proposed methodologies and ascertain the reliability of their clustering performance in a

battery of numerical experiments.
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• As a byproduct, the proposed method contributes to the literature on game-inspired clustering

approaches such as those of [15, 16]. As will be shown below the proposed approach differs,

however significantly from that of the previous paper—both in terms of scope (the focus

of Bulò and Pelillo is on hypergraph clustering) as well as on the specificities of the game

underlying the proposed clustering approach.

1.4 Structure and organization

The remainder of this paper unfolds as follows. In Section 2 we introduce the probabilistic framework

underlying the partition of the sample space, which will be the building block of the proposed

clustering approach to be introduced in Section 3. Section 4 outlines a conceptualization of a

variant of the proposed partitioning approach by reinterpreting it as a strategy game. Experiments

with artificial and real data are conducted in Sections 5 and 6, respectively. Final observations and

closing remarks are given in Section 7.

2 Reign-and-Conquer partitioning

2.1 The probabilistic framework

A key goal in this section is to devise a partition of the sample space of the joint distribution

that is meaningful in a sense to be made more clear below. The proposed framework entails three

steps. To streamline the presentation we first focus on the bivariate setting. Comments on the

multivariate extension are given in Section 2.2, and Section 4 outlines a game-theoretical variant of

the proposed approach. This section does not yet consider data nor estimation, it rather focuses on

a probabilistic setup for partitioning a sample space; comments on learning from data based on the

principles below are given in Section 3. Here and below, no assumption whatsoever is made on the

joint density, and we model each margin using a mixture model. Keeping in mind that any density

can be approximated by a mixture of Normals, given enough components, the latter assumption is

relatively mild.

Step 1: Margins (Model-Based Clustering)

Let X „ fX and Y „ fY , where

fXpx | K1,Θq “

K1
ÿ

k“1

πk ppx | θkq, fY py | K2,Ψq “

K2
ÿ

k“1

ωk qpy | ψkq. (3)
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Here, p and q are density functions, with parameters Θ “ pθ1, . . . ,θK1q and Ψ “ pψ1, . . . ,ψK2q

and pπ1, . . . , πK1q and pω1, . . . , ωK2q are mixture weights; in addition K1 and K2 are the number of

clusters respectively associated with the margins X and Y .

Step 2: Reign (Similarity-Based Joint Protocluster Allocation)

We first divide the sample space of pX, Y q, to be denoted by Ω, via a partition that is based on the

set of all marginal cluster means

$

&

%

µX “ tµ
p1q

X , . . . , µ
pK1q

X u,

µY “ tµ
p1q

Y , . . . , µ
pK2q

Y u,
where

$

’

’

&

’

’

%

µ
piq
X “ EpX | θiq “

ż

x ppx | θiq dx,

µ
piq
Y “ EpY | ψiq “

ż

y qpy | ψiq dy.
(4)

Specifically, to each point pµ
piq
X , µ

pjq

Y q in the Cartesian product

µX ˆ µY “ tpµ
p1q

X , µ
p1q

Y q, . . . , pµ
pK1q

X , µ
pK2q

Y qu, (5)

corresponds a Voronoi cell Ai,j for i “ 1, . . . , K1 and j “ 1, . . . , K2. We refer to the Voronoi cells

A1,1, . . . , AK1,K2 as protoclusters, as they define a first partition of Ω, and call the sites of µX ˆ µY

protocluster centers.

Step 3: Conquer (Final Joint Cluster Allocation)

After dividing Ω we conquer. That is, Step 3 identifies low density protoclusters to be conquered by

high density regions, hence refining the naive partition of Ω from Step 2. To avoid including in the

resulting partition regions that have a residual amount of mass, a minimum entry-level requirement

is chosen to which we refer to as the sieve size u P r0, 1s. Let

Du ” tpi, jq : P pAi,jq ď uu, (6)

be the indices of the protoclusters that have low mass and that hence will be conquered for a given

sieve size. The final sample space partition corresponds to the Voronoi cells Bi,j associated with the

protocluster centers of the conquerors, i.e., pµ
piq
X , µ

pjq

Y q with pi, jq P Dc
u. To assess how the number

of final clusters depends on the sieve size, we define the conquering function as

Cpuq “ |Dc
u| “ K1K2 ´ |Du|, (7)

where |Du| denotes the cardinality and Dc
u is the complement of the set Du. It follows from (6) that

although the Reign-and-Conquer partitioning does not involve covariance matrices, it still includes

information on the relationship between X and Y through P pAi,jq.
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Example 1 illustrates the main concepts and ideas of the sample space partitioning approach

discussed above.

(a) (b)

(c) (d)

Figure 1: Reign-and-Conquer partitioning for Example 1. (a) protoclusters, protocluster centers (‚), and joint

density. (b) Marginal densities. (c) Conquering function. (d) The Voronoi cells of the conquerors for u “ 0.1.

Example 1 (Reign-and-Conquer partitioning on a mixture of 3 bivariate Normal distributions). In

Figure 1 (a) we depict a mixture of 3 bivariate Normal distributions as in Equation (1), with means

µ1 “ p´3, 3q, µ2 “ p3, 3q, µ3 “ p0,´3q, mixing probabilities π1 “ π2 “ π3 “ 1{3, and covariance

matrices:

Σ1 “

»

–

1 0.5

0.5 1

fi

fl , Σ2 “

»

–

1 ´0.5

´0.5 1

fi

fl , Σ3 “

»

–

1 0

0 1

fi

fl .

