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Diagnostic tests are of critical importance in health care and medical research.
Motivated by the impact that atypical and outlying test outcomes might have on
the assessment of the discriminatory ability of a diagnostic test, we develop a
robust and flexible model for conducting inference about the covariate-specific
receiver operating characteristic (ROC) curve that safeguards against outly-
ing test results while also accommodating for possible nonlinear effects of
the covariates. Specifically, we postulate a location-scale regression model for
the test outcomes in both the diseased and nondiseased populations, combin-
ing additive regression B-splines and M-estimation for the regression function,
while the distribution of the error term is estimated via a weighted empirical
distribution function of the standardized residuals. The results of the simulation
study show that our approach successfully recovers the true covariate-specific
area under the ROC curve on a variety of conceivable test outcomes contamina-
tion scenarios. Our method is applied to a dataset derived from a prostate cancer
study where we seek to assess the ability of the Prostate Health Index to discrim-
inate between men with and without Gleason 7 or above prostate cancer, and if
and how such discriminatory capacity changes with age.

K E Y W O R D S
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1 INTRODUCTION

The evaluation of the performance of a medical test for screening and diagnosing disease is an important step toward
advancing health in individuals and communities. The major goal of a diagnostic test is to distinguish diseased from
nondiseased individuals or, more generally, to distinguish between different disease stages. Before the widespread use
of a test, its ability to discriminate between the different disease states must be rigorously vetted. Note that here we
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use the term “diagnostic test,” or sometimes simply “test,” to broadly encompass any continuous classifier, which may
include a single biological marker or a composite score resulting from the combination of multiple biomarkers. We fur-
ther note that we will be assuming the existence of a so-called gold standard test, that is, a perfect test that correctly
classifies all individuals as being diseased or nondiseased. Compared to the diagnosis made by the gold standard test,
the goal is to assess how well the candidate test, which is possibly less invasive and/or costly, performs. The receiver
operating characteristic (ROC) curve is the most popular graphical tool used for evaluating the discriminatory ability of
continuous-outcome tests. The ROC curve is a plot of the false positive fraction (probability that a nondiseased subject tests
positive) against the true positive fraction (probability that a diseased subject tests positive) for all possible threshold val-
ues that can be used to convert continuous test outcomes into binary ones. Further background on ROC curves is provided
in Section 2.

It has been recognized that the performance of a test may be affected by covariates, such as age and/or gender
and, in such situations, ignoring covariate information might result in erroneous conclusions about a test’s accuracy.
The full understanding of how covariates impact a test’s performance is thus of paramount importance in order to
determine the optimal and suboptimal populations, as defined by the covariate values, in which to perform the tests.
The covariate-specific or conditional ROC curve, which is an ROC curve that conditions on a specific covariate value,
arises as the natural tool to use in this context. For a recent overview of available ROC regression methods, we refer to
Inácio et al.1

Motivated by the fact that atypical/outlying test outcomes (due, for instance, to experimental, biological, or coding
errors) may put at risk the reliability of the inferences about the test’s accuracy, we develop a robust additive regres-
sion B-splines modeling framework for conducting inference about the covariate-specific ROC curve that mitigates the
impact that outliers can have on inferences, while simultaneously allowing for nonlinear effects of the covariates. Here
and below, by an outlier or atypical test outcome we mean an outcome that is clearly separated from the majority or bulk
of the test outcomes, or that in some way deviates from the general patterns present in the test results.2(p124) Our esti-
mation method for the covariate-specific ROC curve is similar in spirit to those developed by Pepe,3 González-Manteiga
et al,4 Rodríguez-Álvarez et al,5 and Rodríguez and Martínez,6 which postulates a location-scale regression model for the
test outcomes in both the diseased and nondiseased populations (termed in the literature as “induced” approach). Yet,
unlike previous approaches: (i) our specification for the regression function relies on an additive regression B-splines for-
mulation, with M-estimation used for the regression coefficients, hence safeguarding against outlying test outcomes, and
(ii) the distribution of the regression errors is modeled via a weighted empirical distribution function of the standardized
residuals, therefore downweighting the influence of outliers when estimating the covariate-specific ROC curve and its
associated summary indices. These features result in a widely applicable approach that can be used for many populations
and for a large number of diseases and continuous diagnostic tests. In addition, from a computational perspective, our
method is extremely fast and can be easily implemented in any software package. We acknowledge that the approaches
of González-Manteiga et al,4 Rodríguez-Álvarez et al,5 and Rodríguez and Martínez6 also allow for nonlinear effects of
the covariates on the mean (and, unlike ours, also on the variance) function but, unlike our proposed approach, they do
it through the use of kernel methods (the former two approaches) and Gaussian processes (the latter approach).

The remainder of this article is organized as follows. In Section 2, we introduce our modeling approach to conduct
inference about the covariate-specific ROC curve. The performance of our method is validated in Section 3 using simulated
data under different test results’ and not results” contamination scenarios. In Section 4, our approach is applied to assess
the age-specific accuracy of the Prostate Health Index (PHI) as a biomarker for prostate cancer. Concluding remarks are
offered in Section 5.

2 ROBUST AND FLEXIBLE INFERENCE FOR THE COVARIATE-SPECIFIC
ROC CURVE

2.1 Preliminaries

We start with some background on ROC curves. Let Y be the continuous random variable denoting the outcome of the
diagnostic test and D the binary variable indicating the presence (D = 1) or absence (D = 0) of disease. Throughout, we use
the subscripts D and D to denote quantities conditional on D = 1 and D = 0, respectively. For example, YD and YD denote
the test outcomes in the diseased and nondiseased populations, with cumulative distribution functions given by FD and
FD, respectively. Further, let c be the threshold value used for defining a positive test result. Without loss of generality,
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we proceed with the assumption that larger values of Y are more indicative of disease; that is, a subject is diagnosed as
diseased when his/her test outcome is equal or greater than c, Y ≥ c, and he or she is diagnosed as nondiseased when the
outcome is below c, Y < c. Hence, for each possible threshold c, the true positive fraction (TPF) and false positive fraction
(FPF) corresponding to such decision criterion are

TPF(c) = Pr(Y ≥ c |D = 1) = Pr(YD ≥ c) = 1 − FD(c),
FPF(c) = Pr(Y ≥ c |D = 0) = Pr(YD ≥ c) = 1 − FD(c).

The ROC curve is defined as the set of points {(FPF(c),TPF(c)) ∶ c ∈ R} and, as it is clear from this definition, it lies
in the unit square. Letting t = FPF(c), the ROC curve can be alternatively expressed as {(t,ROC(t)) ∶ t ∈ [0, 1]}, with

ROC(t) = 1 − FD{F−1
D
(1 − t)}.

