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Abstract

To model the angular measure of a multivariate extreme value distribution, we develop
a mean-constrained Bernstein polynomial over the (p — 1)-dimensional simplex, along with a
generalization that places mass on the simplex boundaries.
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1 Introduction

The angular measure of a multivariate extreme value distribution plays a key role in the
statistical modeling of extreme value dependence. In this paper, we propose a model for
the angular measure which can be used for an arbitrary number of dimensions, and which
allows for a generalization that places mass on the simplex boundaries. To lay the ground-
work, let Y1,...,Y, be a sequence of independent identically distributed random vectors
in R? with unit Fréchet marginal distributions, Fi(y) = --- = F,(y) = exp(—1/y), for

y > 0. Statistical theory for modeling multivariate extremes is based on a convergence re-



sult which provides the limiting distribution of the componentwise standardized maximum,
M, = n 'max{Yy,...,Y,}. Pickands (1981) established that

I Tp

P(Mnﬁy)%GH(y)—exp{—p/SpmaX{—,---, }H(dX)}, y € (0,00)", (1)

n Yp

as n — 0o, provided the limit exists and is non-degenerate; see also Coles (2001, Theo-
rem 8.1). Here S, is the unit simplex, that is S, = {x e RP : 21 +---+2, = 1,2; > 0 for j =
1,...,p}, and Gy is a so-called multivariate extreme value distribution whose parameter H
is the so-called angular measure, which is a distribution function on S, that needs to obey

the moment constraint

/5 xH(dx) = p~'1,, (2)

where 1, is a vector of ones. The more mass concentrates on the barycenter of Sy, p~'1,, the
higher the level of dependence between the extreme values of Yq,...,Y,. If H is absolutely
continuous we define the angular density as h(x) = L H(x), for x € S,,.

To model the angular measure H, we propose a mean-constrained Bernstein polynomial
on the (p—1)-dimensional simplex S,. The mean constraints are built directly into the model
and the dimension p can be as large as computing resources allow; the basic idea works the
same way for all dimensions p. The proposed model is easily generalized to accommodate
degenerate densities with mass on lower-dimensional simplexes, e.g. for p = 3 a triple such
as (0.29,0.00,0.71) or even (0.00,0.00, 1.00) can have positive probability. Besides arbitrary
dimension and degenerate data, other benefits include the fact that the sampling algorithm
is remarkably easy to implement (FORTRAN 90 code is provided in the online supplementary
content), and the approach gives good results in simulations and real data analyses.

Boldi and Davison (2007) develop finite mixtures of k Dirichlet distributions for H that
satisfies (2). Both the E-M algorithm and reversible jump MCMC are considered for esti-
mation. The former uses BIC to pick k whereas the latter allows k£ to be random. Sabourin

and Naveau (2014) reparameterize this model and also consider reversible jump. Both of



these approaches disallow mass on the simplex boundary. A nonparametric Bayes approach
by Giullotte et al. (2011) does allow for mass on the simplex boundary but the proposed
prior has been developed with the bivariate extreme value setting in mind and its extension
to the p-dimensional is a challenging one.

Bayesian treatments of univariate Bernstein polynomials originate with Petrone (1999a,b).
Petrone (1999a) considers the usual Bernstein polynomial over [0, 1] where the weights follow
a Dirichlet distribution, whereas Petrone (1999b) considers random Bernstein polynomials
over [0,1] where the weights are more flexibly derived from a Dirichlet process. Zheng et
al. (2010) extend random Bernstein polynomials to the hypercube [0, 1]?, and Barrientos et
al. (2015) extend random Bernstein polynomials to the simplex S, for compositional data.
All of these approaches do not consider mass on lower-dimensional boundaries of S, and
are rather cumbersome to implement. Recently Marcon et al. (2016) proposed an elegant
approach based on Bernstein polynomials over [0, 1] for bivariate extremes (p = 2) that
places mass on the boundaries {0,1} and uses reversible jump to allow for random k; our
approach extends theirs by allowing for any p > 2 but simply fixes k to be as large as is
computationally feasible.

Section 2 develops the mean-constrained Bernstein polynomial on .S, and Section 3 dis-
cusses Bayesian inference via Markov chain Monte Carlo (MCMC). A more general model
placing positive mass on the boundaries of .S, is developed in Section 4. Section 5 presents
a short data illustration involving the Leeds air quality data analyzed in other papers and

Section 6 concludes the paper.

