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Appendix A: Proof of Theorem 1

For every x ∈ X , let F ∗h ( · | x), h = 0, 1, be the cumulative distribution functions associated with a given

and fixed conditional ROC curve, that is, ROC(u | x) = 1−F ∗1 (F ∗−10 (1−u | x) | x) ≡ ROC(1−u | x).

It follows that, for every x ∈ X and almost every ω ∈ Ω,

∣∣ROCω(u | x)− ROC(u | x)
∣∣ =

∣∣∣F1,ω(F−10,ω(u | x) | x)− F ∗1 (F ∗−10 (u | x) | x)
∣∣∣

=

∣∣∣∣∣
∫ F−1

0,ω(u|x)

−∞
f1,ω(v | x)dv −

∫ F ∗−1
0 (u|x)

−∞
f∗1 (v | x)dv

∣∣∣∣∣
=

∣∣∣∣ ∫ ∞
−∞

f1,ω(v | x)I{F0,ω(v | x) < u}(v)dv

−
∫ ∞
−∞

f∗1 (v | x)I{F ∗0 (v | x) < u}(v)dv
∣∣∣∣

≤
∫ ∞
−∞

f∗1 (v | x) |I{F0,ω(v | x) < u}(v)− I{F ∗0 (v | x) < u}(v)| dv

+

∫ ∞
−∞

I{F ∗0 (v | x) < u}(v) |f1,ω(v | x)− f∗1 (v | x)| dv

≤
∫ ∞
−∞

f∗1 (v | x) |I{F0,ω(v | x) < u}(v)− I{F ∗0 (v | x) < u}(v)| dv

+ ‖f1,ω( · | x)− f∗1 ( · | x)‖1 ,

where fh,ω( · | x), h = 0, 1 denotes the density associated with the trajectories of the DDP mixture of

normals model for each group, and Fh,ω( · | x), h = 0, 1, denote the corresponding cumulative density

functions.

Now notice that, for every x ∈ X , there exists rx > 0 such that 1 −
∫ rx
−rx f

∗
1 (v | x)dv < ε/3, and,

therefore,

∣∣ROCω(u | x)− ROC(u | x)
∣∣ ≤ ∫ rx

−rx
f∗1 (v | x) |I{F0,ω(v | x) < u}(v)− I{F ∗0 (v | x) < u}(v)| dv

+ ‖f1,ω( · | x)− f∗1 ( · | x)‖1 + ε/3.

Notice also that, for every x ∈ X , there exists δx > 0 such that
∫ v0+δx
v0−δx f

∗
1 (v | x)dv < ε/3, for every

v0 ∈ (−rx, rx). Finally, notice that, for every δx > 0, there exists γx > 0 such that if

sup
v∈(−rx,rx)

|F0,ω(v | x)− F ∗0 (v | x)| < γx,

holds, then

sup
u∈(F ∗

0 (−rx),F ∗
0 (rx))

|F−10,ω(u | x)− F ∗−10 (u | x)| < δx.
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Now, by the equivalence between total variation and L1, it follows that for every γx > 0, there exists

ρx > 0 such that if

‖f0,ω( · | x)− f∗0 ( · | x)‖1 < ρx,

holds, then

sup
v∈(−rx,rx)

|F0,ω(v | x)− F ∗0 (v | x)| < γx.

It follows that, for every ε > 0, x1, . . . ,xT ∈ X , {F ∗1 ( · | x) : x ∈ X} and {F ∗0 ( · | x) : x ∈ X}, there

exists ρ = min{ρx1 , . . . , ρxT } > 0, such that if

‖f1,ω( · | xt)− f∗1 ( · | xt)‖1 < ε/3,

and

‖f0,ω( · | xt)− f∗0 (· | xt)‖1 < ρ,

hold, then

‖ROCω( · | xt)− ROC( · | xt)‖∞ =
∥∥ROCω( · | xt)− ROC( · | xt)

∥∥
∞ < ε.

It follows that

P {ω ∈ Ω : ‖ROCω( · | xt)− ROC( · | xt)‖∞ < ε, t = 1, . . . , T} ≥

P
{
ω ∈ Ω : ‖f1,ω( · | xt)− f∗1 ( · | xt)‖1 < ε/3, t = 1, . . . , T

}
×

P
{
ω ∈ Ω : ‖f0,ω( · | xt)− f∗0 ( · | xt)‖1 < ρ, t = 1, . . . , T

}
.