This set-up leads to a different number of clusters per margin, as can be seen in Figure 1 (a) and

(b). Specifically, in the Y –margin there are two clusters with centers in µ
p1q

Y “ 3 and µ
p2q

Y “ ´3

(i.e., K2 “ 2), while in the X–margin there are 3 clusters with centers in µ
p1q

X “ 3, µ
p2q

X “ 0 and
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µ
p3q

X “ ´3 (i.e., K1 “ 3). In Figure 1 (c), we also display the conquering function, and in Figure 1

(d) we depict the Voronoi cells of the conquerors corresponding to the sieve size u “ 0.1. If we were

to regard protoclusters from Step 2 as ‘territories, what the Reign-and-Conquer Partition does at

Step 3 is conquer low-density cells, allowing the dominant mass regions to annex them.

2.2 d-dimensional extension and theoretical properties

The approach from Section 2.1 extends naturally to a d-dimensional context as follows. For the

margins, we now consider X1 „ f1, . . . , Xd „ fd with

fjpx | Kj,Θjq “

Kj
ÿ

k“1

πk,j pjpx | θkq, (8)

where the notation in (8) extends that in (3), with j “ 1, . . . , d. In particular, (8) implies that

the first margin (X1) has K1 clusters, that the second margin has K2 clusters, and so on. The

partition underlying the divide step is now formed by the Voronoi tesselation tAi : i P Iu, with

i “ pi1, . . . , idq, I “ t1, . . . , K1u ˆ ¨ ¨ ¨ ˆ t1, . . . , Kdu, and where the Ai cell corresponds to the

protocluster center pµ
pi1q

X1
, . . . , µ

pidq

Xd
q, with µ

pkq

Xj
“ EpXj |θkq “

ş

x pjpx |θkq dx. The final clusters

yield from the conquering step correspond to the Voronoi cell Bi associated with the protocluster

centers of the conquerors, i.e., pµ
pi1q

X1
, . . . , µ

pidq

Xd
q with i P Dc

u, where

Du ” ti P I : P pAiq ď uu, (9)

for u P r0, 1s. Similarly as in Section 2.1, (9) implies Reign-and-Conquer partitioning does not

involve covariance matrices, it still includes information on the relationships between variables

through P pAiq.

In the d-dimensional setting the conquering function is more generally defined as

Cpuq “ |Dc
u| “ K1 ˆ ¨ ¨ ¨ ˆ Kd ´ |Du|. (10)

The conquering function is characterized by a set of properties summarized in the following theorem.

Theorem 1. The conquering function, Cpuq as defined in (10), obeys the following properties:

a) It is nonincreasing.

b) It is continuous from the left.

c) It is bounded below by Cp1q “ 0 and above by Cp0q “
śd

j“1Kj.

d) It integrates to one, i.e.,
ş1

0
Cpuq du “ 1.
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Proof. See Appendix A.

It can be noticed that the conquering function from Example 1 verifies all the claims of Theorem 1

as can be seen from Figure 1 (c). In addition to Theorem 1 it can be shown that the conquering

function is a step function that has a finite number of steps provided that K1, . . . , Kd are finite. See

Appendix B.

3 Learning from data

3.1 The Reign-and-Conquer algorithm

We now devise an algorithm based on the probabilistic framework from Section 2. The goal is to

allocate observations in a dataset txlu
n
l“1, with xl “ pxl,1, . . . , xl,dqT in Rd, into a set of meaningful

classes—both in terms of the margins as well as the joint. Using the notation from Section 2.2, we

introduce the RC (Reign-and-Conquer) clustering algorithm.

Algorithm 1 RC (Reign-and-Conquer) Clustering

Step 1. Margins: Fit the jth marginal density in (8) using tx1,j, . . . , xn,ju, for j “ 1, . . . , d,

so to learn about tpKj, µ
p1q

Xj
, . . . , µ

pKjq

Xj
qudj“1.

Step 2. Reign: Learn about the protoclusters tAi : i P Iu of tpµ
pi1q

X1
, . . . , µ

pidq

Xd
q : i P Iu.

Step 3. Conquer: Learn about the Voronoi cells of the conquerors, tBi : i P Dc
uu, i.e. that of

tpµ
pi1q

X1
, . . . , µ

pidq

Xd
q : i P Dc

uu, and allocate the lth observation to a cluster using the encoder

Encplq “ argmin
pi1,...,idq

}xl ´ pµ
pi1q

X1
, . . . , µ

pidq

Xd
q}

2. (11)

If we were to regard protoclusters from Step 2 as ‘territories,’ what RC does at Step 3 is to let

the mass dominant regions conquer the low density ones. The RC algorithm warrants some further

comments:

• Step 1. Margins: To learn about tpKj, µ
p1q

Xj
, . . . , µ

pKjq

Xj
qudj“1 several approaches can be taken.

We use the non-local prior for mixtures approach of [17], but alternatively one could use, for

example, RJ MCMC (Reversible Jump Markov Chain Monte Carlo) [18]. Determining Kj is

a well-studied yet open problem, and an overview of the literature in this can be found in [19],

[20], and [21].

• Step 2. Reign: To compute the protoclusters tAi : i P Iu of tpµ
pi1q

X1
, . . . , µ

pidq

Xd
q : i P Iu, we

resort to the cluster centers from Step 1.
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• Step 3. Conquer: To learn about the cells of the conquerors, we need to learn about

Du “ ti P I : P pAiq ď uu—and this implies estimating P pAiq. Several approaches can be

taken, and here we opt for the simplest one—the maximum likelihood estimator (MLE). To

avoid burdening the notation, we introduce the MLE on the bivariate case, but the details

extend easily to the multivariate setting. Let txlu
n
l“1 “ tpxl,1, xl,2qunl“1 and note that the

number of points falling on the protoclusters, ni,j “ |txl P Ai,ju
n
l“1| is Multinomial distributed,

that is,

n „ Multinomialppq, (12)

where n “ pn1,1, . . . , nK1,1, . . . , n1,K2 , . . . , nK1,K2q and p “ pp1,1, . . . , pK1,1, . . . , p1,K1
, . . . , pK1,K2

q,

with pi,j “ P pAi,jq. Hence, the MLE is p̂ “ n{n and full Bayesian inference can also be easily

conducted.: Following the principles from Section 2, this estimate implies conquering proto-

clusters centered at pµk, µlq, for which

nk,l

n
ă u, for u P p0, 1s. (13)

The estimated regions of the conquerors Bk,l are obtained by the Voronoi tessellation on the

remaining pµk, µlq so that pk, lq R Du ” tpi, jq : P pAi,jq ă uu.