2 Mean-constrained Bernstein polynomial on 5,

A multivariate Bernstein polynomial expansion for a density on the simplex is a finite mixture
of Dirichlet densities with means regularly spread out over the simplex. Let N = {1,2,3,...}

denote the positive integers, and for any o € NP, define |a| = 1;:1 a;. A Dirichlet density



on the S, simplex with parameter c is:

x| @) = g L a1 )

i=1 i=1

Recall that for x ~ d(x | @), F(x | &) = a/|a|. Fix J € N in what follows. A Bernstein

polynomial on S, of order J is written

hw(x) = Z wad(x | a), (3)

lax|=J

where

> wa =1, (4)

=1
and w = {wq : |a] = Jand @ € N}; see Lorentz (1986, Section 2.9, Eq. (13)). It is
understood that the sum in (3) is only over e € NP. The order of the resulting polynomial
is J — p, therefore J = p gives a uniform distribution; necessarily we only consider J > p.
For example, setting J = 5 and p = 3 gives indices {113,131,311, 122,212,221} and the

Bernstein polynomial is

hw(X) = w11312x§ + w131 121’3 + W311 121’% + IU12224£L‘2$3 + w21224x1:v3 + w22124931x2.

J-1

p—l) basis functions: the number of ways to place J — p indistiguishable

There are m = (
balls into p distinguishable urns where each urn has at least one ball; there are J — p left
after placing one ball in each of the p urns. If we add a level to the Bernstein polynomial,

we increase the number of basis functions by

L7)-00-(0) 5



There are p — 1 marginal mean constraints (the pth is implied by the other p — 1); the jth

element x; of x is required to satisfy

J—p+1
E(Jz;) = Z Z Wo = > (6)
=1 Jal=J

We define a Bernstein polynomial angular density, as a Bernstein polynomial in (3), but

obeying the moment constraint (6). For J =5 and p = 3 this boils down to

(w113 + w22 + wiz1)1 + (wa21 + Wa12)2 + w313 = 5/3,
(w113 + war2 + w311)1 + (wi2g + wa21)2 + w1313 = 5/3,

(wao1 + w131 + wa11)1 + (wi2 + Wwa12)2 + w1133 = 5/3.

Let e; be a J-dimensional vector of all zeros except element j is unity. The p vertices of the
simplex S, are at ey, ...,e,. Let a; be a J-dimensional vector of all ones except element j is
J —p—+1. The Bernstein polynomial basis function that places greatest mass near the vertex
e; is d(x | a;), with corresponding coefficient wy;; call these the ‘vertex coefficients.” Let
V = {ay,...,a,} be the indices for the p vertex coefficients. Ideally, we would like to solve for
p of the coefficients in terms of the remaining coefficients; this proves easy for multivariate
Bernstein polynomials. Subtracting (4) from (6) gives the vertex coefficients in terms of the

remaining, non-vertex coefficients:

1 Xi-1 a1
wn =2 =3 Y e == 30 ™)
p =2 |a\ J lee|=J
;=1 aF#a;
For j = 1,...,p, (7) imposes the necessary mean constraint as well as the sum-to-unity

constraint; there are m — p free parameters left, the w, indexed by elements of F = {a €

N :|a| = J and a ¢ V}. For J =5 and p = 3 we have mean-constrained vertex coefficients

11 1 11 1 11 1
W311 = 3 — W12 — 5W221, Wi31 = 3 — 5Wi22 — 3Wa21, Wi13 = 3 — 3Wi22 — 5W212.



Bernstein polynomials enjoy many appealing properties. Given a Bernstein polynomial
of order J and dimension p, the marginal distribution of any subset of x, say (z,,,...,2,)
where {q1,...,q} C{1,...,p}, k <p, is clearly a Bernstein polynomial of order J as well.
Bernstein polynomials ‘reproduce’ in the sense that any Bernstein polynomial of order J can

be expressed exactly as a Bernstein polynomial of order J + 1; indeed, for |a| = J + 1,

p

% CYj—l
wa:Z J+1wa_ej.

Jj=1

See Sauer (1999, Proposition 2.3). The classes of densities generated by lower order Bernstein
polynomials are formally nested within higher orders. This facilitates fitting in that only

one Bernstein polynomial of a reasonably high order need be fitted.

3 Model specification and posterior inference

Due to the formal nesting property of the Bernstein polynomial, it is only necessary to fit
the model once with a J that is as large but practical—keeping in mind (5). In our MCMC
scheme the choice of J affects the amount of time necessary to achieve posterior inference,
along with the dimension p and the sample size n. As a rule of thumb we have found bounding
m < n to work well, although m much smaller than n can provide similar estimates depending
on how ‘localized’ the data are. An important problem in fitting multivariate Bernstein
polynomials is the delineation of the m elements in the index set {a € NP : || = J}. We
use the nexcom algorithm in Nijenhuis and Wilf (1978, Chapter 5).