ROC curves measure how separated the test outcomes in the diseased and nondiseased populations are (see Figure S1
of the Supplementary Materials). When the test outcomes in the two populations completely overlap, the ROC curve is
the diagonal line of the unit square, that is, FPF(c) = TPF(c) for all c, thus indicating a noninformative test. Conversely,
the more separated the distributions of the test outcomes are, the closer the ROC curve is to the point (0, 1) in the unit
square and the better the diagnostic accuracy. A curve that reaches the point (0, 1) has FPF(c) = 0 and TPF(c) = 1, for
some threshold c and, hence, corresponds to a test that perfectly determines the true disease status.

It is common to summarize the information of the ROC curve into a single summary index and, undeniably, the most
popular one is the area under the ROC curve (AUC), given by

AUC = ∫
1

0
ROC(t)dt.

For a useless test that classifies individuals as diseased or nondiseased no better than chance, AUC = 0.5, whereas for a
perfect test, AUC = 1. In addition to its geometric definition, the AUC has also a probabilistic interpretation,7(p78)

AUC = Pr(YD ≥ YD),

that is, the AUC is the probability that the test outcome for a randomly chosen diseased subject exceeds the one exhibited
by a randomly selected nondiseased individual.

2.2 Modeling framework for the covariate-specific ROC curve

Let X denote the covariate vector and, for ease of notation, we will be assuming that the covariate vectors XD and XD are
the same in both populations. However, this is not necessarily always the case as, for instance, disease stage, which is a
disease-specific covariate, might be of interest. The key object of our modeling framework is the covariate-specific ROC
curve, which for a given covariate value x, is defined as

ROC(t |x) = 1 − FD{F−1
D
(1 − t |x) |x}, 0 ≤ t ≤ 1, (1)

where FD(y |x) = Pr(YD ≤ y |XD = x) is the conditional cumulative distribution function in the diseased population, with
FD(y |x) being analogously defined. The covariate-specific counterpart of the AUC is given by

AUC(x) = ∫
1

0
ROC(t |x)dt. (2)

Note that in this setting, for each possible value x, we might obtain a different ROC curve/AUC and, therefore, also a
possible different accuracy.

We follow an induced approach and we further assume that the relationship between covariates and test outcomes in
each population is given by a location-scale regression model, that is,

YD = 𝜇D(x) + 𝜎D𝜀D, YD = 𝜇D(x) + 𝜎D𝜀D, (3)
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where 𝜇D(x) = E(YD |XD = x) and 𝜎D are the conditional mean function and scale parameter, respectively, in the diseased
population; 𝜇D(x) and 𝜎D are similarly defined. The errors 𝜀D and 𝜀D are independent of each other and independent of the
covariates XD and XD, and in order to allow identifying the mean function and scale parameter in (3), are further assumed
to have mean zero and unit variance. The corresponding cumulative distribution functions are denoted by F𝜀D and F𝜀D

,
respectively. The independence between the error and the covariates in the location-scale regression model, allows one
to rewrite the conditional cumulative distribution function of the test outcomes in the diseased population in terms of
the cumulative distribution function of the regression errors in the same population, that is,

FD(y |x) = F𝜀D

(
y − 𝜇D(x)

𝜎D

)
. (4)

An analogous relationship holds between the conditional quantile function and the quantile function of the error
terms, and namely, in the nondiseased population we have

F−1
D
(1 − t |x) = 𝜇D(x) + 𝜎DF−1

𝜀D
(1 − t). (5)

Plugging in (4) and (5) into (1), the covariate-specific ROC curve can therefore be expressed as

ROC(t |x) = 1 − F𝜀D

{
𝜇D(x) − 𝜇D(x)

𝜎D
+

𝜎D

𝜎D
F−1
𝜀D
(1 − t)

}
, 0 ≤ t ≤ 1.

An advantage of this formulation is that the cumulative distribution and quantile functions of the regression errors are
not conditional, thus alleviating the computational burden. Note that under our formulation the effect of covariates on
the ROC curve is expressed in terms of their effects on the mean functions of each population.

2.3 Proposed robust and flexible estimator and its implementation

Let {(xDi, yDi)}
nD
i=1 and {(xDj, yDj)}

nD
j=1 be two independent random samples of covariates and test outcomes from the

nondiseased and diseased populations of size nD and nD, respectively. Further, for all i = 1, … ,nD and j = 1, … ,nD, let
xDi = (xDi,1, … , xDi,p)′ and xDj = (xDj,1, … , xDj,p)′ be p-dimensional vectors of covariates.

2.3.1 Modeling the mean function

From the location-scale regression models in (3), what needs to be specified is the regression function in each population.
We will describe our modeling approach for the diseased population, but everything follows similarly for the nondiseased
population. Since nonlinear relationships between test outcomes and continuous covariates often occur, we assume a
flexible additive formulation for the mean function, namely,

𝜇D(xDj) = 𝛽D0 + fD1(xDj,1) + … + fDp(xDj,p), j = 1, … ,nD,

where fDh(⋅), h = 1, … , p, are smooth functions, each approximated by a linear combination of cubic B-splines basis func-
tions defined over a sequence of knots 𝜉Dh0 < 𝜉Dh1 < … < 𝜉DhKDh < 𝜉Dh,KDh+1.The knots 𝜉Dh0 and 𝜉Dh,KDh+1 are boundary
knots, while the remaining ones are interior knots. We then write

fDh(xDj,h) =
KDh+3∑

k=1
BDhk(xDj,h)𝛽Dhk = B′

D𝜉Dh
(xDj,h)𝜷Dh, j = 1, … ,nD, h = 1, … , p,

where BD,𝜉Dh(xDj,h) = (BDh1(xDj,h), … ,BDh,KDh+3(xDj,h))′ with BDhk(x) denoting the kth cubic B-spline basis function in
the diseased population, evaluated at x, and defined by the knots sequence 𝝃Dh = (𝜉Dh0, 𝜉Dh1, … , 𝜉Dh,KDh+1)′, and 𝜷Dh =
(𝛽Dh1, … , 𝛽Dh,KDh+3)′. The mean function is thus expressed as