The RC algorithm combines the paradigms of model-based clustering and similarity-based cluster-

ing. Indeed, Step 1 consists of a marginal model-based clustering approach. In addition, just as in

similarity-based clustering methods, such as k-means, Step 3 entails an encoder [1], which deter-

mines to which cluster observation xl belongs to. In theory the Euclidean norm in (11) could be

replaced by any preferred norm (e.g., Mahalanobis). Yet, as we show in the supplementary material

there are compelling reasons to prefer the Euclidean norm over the Mahalanobis norm.

3.2 Implementation and computing

Some comments on implementation and computing are in order. As mentioned earlier, to avoid

including in the resulting partition of the sample space regions that have a residual amount of mass,

a minimum entry-level requirement u P r0, 1s should be set by the user. That value might be set at

:Bayesian inference can be conducted by assuming a Dirichlet prior over the unit simplex on RK1K2 , i.e., p „

Dirichletpαq, where α “ pα1,1, . . . , αK1,1, . . . , α1,K1
, . . . , αK1,K2

q. Dirichlet–Multinomial conjugacy then implies that

posterior inferences can be obtained from p | n „ Dirichletpα ` nq; the above-mentioned MLE corresponds to the

MAP (Maximum a Posteriori) with α “ 1K1K2 . Finally, another alternative would be to specify a model for the

joint distribution. Yet, given that we only need to learn about the pi,j , and since we prefer to avoid specifying a

copula that may not accurately describe the true joint distribution, we opt for the above-described likelihood-based

approaches.
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a fixed low level (say, u “ 0.1), so that all resulting clusters have at least that mass. Alternatively,

data-driven approaches for setting u, based on the fitted conquering function, are also explored in

Section 5.

Step 1 of the RC algorithm can be parallelized into d cores, and so to speed up the computations

parallel computing was implemented with the R package parallel [22]. To fit marginal densities

in Step 1, we consider Normal mixture models with non-local priors via the R package mombf [23].

Other mixture models capable of internally determining the number of components could also have

been considered for Step 1. Examples of such models include repulsive point processes [24, 25]

and group-sort-fuse procedures [26]. We opt for non-local priors as they are designed to enforce

parsimony by penalizing mixtures with a redundant number of components, and they bypass the

need for complicated algorithms such as RJ MCMC.

Hence, for each margin in (8) we consider a non-local prior for its mixture model. To ease

notation we describe the prior for a general margin with K components. For a mixture with K

components, the non-local prior consists of a penalized inverse-Gamma prior given by

ppK,Θq “ penaltypK,Θq ˆ

K
ź

j“1

Npµj | 0, aHσq IGpσj | b, cq.

Here, IG is the inverse-Gamma distribution, pa, b, cq are positive hyperparameters, Hσ is the har-

monic mean of the scale components (i.e., Hσ “ 1{tK´1
řK

j“1 σ
´1
j u), and

penaltypK,Θq “

ś

1ďiăjďKtpµi ´ µjq
2{paHσqu

śK
j“1 Γpj ` 1q

, (14)

where Γ is the gamma function. As can be seen from (14), the penalized inverse-Gamma prior

diminishes the penalty function to zero as two component means approximate each other, thereby

lowering the prior probability of models with redundant components and effectively penalizing them.

Finally, we place a symmetric uniform Dirichlet prior on the weights of the mixture components.

Steps 2 and 3 of the RC algorithm involve the computation of Voronoi tesselations from out of

a “ K1 ˆ ¨ ¨ ¨ ˆ Kd protocluster centers and from a ´ |Du| protocluster centers of the conquerors.

While parallel algorithms could have been employed also for higher-performance computation of

Steps 2 and 3 [27] we have opted for a simple implementation that only parallelizes Step 1.

We close this section with a simple yet important comment. While Step 3 of the RC algorithm

leads to multivariate clustering of txlu
n
l“1, marginal clustering can be made directly from Step 1 via

the posterior probabilities

Ẑl,k,j “
πk,jpjpxl,j|θkq

řKj

k“1 πk,jpjpxl,j|θkq
. (15)
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Note that Ẑl,k,j P r0, 1s estimates the cluster membership labels of the lth observation on the jth

margin, which are defined as Zl,k,j “ 1 if the lth observation on the jth margin xl,j belongs to the

kth component, or Zl,k,j “ 0 otherwise.

4 An outline of a game theory conceptualization

4.1 A game of thrones—starting point

This section outlines an alternative way to look into the sample space partitioning approach from

Section 2 as a game. To streamline the presentation we focus on the bivariate case; the extension to

the multivariate case is a matter of adjusting notation. More specifically, the game to be considered

starts at Step 2 of Reign-and-Conquer Partitioning (Section 2), players are to be understood as

K1K2 ‘Kings’ owning the protocluster ‘territories’ (tAi,ju) and who decide whether or not they

will attack their neighbors. To make matters concrete, think of Figure 1 (a) as representing the

protocluster ‘territories’ of K1K2 = 6 Kings, who have to decide whether or not they attempt to

conquer the territories of their neighbors. If a territory is attacked by two Kings, they might have

to share the conquered territory.

