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1 Background on Voronoi diagrams

Definitions

In this section we provide background on Voronoi tesselations and Delaunay triangulations. Let W

be a finite subset of Rd. The elements of W are called sites. For a specific site w ∈ W a Voronoi

cell V (w) is defined as the set of points in Rd that are strictly closer to w than to any other site in

W . Closeness is measured by a given norm, usually the Euclidean norm or the Mahalanobis norm.

More generally, the Voronoi cell can be defined for a nonempty set of sites U ⊆ W ; formally, V (U)

is defined as the set of points in Rd that are equidistant from all members of U , and closer to any

member of U than to any site in W\U . Together, all Voronoi cells fully partition the space Rd; this

partition is known as the Voronoi diagram and it is given by the family {V (U) : U ⊆ W}.

Related to Voronoi diagrams are Delaunay triangulations. For a set of sites U ⊆ W a Delaunay

face D(U) ⊂ Rd is the set of points in a sphere through all the sites of U . For a specific Delaunay

face D(U) all other sites in W are on the exterior of D(U). Therefore, D(U) is the interior of the

convex hull of U . The collection of all Delaunay faces is called a Delaunay triangulation. This

triangulation is a dual graph of its corresponding Voronoi diagram. Figure 1 provides an example

of a Voronoi diagram and its corresponding Delaunay triangulation.

Notes & Comments

Voronoi tesselations and Delaunay triangulations are well known. The definitions above are adapted

from [1, 2]. In the context of cluster analysis, Voronoi diagrams are well-known for representing the
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regions associated with clusters formed byK-means andK-medoids algorithms, where each partition

corresponds to the subset of the sample space nearest to a particular cluster center. The concept

of Voronoi tesselations was introduced and studied by [3], Voronoi [4], and Thiessen [5]. Since

Voronoi tessellations have been introduced by multiple authors, they are also known as Dirichlet

tesselations and Thiessen diagrams. Delaunay triangulations (or tesselations) were proposed in [6].

Further technical details on Voronoi diagrams and Delaunay triangulations can be found in [7].

Figure 1: Example of a Voronoi diagram and its corresponding Delaunay triangulation. The red dots are sites,

Voronoi faces are delimited by full blue lines, and the Delaunay triangulation is represented by the dotted lines.

2 Further numerical results

2.1 Outliers, skewness, and imbalanced mixing proportions

In this section, we report a Monte Carlo simulation study based on the scenarios introduced below.

Scenario A: Outliers

This scenario is a variation of Scenario 1 from the main paper, now with data contaminated by a

uniform distribution in [−10, 10]2. We consider a contamination level of 4%. In Figure 2 we depict

a one shot example of the RC algorithm for a sample of size n = 500 and u = 0.1 in Scenario A.

The resulting partition resembles the one obtained in the one shot example of Scenario 1. Moreover,

outliers are assigned to clusters whose centers are closest in terms of Euclidean distance. Such pos-
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itive performance extends beyond this one shot experiment, as demonstrated by the Monte Carlo

evidence presented in Figure 5.

Scenario A

(a) (b)

(c) (d)

Figure 2: One shot experiments for Scenario A. (a) Simulated data and protoclusters (outliers represented using

▲). (b) Estimated (dashed) vs true (solid) marginal densities. (c) Estimated (dashed) vs true (solid) conquering

functions. (d) Voronoi cells of the conquerors for u = 0.1.

Scenario B: Skewness

This scenario involves a mixture of K = 3 skewed bivariate normal distributions. Data is gener-

ated using the R package sn [8] with the following parametrization: µ1 = (−3, 3)T, µ2 = (3, 3)T,

µ3 = (0,−3)T, α1 = (10, 4)T, α2 = (−10,−4)T, α3 = (0, 5)T and Ω1 = Ω2 = Ω3 = 2I2; where µi,
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αi and Ωi are the location, slant, and scale parameters corresponding to data in clusters i = 1, 2, 3;

see Azzalini [9, Ch. 5] for further details on this parametrization. In Figure 3 we depict a one shot

example of the RC algorithm corresponding to a sample of size n = 500 and u = 0.1 in Scenario B.

As can be seen in panel (d), for this particular data, RC identifies 4 clusters.

Scenario B

(a) (b)

(c) (d)

Figure 3: One shot experiments for Scenario B. (a) Simulated data and protoclusters. (b) Estimated (dashed) vs

true (solid) marginal densities. (c) Estimated (dashed) vs true (solid) conquering functions. (d) Voronoi cells of the

conquerors for u = 0.1.

Scenario C: Imbalanced mixing proportions

This scenario resembles Scenario 2 in the main paper but considers imbalanced mixing propor-
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tions. In Figure 4 we depict a one shot example of the RC algorithm corresponding to a sample

of size n = 500 and u = 0.1; mixing proportions for cluster 1 (•), 2 (•) and 3 (•) are 0.5, 0.3 and

0.2 respectively. Panel (d) resembles the solution obtained for the one shot experiment in Scenario 2.