𝜇D(xDj) = 𝛽D0 + B′
D𝝃D1

(xDj,1)𝜷D1 + … + B′
D𝝃Dp

(xDj,p)𝜷Dp

= z′Dj𝜷D, (6)
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INÁCIO et al. 5783

where z′Dj = (1,B′
D𝝃D1

(xDj,1), … ,B′
D𝝃Dp

(xDj,p)) and 𝜷D = (𝛽D0, 𝜷
′
D1, … , 𝜷′

Dp)′. It is well known that both the number and
location of knots characterizing the B-splines basis functions are key choices that have the potential to impact the
inferences, more so the former than the latter. As noted in Durrleman and Simon,8 usually, only a few number of knots,
say a maximum of three or four, are needed to adequately describe most of the phenomena likely to be observed in
medical statistics. In this article, the selection of the number of knots is assisted by a robust version of the Akaike
information criterion (see Section 2.4). Regarding the location of the KDh interior knots, we follow Rosenberg9 and
𝜉Dhk is set equal to the k∕(KDh + 1) quantile of xD,h = (xD1,h, … , xDnD,h), for k = 1, … ,KDh and h = 1, … , p, thus assur-
ing an approximate equal number of observations at each interval defined by the knots. The boundary knots 𝜉Dh0 and
𝜉Dh,KDh+1 are set equal to the minimum and maximum of xD,h, respectively. For the ease of presentation, we have assumed
that all p covariates are continuous, but our modeling framework can also easily deal with categorical covariates, as
well as, interactions between categorical covariates and interactions between a (smooth) continuous covariate and a
categorical one.

2.3.2 Robust estimation

The representation in (6) reduces the estimation of 𝜇D(xDj) to the estimation of the coefficient vector 𝜷D. Moreover,
this expression is linear in 𝜷D, therefore allowing the use of well-established estimation techniques for multiple linear
regression models. Estimation by ordinary least squares would be the most natural option. However, least squares type
of approaches, because they rely on (minimizing) a quadratic loss function, are extremely sensitive to vertical outliers.
Even a single atypical test outcome can drastically affect the estimated regression coefficients. Additionally, the scale
parameter 𝜎D is traditionally estimated by the square root of 𝜎2

D = (nD − QD)−1∑nD
j=1(yDj − z′Dj𝜷

OLS
D )2, which is not robust

either. Note that here QD is the dimension of the vector zDj and 𝜷
OLS
D is the least squares estimate of 𝜷D. It could be tempt-

ing to remove the outlying test outcomes using, for instance, graphical or residual analysis, and then obtaining the least
squares estimates of the regression coefficients based on the “clean” sample. However, this strategy, might be not only
impractical, but might also lead to inferences that are neither valid nor robust,10 not to mention the reduction in sample
size. One way to circumvent this problem is to minimize a less rapidly increasing function than the squared one, so that
the influence of test outcomes with large residuals is reduced. For instance, least absolute deviation regression, which
minimizes the absolute value loss function,

∑nD
j=1|yDj − z′Dj𝜷D|, leads to estimators that are highly resistant to outliers (in

the response variable). However, the drawback is that such estimators are relatively inefficient.11(pp12,13) An elegant com-
promise between the squared and absolute value loss functions was proposed by Huber,12,13 who suggested to estimate
𝜷D as

𝜷D = arg min
𝜷D

nD∑
j=1

𝜌

(
yDj − z′Dj𝜷D

𝜎D

)
, 𝜌(u) =

{
u2

2
, |u| ≤ bD,|u| bD − b2

D
2
, |u| > bD,

(7)

where 𝜎D is a robust estimate of scale. The tuning constant bD describes where the transition from a quadratic to a linear
loss function takes place. Huber’s loss function is quadratic for standardized residuals whose absolute value is equal or
less than bD and grows linearly for standardized residuals whose absolute values exceeds bD. The parameter bD there-
fore controls the amount of robustness. For larger values of bD, Huber’s loss function becomes more similar to the least
squares loss function, whereas for small values of bD, it is more similar to the absolute value loss function. Although bD
could be estimated from the data (as, eg, in Wang et al14), the typical choice of bD is 1.345, for which the resulting esti-
mator is asymptotically 95% as efficient as the least squares estimator when the true distribution of the errors is normal.
In (7), the robust estimate of the scale 𝜎D, needed to ensure that the resulting estimate of 𝜷D is scale equivariant, is in our
case the rescaled median absolute deviation

𝜎D = median
j=1,… ,nD

|yDj − z′Dj𝜷D|∕0.6745, (8)

where the constant 0.6745, which corresponds to the 75th quantile of the standard normal distribution, is used to
ensure that 𝜎D is a consistent estimator of 𝜎D for normally distributed errors. Huber’s estimator falls under the general
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category of M-estimators (eg, Maronna et al15(chaps2-5)). The M-estimator minimizes (7) or, equivalently, solves the system
of estimating equations

nD∑
j=1

𝜓

(
yDj − z′Dj𝜷D

𝜎D

)
zDj = 0QD , 𝜓(u) = d

du
𝜌(u) =

{
u, |u| ≤ bD,

sign(u) bD, |u| > bD,
(9)

where sign(u) = I(u > 0) − I(u < 0), with sign(0) = 0, and 0QD denotes a vector of zeros of length QD. Defining the weight
function 𝜔(u) by

𝜔(u) = 𝜓(u)
u

=

{
1, |u| ≤ bD,
bD|u| , |u| > bD,

allows us to rewrite Equation (9) as

nD∑
j=1

𝜔Dj

(
yDj − z′Dj𝜷D

)
zDj = 0QD , 𝜔Dj = 𝜔

(
yDj − z′Dj𝜷D

𝜎D

)
. (10)

In Figure S2 of the Supplementary Materials, we present a comparison between Huber’s 𝜌, 𝜓 , and 𝜔 functions and the
corresponding least squares and least absolute deviation counterparts for a better understanding of their behavior. Note
that, for instance, least squares assigns equal weight to all observations, whereas Huber’s based weight function assigns
decreasing weights for observations with large, in absolute value, standardized residuals. The system of equations in (10)
can be written in matrix form as

Z′
D𝛀DZD𝜷D = Z′

D𝛀DyD,

where ZD is a matrix with z′Dj as its jth row, 𝛀D is a diagonal matrix with entries given by 𝜔Dj, for j = 1, … ,nD, and
yD = (yD1, … , yDnD)

′, and therefore can be regarded as a weighted least squares problem whose solution is given by 𝜷D =
(Z′

D𝛀DZD)−1Z′
D𝛀DyD. Because the weights depend upon the estimated regression coefficients and scale parameter and,

in turn, these depend upon the weights, the iteratively reweighted least squares procedure is employed. The algorithm
can be briefly summarized by the following two steps.

Step 1: Obtain an initial estimate 𝜷
(0)
D , which can be based, for instance, on a least squares fit. Use 𝜷

(0)
D to obtain 𝜎(0)

D using

the rescaled median absolute deviation as in (8). Compute an initial estimate of 𝛀(0) using 𝜷
(0)
D and 𝜎(0)

D .