Thus, by Theorem 4 in Barrientos et al. (2012) on the Hellinger support of DDP mixture models, it follows

that

P
{
ω ∈ Ω : ‖f1,ω( · | xt)− f∗1 ( · | xt)‖1 < ε/3, t = 1, . . . , T

}
> 0,

and

P
{
ω ∈ Ω : ‖f0,ω( · | xt)− f∗0 ( · | xt)‖1 < ρ, t = 1, . . . , T

}
> 0,

and, therefore,

P {ω ∈ Ω : ‖ROCω( · | xt)− ROC( · | xt)‖∞ < ε, t = 1, . . . , T} > 0,

which completes the proof of the theorem. �
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Appendix B: Markov chain Monte Carlo details

The hierarchical representation of the model

The hierarchical representation of the B–splines DDP mixture of normal model is given by

yhl | zhl,θhl
ind.∼ φ( · | z′hlβhl , τhl ), (B.1)

θhl = (βhl , τ
h
l ) | Gh

i.i.d.∼ Gh, (B.2)

Gh | αh, G∗0h ∼ DP
(
αhNq(µh,Σh)× Γ−1(τh1/2, τh2/2)

)
, (B.3)

αh | ah, bh ∼ Γ(ah, bh), (B.4)

τh2 | τsh1 , τsh2 ∼ Γ(τsh1/2, τsh2/2), (B.5)

µh |mh,Sh ∼ Nq(mh,Sh), (B.6)

and

Σh | νh,Ψh ∼ IWq(νh,Ψh). (B.7)

The marginal algorithm

We marginalized the DP measures Gh for the joint distribution implied by expressions (B.1)–(B.7) and

explore the posterior distribution of

(θ0,θ1, α0, α1, τ02, τ12,µ0,µ1,Σ0,Σ1) ,

where θh = (θh1, . . . ,θhnh
), using a Gibbs sampling algorithm.

We update the coordinates of θh using a Gibbs sampling algorithm through its coordinates. Let θ(i)
h =

(θh1, . . . ,θhi−1, . . . ,θhi+1, . . . ,θhnh
) be the vector of subject-specific parameters in group h, excluding

the ones associated with subject i. Let θ∗(i)h = {θ∗h1, . . . ,θ∗hk(i)h

}, h ∈ {0, 1}, be the set of k(i)h ≤ nh − 1

distinct elements in θ
(i)
h . The full conditional distribution for θhi is given by

θhi | θ
(i)
h , αh,µh,Σh, τh1, τh2,yh ∼ bih

αh
nh − 1 + αh

∫
φ(yhi | z′hiβ, τ)dG∗0h(β, τ) +

bih

k
(i)
h∑
j=1

n
(i)
hj

nh − 1 + αh
φ(yhi | z′hiβ∗hj , τ∗hj),
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where bih is a normalizing constant and n
(i)
hj is the number of elements in θ

(i)
h such that θhi = θ∗hj .

Even though the centering distributions G∗0h are conjugate with the normal likelihood considered here,

the auxiliary variable approach proposed by Neal (2000, Algorithm 8) with m = 1, was considered for

updating the θhi’s. The extra step suggested by Bush & MacEachern (1996), was considered in order to

improve the mixing of the chain.

The precision parameters αh are updated using the auxiliary variable approach proposed by ?. The

full conditional distribution for the means of the Gaussian components of the corresponding centering

distributions, µh, is Gaussian and corresponds to the posterior distribution of µh associated with the

hierarchical model:

µh |mh,Sh ∼ Nq(mh,Sh),

and

β∗h1, . . . ,β
∗
hkh
| µh

i.i.d.∼ Nq(µh,Σh),

where
{
β∗h1, . . . ,β

∗
hkh

}
, h ∈ {0, 1}, is the set of kh ≤ nh distinct vectors of regression coefficients in θh.

In a similar way, the full conditional distribution for the covariance matrices of the Gaussian components

of the corresponding centering distributions, Σh, is inverted-Wishart and corresponds to the posterior

distribution of Σh associated with the hierarchical model:

Σh | νh,Ψh ∼ IWq(νh,Ψh),

and

β∗h1, . . . ,β
∗
hkh
| Σh

i.i.d.∼ Nq(µh,Σh).