The neighboring structure of players can be represented via a K1K2 ˆ K1K2 adjacency matrix

M, and it can be visualized using a (undirected) graph G “ pN,E q, where E is a set of edges

representing a neighboring relation. The outcome of the game is an element in S (to be defined in

Section 4.2), and it can be visualized with a directed graph G “ pN,Eq, where E is a set of directed

edges or arrows representing attacks. To build intuition surrounding these ideas and concepts, let’s

revisit Example 1. Figure 2 (a) depicts the graph corresponding to the neighboring structure of the

K1K2 = 6 Kings. The corresponding adjacency matrix is

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 1 1 0

1 0 1 1 1 1

0 1 0 0 1 1

1 1 0 0 1 1

1 1 1 1 0 1

0 1 1 1 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The directed graph in Figure 2 (b) depicts an example of attack decisions compatible with the

outcome from Figure 1 (d). Indeed, for example, we can think of the outcome in Figure 1 (d) as the

consequence of players p1, 1q and p2, 2q attacking player p2, 1q and sharing the conquered territory,

and so on.
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(a) (b)

Figure 2: Revisiting Example 1. (a) Neighboring structure corresponding to Figure 1 (a). In (b) is depicted a

directed graph with an instance of attack decisions compatible with the outcome from Figure 1 (d). In both charts

the nodes represent players (‘Kings’) (1, 1), . . . , (2, 3).

4.2 Representation, equilibrium, and open challenges

Below, an ‘attack’ is denoted with a ‘1’, and ‘not to attack’ with a ‘0’. The (normal form) game of

interest is given by the triple G “ pN, tSiuiPN , tUiuiPNq, where:

• N “ tpi, jq : i “ 1, . . . , K1, j “ 1, . . . , K2u is the set of players (‘Kings’).

• Si,j is the pure set of strategies of King pi, jq,

Si,j “ twho to attack, keeping in mind that only neighbors can be attackedu Ď t0, 1u
K1K2 ,

and S “
Ś

pi,jqPN

Si,j is the set of all vectors of strategies, where ‘
Ś

’ is the Cartesian product.

• Ui,jpsq is the payoff of King pi, jq, with s “ psi,jqpi,jqPN , with Ui,j : S Ñ R.

By construction, the strategy set of each player is finite and hence this is said to be is a finite

game. While a Nash equilibrium for this game may not exist over pure strategies, an equilibrium

will exist over mixed strategies. A mixed strategy for player pi, jq is a distribution over their set of

pure strategies Si,j, that is

Si,j “

"

σi,j : Si,j Ñ r0, 1s :
ÿ

si,jPSi,j

σi,jpsi,jq “ 1

*

.

The celebrated Nash theorem, recalled below for completeness, ensures that the game of interest

has at least one equilibrium in mixed strategies.

Theorem 2. Every finite game in strategic form, that has a finite number of players, has a Nash

equilibrium in mixed strategies.

Proof. See, for example, Maschler et al. [28, Section 5].
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Conceptually speaking, the approach above endows Step 3 with a much broader range of possi-

bilities on how to partition the sample space Ω. First, there are numerous ways in which the

‘incentives’ (utility functions) can be set, and in particular they can mimic the ones from Section 2.

A refinement of Step 3 based on the principles outlined above is as follows: a) Compute a Nash

equilibrium; b) Derive the cells of the conquerors resulting from such equilibrium. In terms of a)

we note that computation of Nash equilibria is nontrivial in general, but it can be conducted using

simplicial subdivision [29], a Newton method known as Govindan–Wilson algorithm [30], search

methods [31], among other. Keeping in mind the computational motivation of the paper, in the

numerical experiments to be reported below we focus on the computationally appealing approach

from Section 3—that bypass the need for computing Nash equilibria in Step 3—but we aim to re-

visit the numerical performance of this game-theoretical variant of the proposed methods in future

research.

Scenario 1

(a) (b)

(c) (d)

Figure 3: One shot experiments for Scenario 1. (a) Simulated data and protoclusters (Step 1). (b) Estimated

(dashed) vs true (solid) marginal densities. (c) Estimated (dashed) vs true (solid) conquering functions. (d) Voronoi

cells of the conquerors for u “ 0.1 (Steps 2 and 3).

13



5 Numerical experiments on artificial data

5.1 Simulation setup and one shot experiments

In this section we study the performance of the proposed methods via numerical experiments.

An exhaustive Monte Carlo simulation study will be presented in Section 5.2. The Monte Carlo

simulation will assess two data-driven approaches for setting the sieve size based on the conquering

function as well as the strategy of setting a fixed low sieve size (e.g., u “ 0.1). The data-driven

approaches based on the conquering function will be called throughout as the plateau (u at which

the longest plateau of Cpuq ends) and the edge (u at which the largest jump on Cpuq occurs); see

Appendix B for technical details.

Pitfalls 1–2 from Section 1 motivated us to design the following simulation scenarios:

• Scenario 1: Data are drawn from a mixture of K “ 3 bivariate Normal distributions with

weights, mean vectors, and covariance matrices as in Example 1. To study the clustering

performance as the sample size increases, we consider n P t50, 100, 250, 500, 1000u. In Figure 3

we depict a one shot example of Reign-and-Conquer algorithm corresponding to a sample of

size n “ 500 and u “ 0.1; as can be seen in Figure 3 (d), the proposed method suitably

partitions the multivariate data.

• Scenario 2: Data are drawn from a mixture of K “ 3 Clayton copulas [32, Chapter

4.2] with margins: fXpxq “ ϕpx;´5, 42q{2 ` ϕpx; 3, 42q{2, and fY pyq “ ϕpx;´5, 1q{3 `

ϕpx; 2.5, 1q{3`ϕpx; 5, 1q{3. Trivially, the joint distribution does not obey (1), and the number

of clusters per margin is different (K1 “ 2, K2 “ 3). Here, we also consider sample sizes

n P t50, 100, 250, 500, 1000u, and in Figure 4 we depict the outcome of a one shot experiment

with n “ 500. As can be seen in Figure 4 (d), the proposed method suitably partitions the

multivariate data.