Step 2: At iteration k = 1, 2, … , solve for the new weighted least squares estimate 𝜷
(k)
D = (Z′

D𝛀
(k−1)
D ZD)−1Z′

D𝛀
(k−1)
D yD. This

estimate will be used to obtain 𝜎(k)
D and to compute 𝛀(k)

D which, in turn, will form the basis of 𝜷
(k+1)
D . The iterative

procedure is run until some convergence criterion is met.

The converged estimate 𝜷D is taken as our final robust estimate of 𝜷D and used to obtain the final estimate 𝜎D of 𝜎D.
We note here that 𝜷D based on Huber’s loss function is not robust against outliers in the covariates.

Once estimates 𝜷D and 𝜎D have been obtained, the distribution function of the error 𝜀D is estimated via a weighted
empirical distribution function of the standardized residuals,

F̂𝜀D(y) =
1∑nD

l=1𝜔
∗
Dl

nD∑
j=1

𝜔∗
DjI

(
𝜀Dj ≤ y

)
, 𝜀Dj =

yDj − 𝜇D(xDj)
𝜎D

, 𝜇D(xDj) = zT
Dj𝜷D, 𝜔∗

Dj =

{
1, |𝜀Dj| ≤ vD,

0, |𝜀Dj| > vD.
(11)

The purpose of using a weighted version of the empirical distribution function of the standardized residuals is to
downweight the influence of outlying test outcomes. Even if the regression coefficients and scale parameter are robustly
estimated, the standardizing residuals corresponding to outlying observations may still lie far away from the bulk of
test outcomes, therefore badly affecting the vanilla empirical estimate of the distribution function and consequently
the estimate of the covariate-specific ROC curve and corresponding AUC. The tuning constant vD in the weighting
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function in (11)11(p17) controls whether an observation is retained or disregarded, that is, test outcomes whose standard-
ized residuals, in absolute value, exceed vD are completely eliminated in the weighting step. Using the normal distribution
as a benchmark, vD = 3 is deemed as reasonable.

Finally, the ROC curve estimate can be written as

R̂OC(t |x) = 1 − F̂𝜀D

{
𝜇D(x) − 𝜇D(x)

𝜎D
+

𝜎D

𝜎D
F̂−1
𝜀D
(1 − t)

}
, (12)

and the corresponding AUC admits the following closed-form expression, derived in the Appendix, and which can be
regarded as a weighted robust covariate-specific Mann-Whitney type of statistic

ÂUC(x) = 1∑nD
l=1𝜔

∗
Dl
∑nD

l=1𝜔
∗
Dl

nD∑
j=1

nD∑
i=1

𝜔∗
Dj𝜔

∗
Di

I{𝜇D(x) + 𝜎D𝜀Di ≤ 𝜇D(x) + 𝜎D𝜀Dj}. (13)

Before proceeding it is worth mentioning that although all tuning constants were set using the standard normal dis-
tribution as a benchmark, the location-scale regression model in (3) only requires the error term to have zero mean
and unit variance. However, if the error distribution is asymmetric, the choice of bD = 1.345 induces bias at the inter-
cept estimate and, consequently, the corresponding prediction of the conditional mean is also biased.16,17 Increasing
the tuning constant bD reduces the bias but this parameter cannot be increased too much in order to maintain the
robustness. At the time of writing of this article, we found the article by Fu and Wang18 that tackles this problem by
considering an asymmetric Huber loss function and which depends on two tuning constants that can be selected using
the data-driven approach of Wang et al.14 Nevertheless, from our computational experiences, the value of bD = 1.345
is still somewhat reasonable (ie, it only leads to a very small amount of bias) for moderately asymmetric error dis-
tributions. With respect to the tuning parameter vD, the value of, say 3, also works reasonably well for moderately
asymmetric distributions. In practice, as a rule of thumb, we recommend to look at the histograms of the standard-
ized residuals to check if the main bulk of these lie in the interval [−3, 3]. If not, the value of vD should be changed
accordingly. Also from our computational experiences, in most situations, adjusting the value of vD suffices to obtain
an unbiased estimate of the covariate-specific AUC, our main object of interest, even if the underlying estimate of
the regression function is slightly biased (due to the bias in the estimate of the intercept). This shall be investigated
in Section 3.

2.3.3 Implementation

Some final comments on implementation are in order. The flexibility of our robust additive regression B-splines approach
is controlled by selecting a small number of interior knots (say, a maximum of three or four), which we do with the aid of a
robust version of the Akaike information criterion, as explained in the next section. Our procedure is easily implemented
in R19 using the bs function from the package splines (to create the cubic B-splines basis expansions) in combination
with therlm routine from theMASSpackage,20 which performs the robust estimation procedure described above to obtain
𝜷D and 𝜎D. The R code implementing our approach is publicly available at (https://github.com/vandainacio/robustROC).
Of course, an alternative route would be M-estimation for additive models based on some form of regularization, where
one starts off with many interior knots and uses a penalization based on some characteristic of the basis functions in
order to control the smoothness of the fit (as, eg, in Wong et al21). However, such a procedure may involve intricate and
computationally expensive algorithms. Because of this reason and also because in our experience a small number of knots
usually suffices to describe the relationship between test outcomes and covariates, we regard our formulation based on
robust additive regression B-splines to be a good balance between analytic and computational simplicity and the flexibility
it affords.

2.4 Robust Akaike information criterion

The issue of selecting the number of interior knots for each smooth function of a continuous covariate can be regarded
as a model selection problem. Here, and because the classical Akaike information criterion (AIC) is sensitive to
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5786 INÁCIO et al.

outlying observations, such choice is assisted through the use of a robust version of the AIC, denoted by rAIC, that is
suited for M-estimation and which was proposed by Tharmaratnam and Claeskens.22 Specifically, the authors suggest
to use

rAICD = 2 nD log 𝜎D + 4 trace(J−1
D,nD

UD,nD), (14)

where the empirical information matrices in the trace term (the penalty term) are calculated as follows

JD,nD = 1
nD

nD∑
j=1

𝜓 ′
⎛⎜⎜⎝

yDj − z′Dj𝜷D

𝜎D

⎞⎟⎟⎠
zDjz′Dj

𝜎2
D

, UD,nD = 1
nD

nD∑
j=1

𝜓2
⎛⎜⎜⎝

yDj − z′Dj𝜷D

𝜎D

⎞⎟⎟⎠
zDjz′Dj

𝜎2
D

.