Scenario C

(a) (b)

(c) (d)

Figure 4: One shot experiments for Scenario C. (a) Simulated data and protoclusters. (b) Estimated (dashed) vs

true (solid) marginal densities. (c) Estimated (dashed) vs true (solid) conquering functions. (d) Voronoi cells of the

conquerors for u = 0.1.
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Scenario A

(f) t−Distributed Mixture Model (TEIGEN)

(e) Parsimonious Gaussian Mixture Model (PGMM)

(d) Gaussian Mixture Model (GMM)

(c) Plateau

(b) Edge

(a) u = 0.1
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Scenario B
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Scenario C
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Figure 5: Monte Carlo simulation study for additional simulation scenarios with outliers, skewness, and imbalanced

mixing proportions: (Left) Performance metrics (ARI, RI, JI, FMI). (Right) Empirical distribution on the number

of detected clusters. 6
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Scenario 3
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Figure 6: Monte Carlo simulation study for Mahalanobis norm-based version of the RC algorithm: (Left) Perfor-

mance metrics (ARI, RI, JI, FMI). (Right) Empirical distribution on the number of detected clusters.
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Monte Carlo evidence—taking stock

To assess the performance of the RC clustering algorithm in Scenarios A, B, and C we run a Monte

Carlo simulation study considering sample sizes n ∈ {50, 100, 250, 500, 1000}. Some remarks on the

simulation results are in order:

• Figure 5 (Scenario A) shows that the results for RC, PGMM, and TEIGEN are tantamount

to the ones of Scenario 1 in the paper. In this regard, the RC clustering algorithm appears to

be robust to a moderate amount of uniformly distributed outliers.

• Figure 5 (Scenario B) indicates that in the case of skewed data, RC and GMM frequently tend

to under or over identify clusters in the data. TEIGEN and PGMM, on the other hand, appear

to produce sensible cluster solutions even for relatively small sample sizes in the presence of

moderately skewed data.

• Figure 5 (Scenario C) suggests that in the presence of imbalanced mixing proportions, RC

(edge) behaves better than RC (plateau). Similarly to the Scenario 2 in the main paper, RC

(edge) overperforms GMM, PGMM, and TEIGEN. Such overperformance stems once more

from RC flexibility in adjusting to a different number of clusters per margin.

All in all, the evidence above suggests, that the RC algorithm demonstrates reasonable resilience

when faced with a moderate number of outliers in the data or in scenarios with slightly imbal-

anced mixing proportions. Scenario B suggests however that in the presence of skewed data, it may

underperform in comparison to TEIGEN and PGMM.

2.2 Alternative metric for conquering

After considering the comments provided by an anonymous reviewer, we reran the Monte Carlo

simulations for Scenarios 1, 2, and 3 as described in the paper, this time using the Mahalanobis

norm to allocate observations to protoclusters and clusters—instead of the Euclidean norm as in

the main paper. Thus, the lth data point is encoded into the protocluster (Step 2) or cluster (Step

3) that minimize the following Mahalanobis norm:

Enc(l) = argmin
i

(xl − µi)
TΣ−1(xl − µi),
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where µi = (µ
(i1)
X1

, . . . , µ
(id)
Xd

)T is the sample mean corresponding to protocluster or cluster i ∈ I, and

Σ is the sample covariance matrix. As can be seen in Figure 6, the simulation results considering this

alternative encoding strategy are equivalents in Scenarios 1 and 2 (d = 2). In the case of Scenario 3

(moderately high–dimensional data), the performance of RC via Mahalanobis norm decreases. For

moderately large d and relatively small sample size n, the computation of Mahalanobis distance

entails numerical issues (i.e., Σ is frequently an ill–conditioned matrix that poorly estimates the

true covariance matrix). Versions of the Mahalanobis norm for addressing clustering problems in

the context of high-dimensional data have been proposed [e.g., 10]; incorporating these into the RC

algorithm remains a task for future research.
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Figure 7: Side-by-side boxplots of execution times.

2.3 Analysis of computational times

In Figure 7, we compare the execution time of RC with other clustering methods under the Monte

Carlo simulations in Scenarios 1, 2, and 3. The observed differences are partially explained by

different degrees of efficiency in the implementation of each method; for example, GMM fits are

obtained with the mclust package, whose key routines are written in Fortran. The version of the

RC clustering method implemented here relies on the mombf package [11] for Step 1, and exhibits

computational efficiency comparable to GMM.
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3 Further empirical results

In Table 1 we report external agreement metrics for all data sets in the paper where we have access

to the true labels. It can be seen that the global performance of RC is in line with that of other

mainstream alternative clustering methods.

Method Metric Banknotes Wine Rice Iris

RC

ACC 0.995 0.758 0.921 0.702

NMI 0.665 0.417 0.405 0.593

RI 0.990 0.737 0.766 0.793

ARI 0.979 0.414 0.633 0.584

JI 0.980 0.441 0.689 0.619

FMI 0.999 0.613 0.799 0.797

GMM

ACC 0.730 0.949 0.329 0.666

NMI 0.674 0.888 0.303 0.636

RI 0.840 0.932 0.578 0.776

ARI 0.680 0.848 0.169 0.568

JI 0.679 0.817 0.218 0.595

FMI 0.824 0.899 0.431 0.774

PGMM

ACC 0.740 0.825 0.606 0.980

NMI 0.674 1.002 0.378 1.021

RI 0.793 0.906 0.668 0.973

ARI 0.592 0.779 0.342 0.941

JI 0.591 0.731 0.413 0.927

FMI 0.768 0.851 0.609 0.961

TEIGEN

ACC 0.800 0.511 0.424 0.666

NMI 0.674 0.881 0.365 0.636

RI 0.839 0.783 0.613 0.776

ARI 0.679 0.444 0.234 0.568

JI 0.678 0.394 0.298 0.595

FMI 0.823 0.605 0.507 0.771

Table 1: External agreement metrics for different clustering methods and real data sets with labels.
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