• Scenario 3: Data are drawn from a mixture of d-variate Normal distributions in dimensions

d P t5, 10, 15, 20u (moderate high dimensional data). In this scenario, the sample sizes and

the number of clusters depend on d in the following way: n “ t10d3{2u and Kd ” K “

roundp
?
d ` 1q, where t¨u and round() denotes the the floor and round functions respectively.

The covariance matrices and mixing probabilities are specified as Σk “ Id and πk “ 1{d, for

k “ 1, . . . ,K, whereas the mean vectors µk “ pµ
pkq

1 , . . . , µ
pkq

d q are sparsely defined: µ
pkq

i “ 0 for

i ‰ k and µ
pkq

k “ d{
?
2. This scenario leads to several identical marginal distributions, and

the mean vector components are constrained to be equidistant }µi ´ µj}2 “ d for all j ‰ i;

therefore the separation between clusters increases linearly with the number of dimensions.
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Motivated by the challenges of clustering data in the presence of skewness and outliers [33, 34],

we present in the online supplementary material a series of Monte Carlo experiments exploring

additional simulation scenarios. Beyond these, we also examine a scenario with imbalanced mixing

proportions.

Scenario 2

(a) (b)

(c) (d)

Figure 4: One shot experiments for Scenario 2. (a) Simulated data and protocluster (Step 1). (b) Estimated

(dashed) vs true (solid) marginal densities. (c) Estimated (dashed) vs true (solid) conquering functions. (d) Voronoi

cells of the conquerors for u “ 0.1 (Steps 2 and 3).

5.2 Monte Carlo simulation study

To assess the performance of the proposed clustering approach, for Scenarios 1–3 we redo the

previous one shot analysisM “ 1000 times so to estimate the following clustering agreement metrics:

Rand and Adjusted Rand Index (RI and ARI respectively), Jaccard Index (JI), and Fowlkes–

Mallows Index (FMI); see [35] and references therein.
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Scenario 1

(f) t−Distributed Mixture Model (TEIGEN)

(e) Parsimonious Gaussian Mixture Model (PGMM)

(d) Gaussian Mixture Model (GMM)

(c) Plateau

(b) Edge

(a) u = 0.1
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Scenario 2

(f) t−Distributed Mixture Model (TEIGEN)

(e) Parsimonious Gaussian Mixture Model (PGMM)

(d) Gaussian Mixture Model (GMM)
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Scenario 3

(f) t−Distributed Mixture Model (TEIGEN)

(e) Parsimonious Gaussian Mixture Model (PGMM)

(d) Gaussian Mixture Model (GMM)

(c) Plateau

(b) Edge

(a) u = 0.1

5 10 15 20

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

d

ARI

RI

JI

FMI

d=5 d=10 d=15 d=20

(a) u =
 0.1

(b) E
dge

(c) P
lateau

(d) G
M

M
(e) P

G
M

M
(f) T

E
IG

E
N

1 2 3 4 5 >5 1 2 3 4 5 >5 1 2 3 4 5 >5 1 2 3 4 5 >5

0
250
500
750

1000

0
250
500
750

1000

0
250
500
750

1000

0
250
500
750

1000

0
250
500
750

1000

0
250
500
750

1000

Number of Clusters

F
re

qu
en

cy

Figure 5: Monte Carlo simulation study: (Left) Performance metrics (ARI, RI, JI, FMI) (Right) Empirical distri-

bution on the number of detected clusters.

We also report the empirical distribution of the number of clusters detected by the proposed
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method, over different conquering strategies (i.e., fixed u, plateau, and edge), along with the same

outputs for the GMM (Gaussian Mixture Model) in (1), PGMM (Parsimonious Gaussian Mixture

Model) [14] and TEIGEN (t–Distributed Mixture Model) [36, 37]. For these approaches, model

selection was conducted using the BIC. Model selection clearly involves more than just choosing

the value of K, which in this case ranges from 1 to 6 across all scenarios. In particular, for GMM

and TEIGEN, BIC is used to define a suitable covariance decomposition, while for PGMM, BIC is

used to determine the number of latent components (in the simulations we allow for the maximum

number of latent components by setting the option relax = TRUE in the corresponding package).

In Figure 5 (top and middle), it can be seen that for Scenarios 1–2, as the sample size increases the

performance metrics increase on average for all conquering strategies. Interestingly, for Scenario

1, the edge conquering strategy works better than the plateau for relatively small sample sizes.

Conversely, in Scenario 2, the plateau yields on average better results than the edge for small

sample sizes. In Scenarios 1–2, fixing a sieve size of u “ 0.1, produces accurate clustering results

on average even for small sample sizes. In addition, as the sample sizes increases the proposed

method identifies most frequently the correct number of clusters K “ 3 for Scenarios 1–2—both

when u “ 0.1 as well as when u is set using the plateau.

In Figure 5 (bottom) we present the performance of the proposed method for Scenario 3. As can

be seen in Figure 5 (bottom–left), with an increasing number of dimensions, on average, the proposed

method presents better agreement metrics (recall that in Scenario 3 cluster separation grows linearly

with data dimension). In Figure 5 (bottom–right), it can be seen that as the sample size increases,

the proposed method most frequently captures the true number of clusters Kd P t2, 3, 4, 5u for

dimensions d P t5, 10, 15, 20u respectively.