Models with a varying number of interior knots will be fitted, 𝜷D and 𝜎D are re-estimated in each model and the corre-
sponding rAIC is computed, and the model with the smallest rAIC will be selected. When several continuous covariates
are involved, our strategy involves exploring the set of all possible models. This is viable because not only is our fitting
procedure extremely fast, but also because in medical diagnostic studies the number of continuous covariates available is
often reduced and, as mentioned before, usually a modest number of knots suffices to describe the relationship between
covariates and test outcomes. On a related task, the rAIC can also be used to select between a linear or a smooth effect of
a given (continuous) covariate. It is important to remark that the penalty term needs to be changed to 2 trace(J−1

D,nD
UD,nD)

if instead of using the 𝜓 function in (9), one uses 2 𝜓(u) (as, eg, in Tharmaratnam and Claeskens22).

2.5 Bootstrap-based inference for the robust and flexible covariate-specific ROC curve

Confidence intervals for the covariate-specific ROC curve and corresponding AUC can be obtained through the bootstrap.
We use a bootstrap of the residuals to resample the (robust) regression model in each population. The details of our
bootstrap scheme are as follows. For b = 1, … ,B:

Step 1: Sample with replacement from the estimated standardized residuals {𝜀Di}
nD
i=1 and {𝜀Dj}

nD
j=1 to form bootstrap sets

{𝜀(b)
Di
}nD

i=1 and {𝜀(b)Dj }
nD
j=1.

Step 2: Use the mean function and variance estimates from the observed data to construct bootstrap samples
{(xDi, y(b)

Di
)}nD

i=1 and {(xDj, y(b)Dj )}
nD
j=1, where

y(b)
Di

= 𝜇D(xDi) + 𝜎D𝜀
(b)
Di
, y(b)Dj = 𝜇D(xDj) + 𝜎D𝜀

(b)
Dj .

Step 3: Repeat the estimation process with the bth bootstrap sample, thus obtaining R̂OC
(b)
(t |x) and ÂUC

(b)
(x).

Once this process has been completed, and according to the percentile method, a bootstrap confidence interval for,
for example, AUC(x), of confidence level 1 − 𝛼 is given by(

ÂUC
𝛼∕2

(x), ÂUC
1−𝛼∕2

(x)
)
,

where ÂUC
𝜏
(x) represents the 𝜏th percentile of the ensemble of estimates {ÂUC

(b)
(x)}B

b=1. We acknowledge that by
“naively” resampling the standardized residuals, some bootstrap samples may have a proportion of outliers higher than
the contamination level tolerated by our procedure. Nonetheless, some computational experiments (not shown) have
demonstrated that even for the case of a contamination level of 15% in each population, the resulting 95% bootstrap
confidence intervals for the covariate-specific AUC still have a coverage probability reasonably close to the nominal
value. We note in passing that in diagnostic studies it is unlikely, in our experience, to have contamination percent-
ages higher than 5% and for this reason we regard this bootstrap scheme to be viable in practice. Further, this bootstrap
has been justified by Shorack,23 with the only difference being that this author’s approach does not bootstrap the scale
parameter.
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INÁCIO et al. 5787

3 SIMULATION STUDY

To evaluate the empirical performance of our robust and flexible approach for conducting inference about the
covariate-specific AUC, we analyzed simulated data under four different scenarios (described in the next section).
For each scenario, 1000 data sets were generated using sample sizes of (nD,nD) = (100,100), (nD,nD) = (200,100), and
(nD,nD) = (200,200). The following percentages of test outcomes contamination, in each population, were considered:
2%, 5%, and 10%. The case of no contamination (original simulated datasets) was also considered in order to ascertain
the performance of our method when a robust approach is not needed at all. Also, the case of a contamination of 10% is
included mainly as a proof of concept because, as we have already mentioned, in our experience it is unlikely to encounter
such a high contamination percentage in practice.

3.1 Simulation scenarios

In Scenario I, we consider different homoscedastic linear mean regression models for the nondiseased and diseased
populations, namely,

yDi = 0.5 + xDi,1 + 1.5𝜀Di, yDj = 2 + 4xDj,1 + 2𝜀Dj, i = 1, … ,nD, j = 1, … ,nD.

The primary purpose of including this scenario is to allow us assessing the impact of using a cubic B-splines basis formu-
lation for the mean function of each population when the underlying true effect is, in fact, linear. Data for Scenario II are
governed by the following nonlinear mean regression models

yDi = sin{𝜋xDi,1} + 0.5𝜀Di, yDj = 1 + x2
Dj,1 + 𝜀Dj.

Scenario III involves heteroscedastic nonlinear mean regression models for the diseased and nondiseased populations

yDi = sin{𝜋xDi,1} + (1 + 0.75xDi,1)𝜀Di, yDj = 1 + x2
Dj,1 + (1 + xDj,1)𝜀Dj.

Note that our model is actually misspecified in this case as it does not allow the variance to change with the covariates and
the goal of including this scenario is exactly to assess the performance of our approach when the assumption of constant
variance does not hold. Finally, in Scenario IV, we have considered the case where two continuous covariates affect the
test outcomes

yDi = 0.5 + xDi,1 + x2
Di,2

+ 1.5𝜀Di, yDj = 2 + 4x3
Dj,1 + 1.5xDj,2 + 2𝜀Dj.

In all cases, the continuous covariates x1 and x2, are independently generated from uniform distributions, namely,

xDi,1
i.i.d.∼ U(0, 1), xDi,2

i.i.d.∼ U(0, 2), xDj,1
i.i.d.∼ U(0, 1), xDj,2

i.i.d.∼ U(0, 2),

and, in addition,

𝜀Di
i.i.d.∼ N(0, 1), 𝜀Dj

i.i.d.∼ N(0, 1).

Further, in all scenarios, the contaminated data were generated by randomly selecting a given percentage of test
outcomes and replacing them by yD = 𝜇D(xD) + 𝜅D𝜎D(xD) + 𝜎D(xD)𝜀D and yD = 𝜇D(xD) + 𝜅D𝜎D(xD) + 𝜎D(xD)𝜀D (shift
in the location outliers) in the nondiseased and diseased populations, respectively, and where the covariates and
error terms follow the same distributions as the noncontaminated data. Note that for all scenarios but the third we
have 𝜎D(xD) ≡ 𝜎D and 𝜎D(xD) ≡ 𝜎D. Additionally, we have considered 𝜅D = 15 and 𝜅D = 20, which at a first glance
might seem excessive but it is indeed in line with what we observe in our data application in Section 4 (see
also the left panel of Figure 3). The impact of the magnitude of those values on the estimates will be discussed
in Section 3.3.
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5788 INÁCIO et al.