After much experimentation with various approaches to model fitting (including the E-M
algorithm, iterative fitting, and various Bayesian approaches), we have found a componen-
twise adaptive Markov chain Monte Carlo (MCMC) to provide consistently good results.

A generalized logit transformation is considered for the free parameters {w, : @ € F};



implicitly define {vs : @ € F} through

el

Wy = ———.
“ p"’Z&e]—‘evd

(8)

A common prior on the coefficient vector w is Dirichlet(cl,,) (Petrone, 1999a; Chen et
al., 2014). The Dirichlet density on the m — p free parameters {wq : @ € F} incorporating

the mean constraint is given by

D J—p+1
Py : v € F) x d(w | el HI Z Zwa—— : 9)
j=1 =1 Jal=J

OCJZ

where I{-} is the indicator function. Thus, the prior on the {v4 : & € F} is simply

p{va “EF“E[HZ Lljl[ Jzzp? ;,p Ze _%

Oéj—l

The posterior is proportional to

PV @ € F | X1,...,Xp) ocp(va:aef)H Z wad(x; | @),
i=1 [al=J
where the wg, for e € F are given through (8) and the w,, for j = 1,...,p are given by (7).
The adaptive componentwise random-walk Metropolis—Hastings algorithm of Haario et al.
(2005) has worked very well in applications. Initialize v2, = 0 for e € F; this corresponds to
the uniform distribution on the simplex: w® =1/ (Zj) for |a] = J. At each iteration of the
Gibbs sampler, we cycle through all elements o« € F, updating each v, given the current

Note that changing only v5! to v}

value of the remaining values. Propose v}, ~ N (v, a2).

but leaving the other {& € F : & # a} unchanged changes every {wq : || = J}; call this



new collection of weights w*. The proposal is accepted with probability

szin{l PO it 2 e Jw*dl(Xi‘a }ﬁf{0<w <1}
(V) iz Yoy wa d(xi | @)
We make explicit here that the w;j need to be between zero and one, although this is
implied by the support of the Dirichlet prior in the simplex. The Metropolis—Hastings
algorithm ‘automatically’ enforces the mean constraint and is valid as long as the support of
the proposals is as least as great as the posterior, which we have here. This kind of nonlinear
constraint accept/reject approach was used by Jones et al. (2010) to force probabilities in
contingency tables subject to nonlinear constraints to be between zero and one.
Let w*® be the sampled coefficients at iteration s of the MCMC scheme, where s =
., S. The density that generated x4, ..., X, is estimated by discarding the first, say, M it-
erates (termed the burn-in), taking the mean of those remaining w = (S — M)~ ZS a1 WP

and using hg(x) through (3).

4 Mass on the simplex boundaries

The Bernstein approach naturally extends to allow for densities on the boundary of the
simplex—boundaries are simply lower dimensional simplexes. Now instead of requiring that
each urn have at least one ball, we allow some urns to be empty. For basis functions with
one or more empty urns, we simply define Dirichlet distributions on the lower dimensional
simplex. Let’s reconsider J = 5 and p = 3. Our original formulation delineates the ba-
sis functions as {113,131,311,122,212,221}. Adding in lower dimensional densities adds
{005,014, 023, 032, 041, 050, 140, 230, 320, 410, 500, 401, 302, 203, 104}. Any Dirichlet distri-

bution with only one non-zero element (which must equal J) is Dirac measure, e.g.

‘D( ' | 57 07 O) - 6(17070)(.>‘



In fact, the Dirac distributions occur at the new vertex indices a € {Je; : j = 1,...,p}.
Any Dirichlet distribution with more than one but fewer than J zero elements has a density

over the simplex corresponding to the non-zero elements, e.g.

d(p1,p2|2,3,0) = Py oS {pr +p2a=1,0 < py,py < 1}

[(2)r(3)

o

,%) = (1,0,0) and (%,é,g) =

Note that the means of these two distributions are (g, s

(0.4,0.6,0) respectively.