Some final comments on the comparison of the Reign-and-Conquer clustering against GMM,

PGMM, and TEIGEN are in order. In Scenario 1 the data are simulated from a low-dimensional

Gaussian mixture model, and hence perhaps not surprisingly GMM outperforms the proposed ap-

proach. Still, the performance of the proposed approach is remarkable especially as we make no

assumption on the joint. In addition, Reign-and-Conquer outperforms GMM, PGMM, and TEIGEN

in Scenario 2. Reign-and-Conquer’s superior performance in Scenario 2 stems from its flexibility in

adjusting to a different number of cluster per margin. Finally, the RC algorithm has a comparable

performance to the alternative methods over Scenario 3.
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6 Real data illustrations

Banknotes

The first dataset to be analyzed with the proposed methods contains p “ 6 measurements (in

millimetres) made on 100 genuine and 100 counterfeit old-Swiss 1000-franc bank notes [38, pp. 5–

8]. The data include bill length, left and right edge widths, bottom and top margin widths, and

diagonal width, and are available from the mclust R package [39].

Banknotes

(a) (b)

Italian wine

(c) (d)

Figure 6: (a) Biplot banknote data set, the color key corresponds to the cluster labels obtained for u “ 0.36

(Plateau). (b) Conquering function estimate. (c) Biplot of wine data set, the color key corresponds to the cluster

labels obtained for u “ 0.105 (Plateau). (d) Conquering function estimate (restricted to r0, 0.25s for visualization

purposes).
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Banknotes

Method Cluster Counterfeit Genuine

RC
1 99 0

2 1 100

GMM

1 16 2

2 0 98

3 84 0

PGMM

1 0 74

2 0 25

3 74 0

4 11 0

5 15 1

TEIGEN

1 0 75

2 0 24

3 85 0

4 15 1

Italian wine

Method Cluster Barbera Grignolino Barolo

RC

1 42 9 5

2 1 56 16

3 5 7 37

GMM
1 56 2 0

2 3 65 0

3 0 4 48

PGMM

1 0 40 0

2 0 0 59

3 0 28 0

4 48 3 0

TEIGEN

1 0 26 0

2 0 33 2

3 27 0 0

4 21 3 0

5 0 4 31

6 0 2 26

7 0 3 0

Rice

Method Cluster Cammeo Osmancik

RC
1 184 2062

2 1446 118

GMM

1 4 612

2 2 465

3 370 305

4 413 7

5 28 151

6 644 57

7 101 43

8 68 540

PGMM

1 4 622

2 492 39

3 1013 222

4 121 1297

TEIGEN

1 726 113

2 34 892

3 533 32

4 11 645

5 326 498

Iris

Method Cluster Setosa Versicolor Virginica

RC

1 0 0 50

2 39 8 3

3 33 17 0

GMM
1 50 0 0

2 0 50 50

PGMM

1 0 50 0

2 47 0 3

3 0 0 50

TEIGEN
1 50 0 0

2 0 50 50

Table 1: Confusion matrices. Note: RC = Reign-and-Conquer, GMM = Gaussian Mixture Model, PGMM =

Parsimonious Gaussian Mixture Model, and TEIGEN = t-Distributed Mixture Models.
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In Figure 6 (a) we depict a biplot of the first two principal components of the data, along with

the corresponding clustering yield by the proposed Reign-and-Conquer clustering. The sieve size

was set using the plateau conquering strategy that corresponds to the best average results on the

simulations setting in Scenario 3. In Figure 6 (b) we depict the fitted conquering function, from

where it can be seen that the plateau consists of u “ 0.36. As can be noticed from the confusion

matrix in Table 1, Reign-and-Conquer does an excellent job classifying counterfeit as well as genuine

data. The GMM analysis combined with BIC suggests that there could be three clusters. The latter

analysis is not least interesting from a forensic viewpoint, as it suggests that there might be two

clusters of counterfeit banknotes. Finally, we note that the number of marginal clusters obtained

using Reign-and-Conquer (i.e., K1, . . . , K6) ranges from 1–3 clusters.

Italian wine

The second dataset on which the proposed approach is illustrated contains the results of a chemical

analysis of wines grown in Italy, derived from three cultivars (Barbera, Grignolino, and Barolo); the

data are available from [40]. The chemical analysis includes the measurement of d “ 13 continuous

variables (such as alcohol, malic acid, ash, etc) on n “ 178 instances. Similarly to the banknote

data illustration, in Figure 6 (c) we depict a biplot to represent the first two principal components

of the data, along with the corresponding clustering yield by the proposed method. The sieve size

was set using the plateau conquering strategy that corresponds to the best average results on the

simulations setting in Scenario 3. In Figure 6 (d) we depict the fitted conquering function, the

plateau consists of u “ 0.105. As can be seen from the confusion matrix in Table 1, Reign-and-

Conquer learns about the ‘right’ number of cultivars and the obtained clusters have a resemblance

with the cultivars. The GMM analysis combined with BIC would offer another interesting outlook,

suggesting that two of these clusters are so similar that they should perhaps be merged. Finally,

we note that the number of marginal clusters (i.e., K1, . . . , K13) is 1 for 8 of the dimensions, and 2

for the remaining dimensions.

Wholesale customers

The Wholesale database is available from UCI Machine Learning repository (https://archive.

ics.uci.edu/dataset/292/wholesale+customers) and includes the annual spending correspond-

ing to 6 categories (fresh, milk, grocery, frozen, detergents paper, and delicatessen) of n “ 440

clients of a wholesale distributor in Portugal. These data lacks labels to identify which group each

client belongs to. Thus, in Table 2 we report for each clustering method the number of groups iden-
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tified in the data, the ratio between the size of the biggest and the smallest cluster and 4 internal

evaluation metrics [41], namely: Davies–Bouldin (DB), Hubert–Levine (HL), Silhouette (S), and

Calinski–Harabasz (CH) indexes. Note that smaller values of DB and HL, along with larger values

of the S and CH, indicate better internal evaluations.