3.2 Models

For each simulated dataset, we fit our approach considering no interior knots for each continuous covariate in each pop-
ulation (ie, KD1 = KD2 = KD1 = KD2 = 0). A further inspection to this choice is discussed in the next section. Our model is
compared to the semiparametric approach of Pepe,3 which is based on a location-scale regression model for the test out-
comes in each population that relies on a linear formulation for the mean function and with the regression coefficients
estimated, for instance, by least squares. In addition to the original approach proposed by Pepe,3 we have also considered
an extension of this method by using a cubic B-splines trend, also with no interior knots, so that direct comparisons to our
approach are easier and fairer. The only difference between ours and this approach is the objective function (least squares
vs Huber’s 𝜌 function). In addition, our method is also compared to the nonparametric approach of Rodríguez-Álvarez
et al,5 which relies on kernel-based estimators for the mean and variance functions of the location-scale model.
The main difference of this approach to the one of González-Manteiga et al4 is the order of the local polynomial
smoothers used for estimating the regression function; while González-Manteiga et al4 employed a local constant fit
(order 0), Rodríguez-Álvarez et al5 considered a linear fit (order 1). Because local constant regression suffers from
boundary-bias problems, we only considered the latter approach. All competing methods were implemented using the
ROCnReg package24 which, in turn, relies on the np package25 for kernel estimation. Still on the kernel method, it is
important to note that the bandwidth parameters involved in the estimation process were selected using least-squares
cross-validation. We further remark that the kernel approach, as it stands now, can only deal with one continuous
covariate.

3.3 Results

The case (nD,nD) = (200,100), which is similar to the prostate cancer application in Section 4, is shown here and we first
analyze Scenarios I to III. The estimated (mean across the 1000 Monte Carlo estimates) covariate-specific AUC along with
the 2.5% and 97.5% simulation quantiles in Figure 1 illustrate the ability of our model to accurately and precisely capture
complex functional forms in a case where the contamination in each population is 5%. As can be observed in Figure 1,
the three non-robust estimators have a very poor performance, showing some bias and wide simulation quantiles bands.
Further, and obviously, the original estimator proposed by Pepe3 is inadequate for scenarios involving nonlinear trends.
Also, note that in Scenario III, where the underlying regression models in the two populations are heteroscedastic, our
estimator still has a very decent performance, although we expect it to deteriorate for more substantial changes in the vari-
ance along with the covariate. We further note that the kernel approach is the only one tailored for such a heterocedastic
scenario.

The remaining sample sizes and percentages of contamination are shown in Figures S3 to S14 in the Supplemen-
tary Materials and although similar conclusions were found, some comments are in order. First, even in the case of
no contamination, Figures S3, S7, and S11 in the Supplementary Materials, corresponding, respectively, to Scenarios
I, II, and III, the performance of our estimator is basically on par with that of the non-robust and flexible estima-
tors. Second, in the case of a 2% contamination (see Figures S4, S8, and S12 in the Supplementary Materials), the
non-robust estimators already show some bias and an increase in the width of the simulation bands. This is, of course,
much more marked for the case of 10% contamination. In turn, the performance of our robust estimator remains
quite good.

For Scenario IV, which involves two continuous covariates, only our estimator was considered. We regard this
scenario mainly as a proof of concept when there are multiple continuous covariates and the results obtained from
fitting the competing approaches were similar to those reported for Scenarios I to III. Nonetheless, for the three
sample sizes and different percentages of contamination considered, our approach performs very well and is able to
recover the different profiles of the true covariate-specific surface (Figure 2 and Figures S15-S18 in the Supplementary
Materials).

We shall remark that although the covariate-specific AUC admits the closed-form expression in (13), its calculation
can be very time-consuming, especially for large datasets. As a consequence, here and in Section 4, the integral in (2)
was approximated using Simpson’s rule. In our experience, Simpson’s rule provides almost identical results to the ones
obtained using the closed-form expression.

Because we rely on the robust AIC to assist in the selection of the number of knots needed to appropriately model the
regression function, we have investigated the behavior of this criterion when performing such a task. Specifically, over the
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INÁCIO et al. 5789

1000 simulated datasets, for each scenario considered, for the different sample sizes in each population (100 and 200) and
for the different contamination percentages, we computed the percentage over the 1000 simulation runs that the robust
AIC favored the model with no interior knots over a model with three interior knots. For this latter model, following
the rule discussed in Section 2, the knots are located at the 0.25, 0.5, and 0.75 quantiles of the covariates. Note that for
Scenario IV, as a slight simplification, we have assumed the same number of knots for both continuous covariates (ie,
(KD1,KD2) = (0, 0) and (KD1,KD2) = (3, 3), with the same applying in the nondiseased population). Results are displayed
in Tables 1 to 4 in the Supplementary Materials and show that, most of the time, the robust AIC favored the simpler
model with no interior knots over the more complex model with three interior knots. For instance, in Scenario I, where
the regression function assumes a linear form in both populations, our intuition would dictate that the model with no
interior knots should be selected for a large number of the simulated datasets and Table S1 (Supplementary Materials)
confirms exactly this. Also, in Scenario 4, the model with no interior knots for the two covariates (and that involves seven
regression parameters) is favored most of the time over the model that uses three interior knots for each of the covariates
(and that involves thirteen regression parameters).

F I G U R E 1 True covariate-specific AUC (solid line) vs the mean of the Monte Carlo estimates (dashed line) along with the 2.5% and
97.5% simulation quantiles (shaded area) for the case of 5% contamination. The first row displays the results for Scenario I, the second row
for Scenario II, and the third row for Scenario III. The first column corresponds to our flexible and robust estimator, the second column to the
estimator proposed by Pepe,3 the third one to the cubic B-splines extension of Pepe,3 and the fourth column to the kernel estimator. For all
scenarios (nD,nD) = (200,100) [Colour figure can be viewed at wileyonlinelibrary.com]
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5790 INÁCIO et al.