The mean constraint (6) now becomes

E(Jx;) _Z Zwa——, (10)

=1 |a|=J
o =1

where the sum is taken over a € NE where Ny = N U {0}. Equation (10) immediately
gives the new vertex coefficients (with Dirac measure) in terms of the remaining, non-vertex

coefficients:

Wie, = — —Z.Zwa:——z%wa. (11)

i=1 la|=J la|=J
;=i a#le;

The likelihood is now a weighted sum of densities over 2” —1 (p—1)-dimensional or lower-
dimensional simplexes, each conveniently indexed by a binary number. Let E = {0, 1}*\{0,},
the set of all p-dimensional binary numbers except for the zero vector. For € € FE, let
Ac={aeNj:|a|=J H{a; >0} =¢,j=1,...,p} and Se = {x € [0, 17 : 37 ;I {e; =
1} = 1}. For example, if p = 3, then Spo1 = {(0,0,1)}, So10 = {(0,1,0)}, So11 = {(0, 22, x3) €
0,13 : @y + 23 = 1}, and S1yy = {(v1,29,23) € [0,1]* : 2y + 23 + 23 = 1}. If J = 4 then
Ap1y = {(0,1,3),(0,2,2),(0,3,1)}. The density hw(x) is now given through the law of

total probability as

= ZP(X €S )h(x|x € S) = Z Wad(x | ),

eckE OLEAE(X)



where

pa]_l I{a;>0,2,>0}
d(x|a) =T() [[ H{a; =0, ~—0}[ ] ,

a]#o ( ])
and €(x) is such that x € Sex).
Let the free parameters be in Fy = {a € N : |a| = J and o # Je; for j = 1,...,p}.

The posterior is proportional to
PV € Fy | X) x p(ve aEfOH Z Wad(x;|a),

where the w, for o € Fy are given through

ele

p + Zdefo eve 7

(12)

W =

and the wye; for j =1,...,p are given by (11).

5 Example

Boldi and Davison (2007) and Sabourin and Naveau (2014) considered p = 5 air quality
measurements from central Leeds over the years 1994-1998. The measurements are daily
ozone levels O, nitrogen dioxide NOs, nitrogen oxide NO, sulfer dioxide SOs, and particulate
matter PM;y. We transform the data to unit Fréchet margins using a rank approach and
use the same threshold as Boldi and Davison (2007, p. 224) (i.e. €*%). Boldi and Davison
(2007) used n = 247 extremes whereas Sabourin and Naveau (2014) used n = 100; we used
n = 267.

Since no x; had zero elements, the model of Section 2 was used with ¢ = 0.1. .S = 6000
iterates were generated; the burn-in was M = 2000, so w was computed from 4000 iterates
post-burn-in. Figure 1 shows level curves from fitting these data over Ss with J = 11 and
J = 12. Taking J = 11 leads to m = 210 Bernstein polynomial basis functions on the

5-dimensional simplex; J = 12 gives m = 330 basis functions; there is almost no difference

10
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Figure 1: Leeds air quality data; top row is J = 11 yielding m = 210 basis functions and
bottom row is J = 12 yielding m = 330.

in the estimates, confirming that picking m ‘large enough’ will adequately model the data.
Figure 1 can be compared to Fig. 5 in Boldi and Davison (2007) and Fig. 6 in Sabourin and
Naveau (2014); all methods provide somewhat similar inferences, although the £ = 10 in
Boldi and Davison (2007) shows rather concentrated Dirichlet mixands.

Beyond this real data example, several simulated datasets were considered of varying
complexity and dimension. When data were generated from a Bernstein polynomial param-
eters for both models (Sections 2 and 4) were consistent and asymptotically unbiased. For
data generated otherwise, e.g. as a mean p~'1, mixture of Dirichlets, the Bernstein poly-
nomial model estimated the true density very well. Little posterior sensitivity was noted
for increasing m after a certain point, however ¢ does play a small role in how ‘bumpy’ the
estimates are with smaller ¢ allowing for more heterogenious estimates. Note that ¢ — oo

forces the Bernstein polynomial to be uniform over .S,,.

11



6 Final remarks

We develop a multivariate Bernstein polynomial-based model for the angular measure of a
multivariate extreme value distribution, which allows for a generalization that places mass
at the boundaries of the simplex. FORTRAN 90 programs for fitting the mean-constrained
Bernstein polynomials proposed here are given in the Supplementary Materials; they are
presented ‘as is’ for others to modify and use freely.

In some settings of applied interest the main concern may not be about a single angular
measure, but rather on a family of angular densities {h1,...,hi}, and in the latter case a
main concern is how to borrow strength instead of fitting each hj separately. While not
explored here, such borrowing of strength is straightforward from a Bayesian perspective by
adding another level to the hierarchy, without the need of solving sophisticated constrained
optimization problems as in de Carvalho and Davison (2014).

While the focus of the paper has been on imposing the moment constraint of centering
the (angular) density on the barycenter, p~'1,, the approach in Section 2 can be readily
extended to impose other types of moment constraints, and thus our methods can be read-
ily adapted for compositional data analysis (Aitchison, 1986), for contexts where marginal
moments from census data may be available, or for settings where other population level

information is available (see, for instance, Oguz-Alper and Berger, 2016).

Acknowledgments. We thank the Co-Editor and the two referees, whose comments and
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