Wholesale

Method Clusters Ratio Davies–Bouldin Hubert–Levine Silhouette Calinski–Harabasz

RC (Plateau) 2 1.168 3.196 0.114 0.127 59.552

GMM 7 4.889 2.099 0.068 0.032 50.897

PGMM 2 4.641 2.209 0.084 0.437 88.490

TEIGEN 3 1.750 3.336 0.105 0.130 51.608

Rice

Method Clusters Ratio Davies–Bouldin Hubert–Levine Silhouette Calinski–Harabasz

RC (Plateau) 2 1.401 1.034 0.224 0.410 3456.480

GMM 8 4.831 4.126 0.198 0.018 609.082

PGMM 4 2.670 2.740 0.195 0.112 1156.104

TEIGEN 5 1.639 3.305 0.176 0.046 781.018

Iris

Method Clusters Ratio Davies–Bouldin Hubert–Levine Silhouette Calinski–Harabasz

RC (Plateau) 3 2.8 1.145 0.277 0.367 164.261

GMM 2 2.8 0.682 0.270 0.581 251.352

PGMM 3 1.1 1.231 0.263 0.327 187.448

TEIGEN 2 2.8 0.682 0.270 0.581 251.352

Table 2: Internal agreement metrics for different clustering methods.

As can be seen in Table 2, the metrics of TEIGEN and the Reign-and-Conquer algorithm are

fairly in line; in particular, TEIGEN and Reign-and-Conquer produce balanced cluster solutions

(relatively small ratios) compared to PGMM and GMM. Since smaller values of DB and HL indicate

better internal evaluation, from the point of view of these indexes GMM outperforms the remainder

approaches. Yet, PGMM accounts for the largest S–index, followed by TEIGEN and Reign-and-

Conquer. PGMM also maximizes the CH–index.

Finally, the RC algorithm not only identifies two global clusters but it also suggests varying

subgroups within each margin: fresh (K1 “ 2), milk (K2 “ 2), grocery (K3 “ 2), frozen (K4 “ 3),

detergents paper (K5 “ 2), and delicatessen (K6 “ 3).
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Rice

(a) (b)

Iris

(c) (d)

Figure 7: (a) Biplot Rice data set, the color key corresponds to the cluster labels obtained for u “ 0.10 (Plateau).

(b) Conquering function estimate. (c) Biplot of Iris data set, the color key corresponds to the cluster labels obtained

for u “ 0.16 (Plateau). (d) Conquering function estimate.

Rice image data

The Rice data set [42] is available from the UCI Machine Learning repository (https://archive.

ics.uci.edu/dataset/545/rice+cammeo+and+osmancik). It contains information on n “ 3810

images of rice grains corresponding to two species (Cammeo and Osmancik). The data are already

preprocessed and 7 morphological features were obtained for each grain image. In Table 1, Reign-

and-Conquer, along with Plateau conquering, is used to learn about the ‘right’ number of species,

and the obtained clusters have a resemblance with the true groups in the data. The GMM, PGMM,
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and TEIGEN analysis combined with BIC offer another interesting outlook, suggesting that K ą 2.

Interestingly, we note that the number of marginal clusters (i.e., K1, . . . , K7) is 2 for 4 of the di-

mensions, and 3 for the remaining 3 dimensions. Finally, Table 2 shows that Reign-and-Conquer

accounts for the largest S and CH indexes and the smallest DB index, while TEIGEN achieves the

smallest HL metric (followed by PGMM and GMM).

Iris data

The Iris data set consists of n “ 50 samples from each of three species of Iris (setosa, versicolor,

and virginica) and p “ 4 measurements (in centimeters): length and width of the sepals and petals.

The data are available from the UCI Machine Learning repository (https://archive.ics.uci.

edu/dataset/53/iris).

In Figure 7 panel (a) and (c) we depict a biplot of the first two principal components of Rice

and Iris data respectively, along with the corresponding clustering yield by the proposed Reign-

and-Conquer clustering, while in panel (b) and (d) illustrates the fitted conquering function, from

where it can be seen that the plateau consists of u “ 0.10 for Rice and u “ 0.16 for Iris.

As can be seen in the confusion matrices in Table 1, Reign-and-Conquer does a similar job to

PGMM classifying Iris data, while GMM and TEIGEN suggest that there could be two clusters

in data. Finally, Table 2 shows that only Reign-and-Conquer and PGMM accounts for the correct

number of clusters in data, nevertheless PGMM accounts for the best indexes among all methods

(followed by Reign-and-Conquer).

7 Discussion

This paper devises an strategy game-inspired algorithm for unsupervised learning that be used for

clustering data, both jointly as well as marginally. A clear strength of the proposed approach is

its resilience to the issues outlined as Pitfalls 1 and 2 in Section 1. Unlike traditional model-based

clustering, it allows for varying numbers of clusters across margins and is better suited for moderate-

to high-dimensional data analysis. Another advantage is the fact that the herein proposed clustering

approach only specifies a model for the margins but leaves the joint unspecified, and hence it is

partially parallelizable. To our knowledge, our paper takes the lead in identifying Pitfall 1 and is

the first to propose a solution to this overlooked issue.