F I G U R E 2 Scenario IV. Multiple profiles of the true covariate-specific AUC (solid line) vs the mean of the Monte Carlo estimates
(dashed line) along with the 2.5% and 97.5% simulation quantiles (shaded area) for the case of 5% contamination and for (nD,nD) = (200,100)
[Colour figure can be viewed at wileyonlinelibrary.com]

We conclude this section with some extra important remarks. Although we have assumed that both populations
were subject to contamination, it may happen that only test outcomes from one of the populations are contaminated.
Simulation results (not shown) indicate that in such cases the robust estimator still outperforms the non-robust com-
petitors. However, and interestingly, even when assuming balanced sample sizes, contamination in the nondiseased
population seems to impact much more the ability of the non-robust estimators to recover the true functional form of the
AUC than contamination in the diseased population. Our intuitive explanation, bearing in mind Equation (12), is that
estimation of the quantile function of the standardized residuals is more impacted by outliers than the estimation of the
cumulative distribution function (of the standardized residuals). Further, a shift of 15𝜎D(xD) and 20𝜎D(xD) in the location
of the distribution of the test outcomes in the nondiseased and diseased populations, respectively, was considered. Our
computational experiments (results not shown) revealed that the performance of the non-robust estimators is affected by
the magnitude of those shifts and, as expected, the larger the shift, the worse the performance. On the other hand, the
performance of our robust estimator is basically unchanged. We have, however, noticed that if the outliers are too small,
in magnitude (eg, by considering a shift smaller than 5 times the standard deviation), they might pass unnoticed when
computing the weighted empirical distribution function of the standardized residuals (see (11)), and this causes some bias
for contaminations close to 10% and onwards. Apart from the case just mentioned where outliers result from very small
shifts in the mean of the distribution, our computational experiments also revealed that with contamination percentages
of about 15% and onwards (in each population), the performance of our estimator starts deteriorating. Finally, we should
also mention that having also simulated contaminated samples considering radial outliers, which arise by multiplying
the scale of the distribution of test outcomes in each group by a given factor, results remained basically the same and
therefore are not shown here.
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INÁCIO et al. 5791

In the Supplementary Materials, we replicate Scenarios I and II for the case where the error term in each
population follows a two-component (symmetric) mixture of normal distributions and also the case where it fol-
lows a skewed distribution. In the latter case, and for a highly skewed error distribution, slightly adjusting the
value of vd, d ∈ {D,D} was enough to obtain reasonable estimates of the covariate-specific AUC. We have also
considered a simulation scenario where the covariate-specific AUC shows a marked nonlinearity, with the goal
of checking whether a few number of interior knots suffice to accurately recover the true form such condi-
tional AUC. The results shown in Figures S25 and S26 of the Supplementary Materials show that this was indeed
the case.

4 APPLICATION

4.1 Motivation and exploratory analysis

Prostate cancer (PCa) is the second most frequent cancer diagnosed in men, only after lung cancer, and amounts
to the fifth highest cause of death worldwide.26 Gleason histological scoring system is the most reliable system used
for the grading of prostate cancer, but it requires invasive tissue biopsies. This, and the rising incidence of prostate
cancer worldwide, have led to the search of less invasive biomarkers that can accurately predict the presence of PCa.
The PHI, that combines three prostate specific antigen subforms into a single score using a mathematical formula,
has been introduced27 and since then several studies have shown that it significantly improves prediction of a posi-
tive biopsy when compared to the prostate specific antigen.28-30 The PHI is now approved by the US Food and Drug
Administration and it has also been adopted into the US National Cancer Network guidelines. We apply our methods
to data from a study designed to assess the added value of the PHI to multi-parametric magnetic resonance imaging
in detecting significant prostate cancers (Gleason ≥ 7) in a repeat biopsy population.31 Here our goal is slightly dis-
tinct and we seek to assess, if and how, the ability of the PHI to discriminate between men with benign or Gleason 6
PCa (which throughout we refer as the nondiseased group and for which nD = 185) and men with Gleason 7 or above
PCa (which we term as the diseased group and for which nD = 94), changes with age. To the best of our knowledge,
this is the first attempt to study the possible age effect on the accuracy of the PHI to distinguish between those two
PCa groups. In Figure 3 (left panel), we show the histograms of the PHI levels in the two populations and it can be
observed that, as expected, men belonging to the group defined by Gleason ≥ 7 tend to have higher PHI values than
those with a benign lesion or with a Gleason of 6. We can also notice that although the majority of PHI values lie below
100 in the nondiseased group and below 150 in the diseased group, there are two PHI scores, one from each group,
above 200.

F I G U R E 3 Left panel: Histogram of the PHI scores from the nondiseased (blue) and diseased (red) populations. Middle and right
panels: Regression functions resulting from fitting our approach. The solid line is the point estimate, while the shaded areas represent the
95% pointwise bootstrap confidence bands (based on 1000 resamples) [Colour figure can be viewed at wileyonlinelibrary.com]
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4.2 Unconditional and age-specific ROC analysis

We start our analysis by calculating the AUC when ignoring the potential age effect and we have computed it in a robust
way (so that it is more easily comparable to the covariate-specific AUCs we will present later in this section) as

ÂUC = 1∑nD
l=1𝜔

∗
Dl
∑nD

l=1𝜔
∗
Dl

nD∑
j=1

nD∑
i=1

𝜔∗
Dj𝜔

∗
Di

{
I(yDi < yDj) +

1
2

I(yDi = yDj)
}
,

where the weights 𝜔∗
Di

and 𝜔∗
Dj are defined similarly as in (11) and arise from fitting, in each group, a robust regression

model with the PHI scores as the responses and with only an intercept term. Although PHI outcomes are defined on
a continuous scale, in practice ties can occur, and so the extra term (1∕2) × I(yDi = yDj) corrects for such possible ties.
The resulting AUC estimate (95% bootstrap confidence interval based on 1000 resamples) is 0.74 (0.67, 0.82), revealing a
reasonably good capacity of the PHI levels to discriminate between men with a Gleason of 6 or a benign lesion and men
with Gleason ≥ 7.

We now turn our attention to the inclusion of age in the analysis. In Figure 3, middle and right panels are depicted
the scatter plots of the data in each group along with the estimated regression functions; the robust AIC in (14) led to
KD1 = KD1 = 0 (no interior knots), with these selected from the set {0, 1, 2, 3, 4}. First, both scatter plots do not indicate
any departure from the homoscedasticity assumption. Second, as a result of the weighting scheme in (10) behind the
estimation of the regression coefficients, such high PHI values do not push the regression functions toward them as much
as the analogous least squares counterparts (shown in Figure S27 of the Supplementary Materials). Note that for a fairer
comparison we have also included, in Figure S27 of the Supplementary Materials, an approach that models the mean
function through a cubic B-splines basis expansion with no interior knots. Third, while in the nondiseased group the PHI
does not show any noticeable dynamic along age, in the diseased group there seems to be slight evidence that older ages
are associated with higher PHI outcomes. In Figure 4 (left and middle panels), we present two different age-specific ROC
curves, namely, for ages of 57 and 73 years old, with the corresponding AUCs being 0.71 (0.53, 0.88) and 0.79 (0.67, 0.90),
respectively. As can be seen, the ROC curves are somewhat jagged, which is due to the fact of them being based on the
(weighted) empirical distribution function of the standardized residuals. To inspect the age effect further, Figure 4 (right
panel) shows a plot of the age-specific AUC for ages between 55 and 75 years old and we can observe that the capacity of
the PHI levels to distinguish between men with benign or Gleason 6 PCa and men with Gleason ≥ 7 PCa slightly increases
with age, ranging from 0.70 (0.50, 0.89) for a men of 55 years old to 0.84 (0.71, 0.94) for a men of 75 years old. The AUC
estimate obtained when ignoring the age effect was 0.74 and so, roughly, for individuals younger than 70 years we would
be slightly overestimating the accuracy of the PHI scores and for individuals older than 70 years old such accuracy would

F I G U R E 4 Left and middle panels: Two age-specific ROC curves. Right panel: Age-specific AUC. The solid line is the point estimate,
while the shaded areas represent the 95% pointwise bootstrap confidence bands (based on 1000 resamples) [Colour figure can be viewed at
wileyonlinelibrary.com]
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be slightly underestimated. Nonetheless, note that the unconditional AUC estimate and corresponding 95% confidence
interval are contained in the 95% bootstrap confidence band for all ages considered and so it is difficult to draw firm
conclusions about the age effect. We remark that AUC predictions were only considered for ages in the interval (55, 75)
as this corresponds to the range where both groups had a reasonable number of observations. We further remark that
when computing the 95% bootstrap confidence bands, the number of internal knots selected for the observed data (in this
case this was 0 for both groups) was used when recomputing the estimates for the generated bootstrap samples. Also we
highlight that it took less than one minute to run our model (including the 1000 bootstrap resamples) on a MacBook Pro
with 2.3 GHz Intel i5 processor and 8 GB RAM. At this point it is fair to remark that both the unconditional and conditional
results were obtained under the choice of vD = vD = 3. By looking at the histogram of the standardized residuals in each of
the populations (Figure S28 in the Supplementary Materials), such a choice seems to be reasonable. Leaving apart the clear
outlying test outcomes (those above 200), only less than 5% of the outcomes in each population were above 3 or below −3
and so considering vD = vD = 4 and vD = vD = 5 made no difference (Figure S28 of the Supplementary Materials). Finally,
in Figure S29 of the Supplementary Materials, we present the age-specific AUC estimates obtained when considering the
three non-robust estimators detailed in Section 3, and as can be observed they are not markedly different from the point
estimate provided by our approach. This should come as no surprise as the estimated mean functions were also not too
distinct, which makes sense as there are only two PHI outcomes, one in each group, that lie well above the remaining
scores. Also, all approaches agree that the accuracy of the PHI scores to distinguish between the two groups of PCa slightly
increases with age.

5 CONCLUDING REMARKS

We have developed a robust and flexible modeling framework for estimating the covariate-specific ROC curve and cor-
responding AUC that assumes a location-scale regression model in both the diseased and nondiseased populations
and that combines an additive regression B-splines formulation with M-estimation for the mean function. Addition-
ally, a weighted version of the empirical distribution function of the standardized residuals is used to estimate the
distribution function of the error term. Our approach is thus able to simultaneously accommodate outlying test out-
comes and nonlinear effects of the covariates. The proposed methodology has the additional appealing features of
being simple and computationally inexpensive. The simulation study conducted illustrated the ability of our method
to recover the true shape of the covariate-specific ROC curve and AUC in a variety of complex scenarios involv-
ing different test outcome distributions and contamination percentages. Simulation results also show that although
our approach works best under symmetric error distributions, it can still deal decently with moderately skewed
error distributions. Our investigation into the potential of the PHI to distinguish between men with a benign lesion
or a Gleason 6 prostate cancer and men with aggressive prostate cancer (Gleason 7 or above) found that its accu-
racy slightly increases with age. Although in this particular case the overall message of our analysis agrees with
that provided by the non-robust estimators, our approach enabled us to identify one outlying test outcome in each
population.

Once a diagnostic test/biomarker has proved to have a desired discriminatory ability, the next step is to determine
which cutoff value to use to diagnose/screen subjects in practice and this threshold value may depend on covariates as
well. Our method can be trivially adapted to also estimate the covariate-specific Youden index and its corresponding
optimal threshold. In particular, since

YI(x) = max
c

{FD(c |x) − FD(c |x)}, (15)

one can make use of the result in (4) and estimate the cumulative distribution function of the standardized residuals using
(11). The covariate-specific optimal threshold is the one maximizing (15). However, when the cumulative distribution
functions in (15) are those based on the empirical distribution function of the standardized residuals (see (4)), the resulting
covariate-specific threshold curves have the drawback of being too jagged, especially for small sample sizes, which may
be unappealing for practitioners.

Finally, throughout we have assumed that only the test outcomes were prone to outliers. However, if covariates are
also contaminated, our approach can be easily extended to cope with this case by considering MM-estimation techniques
instead of the M-estimation method used here.
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APPENDIX A. WEIGHTED ROBUST COVARIATE-SPECIFIC AUC

Here we deduce the representation of our weighted robust covariate-specific AUC in the form of (13). The derivation is
based on simple calculus and its main steps are outlined below. We start by noting that

ÂUC(x) = ∫
1

0
R̂OC(t |x)dt

= ∫
1

0

[
1 − F̂𝜀D

{
𝜇D(x) − 𝜇D(x)

𝜎D
+

𝜎D

𝜎D
F̂−1
𝜀D
(1 − t)

}]
dt

= ∫
1

0

nD∑
j=1

𝜔∗
Dj∑nD

l=1𝜔
∗
Dl

I
{
𝜀Dj ≥ 𝜇D(x) − 𝜇D(x)

𝜎D
+

𝜎D

𝜎D
F̂−1
𝜀D
(1 − t)

}
dt,

which implies that

ÂUC(x) = 1∑nD
l=1𝜔

∗
Dl

nD∑
j=1

𝜔∗
Dj∫

1

0
I
{

t ≥ 1 − F̂𝜀D

(
𝜇D(x) − 𝜇D(x)

𝜎D
+ 𝜎D

𝜎D
𝜀Dj

)}
dt

= 1∑nD
l=1𝜔

∗
Dl

nD∑
j=1

𝜔∗
Dj

nD∑
i=1

𝜔∗
Di∑nD

l=1𝜔
∗
Dl

I
{
𝜀Di ≤ 𝜇D(x) − 𝜇D(x)

𝜎D
+ 𝜎D

𝜎D
𝜀Dj

}

= 1∑nD
l=1𝜔

∗
Dl
∑nD

l=1𝜔
∗
Dl

nD∑
j=1

nD∑
i=1

𝜔∗
Dj𝜔

∗
Di

I{𝜇D(x) + 𝜎D𝜀Di ≤ 𝜇D(x) + 𝜎D𝜀Dj}.
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