While the obtained numerical evidence indicates a satisfactory performance of the proposed
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method under a variety of situations, there is still room for improvement, open problems to be

addressed as well as opportunities for future research. First, the geometry of the boundaries of the

final kingdoms (i.e., the Voronoi cells of the conquerors) could perhaps be bended so to better adapt

to the structure of the data, to offer more flexibility to the partitioning of the sample space, and

ultimately to improve clustering results. Second, the game-theoretical variant from Section 4 opens

a world of opportunities on ways to set the ‘incentives’ to conquer, via an utility function, to explored

in a follow-up paper. Thirdly, as noted by a referee, Step 3 leads to a ‘hard’ partition. Propagating

uncertainty in a Bayesian fashion, starting from Step 1, appears to be a natural approach to mitigate

this. Yet, several challenges would need to be addressed to facilitate this approach; perhaps the

most significant challenge involves the need for averaging posterior Voronoi tessellations in the final

analysis, which poses some interesting conceptual and numerical challenges. Finally, while here the

focus has been on unsupervised learning, the potential of related strategy-game inspired approaches

for supervised learning would seem natural.

Appendix

Appendix A: Proof of Theorem 1

Before getting started with the proofs we lay the groundwork. The proof of Theorem 1 uses the following represen-

tation of the conquering function

Cpuq “

d
ź

j“1

Kj ´
ÿ

iPI

1Dupiq, (16)

which follows directly from (10). Here, 1A is the indicator of set A and in the proof we will make use of some of its

well-known properties [43], such as

lim sup
nÑ8

1An
“ 1lim supnÑ8 An

, lim inf
nÑ8

1An
“ 1lim infnÑ8 An

. (17)

Since (17) holds for both lim sup and lim inf it follows that limnÑ8 1An
“ 1limnÑ8 An

. Recall in addition that if tAnu

is an nondecreasing sequence of sets, then its limit is the infinite union, that is

An Ď An`1 ùñ lim
nÑ8

An “

8
ď

n“1

An. (18)

See, for instance, Resnick [43, Proposition 1.4.1]. Finally, the proof of Claim d) in Theorem 1 will make use of the

Lebesgue measure over the unit interval, λpra, bsq “ b ´ a, for ra, bs Ď r0, 1s.

Proof of Theorem 1.

a) Consider pu, vq P r0, 1s2 such that u ď v. Then, whenever P pAiq ď u it follows that P pAiq ď v; or in other

words Du Ď Dv, which in turn implies that 1Dupiq ď 1Dv piq. Hence,

´
ÿ

iPI

1Du
piq ě ´

ÿ

iPI

1Dv
piq ùñ

d
ź

j“1

Kj ´
ÿ

iPI

1Du
piq ě

d
ź

j“1

Kj ´
ÿ

iPI

1Dv
piq

ùñ Cpuq ě Cpvq,
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from where the final result follows.

b) First note that the proof of Claim a) implies that Du is a nondecreasing, in the sense Du Ď Dv, for any u ď v

with pu, vq P r0, 1s2. Next, consider an arbitrary u P r0, 1s and a sequence un such that un Ñ u, with un ď u for

every n P N. Then, for a sufficiently large n it holds that un ď un`1 which in turn implies that Dun Ď Dun`1 .

This, along with (18) and the fact that Du is nondecreasing, implies that limnÑ8 Dun “
Ť8

n“1 Dun “ Du.

Finally, (16) and (17) then yield that

lim
nÑ8

Cpunq “

d
ź

j“1

Kj ´
ÿ

iPI

lim
nÑ8

1Dnpiq “

d
ź

j“1

Kj ´
ÿ

iPI

1limnÑ8 Dnpiq “

d
ź

j“1

Kj ´
ÿ

iPI

1Dupiq “ Cpuq,

which concludes the proof.

c) Trivially, since Claim a) shows that Cpuq is nonincreasing it follows that for every u P r0, 1s,

Cpuq ě Cp1q “

d
ź

j“1

Kj ´ |D1| “ 0,

where the final equality is a consequence of the fact that |D1| “ |ti : P pAiq ď 1u| “ |tAi : i P Iu| “
śd

j“1 Kj .

The final result then follows from (16) and (17) by noting that for every u P r0, 1s,

Cpuq ď Cp0q “

d
ź

j“1

Kj ´ |D0| “

d
ź

j“1

Kj ,

since |D0| “ |ti : P pAi,jq ď 0u| “ |H| “ 0.

d) First note that,

1Dc
u

piq “

$

’

&

’

%

1, i P Dc
u,

0, i P Du,

“

$

’

&

’

%

1, 0 ď u ă P pAiq,

0, otherwise.

(19)

Next, observe that |Dc
u| “

ř

iPI 1Dc
u

piq which along with (19) yields

ż 1

0

Cpuqdu “

ż 1

0

|Dc
u| du “

ÿ

iPI

ż 1

0

1Dc
u

piqdu “
ÿ

iPI

ż

r0,P pAiqs

du “
ÿ

iPI

λpr0, P pAiqsq “
ÿ

iPI

P pAiq “ 1,

which concludes the proof.

Appendix B: Step function representation, plateau, and edge

This appendix shows formally that the conquering function is a step function with a finite number of steps (provided

that K1, . . . ,Kd are finite), and it uses that representation so to formally define the plateau and the edge. As a

consequence of (16) and of (19) in Appendix A it holds that

Cpuq “

d
ź

j“1

Kj ´
ÿ

iPI

1Du
piq “

d
ź

j“1

Kj ´
ÿ

iPI

1r0,P pAiqqpuq “
ÿ

iPI

t1 ´ 1r0,P pAiqqpuqu “
ÿ

iPI

1rP pAiq,1spuq, (20)

where the final equality follows from the well-known property of the indicator, 1 ´ 1B “ 1Bc . Hence, Equation (20)

shows that Cpuq is a step function with a maximum of |I| “
śd

j“1 Kj steps. Given this representation, it follows

that

plateau “ sup

"

u : Cpuq “ max
iPI

rP pAc
i qs

*

, edge “ argmax
u

tCpuq ´ Cpu`qu.

In words, the plateau is the value at which the longest plateau of Cpuq ends, and the edge is the value at which the

largest jump on Cpuq occurs.
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