Finally, the full conditional distribution for the hyper-parameter of the inverted-gamma component of the

centering distributions is

τh2 | θh ∼ Γ

0.5 [kh × τh1 + τsh1 ] , 0.5

 kh∑
j=1

1

τ∗hj
+ τsh2

 ,

where {τ∗h1, . . . , τ∗hkh}, h ∈ {0, 1}, is the set of kh ≤ nh distinct variances in θh.

Sampling functional parameters

Samples for the conditional ROC curves requires samples of the mixing distributions Gh. The marginal

algorithm described above provides posterior samples of the finite-dimensional part of the model,(
θ
(j)
0 ,θ

(j)
1 , α

(j)
0 , α

(j)
1 , τ

(j)
02 , τ

(j)
12 ,µ

(j)
0 ,µ

(j)
1 ,Σ

(j)
0 ,Σ

(j)
1

)
,
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j = 1, . . . , J , which were used to obtain samples of finite-dimensional approximations to Gh (and any

functional). From the conjugacy of the DP, it follows that for every j,

G
(j)
h | θ

(j)
h , α

(j)
h ,µ

(j)
h ,Σ

(j)
h , τ

(j)
h2 ∼ DP (α∗hH

∗
h) , (B.8)

where α∗h = α
(j)
h + nh, and

H∗h(·) =
1

α
(j)
h + nh

(
α
(j)
h G

∗(j)
h0 (·) +

nh∑
i=1

δ
θ
(j)
hi

(·)

)
.

Approximated samples from expression (B.8) were obtained using the ε-DP approach proposed by Muliere

& Tardella (1998). In this approach the samples of the DP are approximated in such a way that the total

variation between the full realization and the approximation is smaller or equal than ε—the value ε = 0.01

was used in our computational implementation. Finally, in order to compute the samples of the conditional

ROC curves, the evaluation of the CDF and quantile function of finite mixture of normals models was

needed. The bisection method (see, e.g. Givens & Hoeting, 2005) was used with this aim.
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Appendix C: Details on existing methods

Semiparametric linear model (Pepe, 1998)

This method is based on specifying a homocedastic linear regression model for the healthy and diseased

groups, i.e.,

y0 = x̃′β0 + σ0ε0,

y1 = x̃′β1 + σ1ε1,

where x̃ = (1, x′)′, β0 = (β00, . . . , β0p) and β1 = (β10, . . . , β1p) are (p + 1)-dimensional vectors of

unknown parameters, and ε0 and ε1 are independent random variables, with mean zero, variance one and

distribution functions F0 and F1, respectively. The estimation procedure consists of the following steps:

1. estimate β0 and β1 by ordinary least squares, on the basis of samples {(y0i, x0i)}n0
i=1 and {(y1j , x1j)}n1

j=1;

2. estimate σ20 and σ21 as

σ̂20 =

∑n0
i=1(y0i − x̃′0iβ̂0)

2

n0 − p− 1
and σ̂21 =

∑n1
j=1(y1j − x̃′1jβ̂1)

2

n1 − p− 1
;

3. estimate the cumulative distribution functions F0 and F1 on the basis of the empirical distributions

of the standardized residuals

F̂0(y) =
1

n0

n0∑
i=1

I

[
y0i − x̃′0iβ̂0

σ̂0
6 y

]
and F̂1(y) =

1

n1

n1∑
j=1

I

[
y1j − x̃′1jβ̂1

σ̂1
6 y

]
;

4. for a given value of the covariate x, calculate the covariate specific ROC curve

R̂OC(u | x) = 1− F̂1(x̃′β̂ + α̂F̂−10 (1− u)), 0 6 u 6 1,

where β̂ = (β̂0 − β̂1)/σ̂1 and α̂ = σ̂0/σ̂1.

Nonparametric model (González-Manteiga et al., 2011; Rodrı́guez-Álvarez et al., 2011a)

In this method a nonparametric heterocedastic regression model is assumed for the test result

y0 = µ0(x) + σ0(x)ε0,

y1 = µ1(x) + σ1(x)ε1,

where x is a continuous covariate, µ0 and µ1 are the regression functions, and σ0 and σ1 are the variance

functions. Here ε0, ε1 are independent random variables, with mean zero, variance one and distribution

functions F0 and F1, respectively. The proposed estimation procedure is as follows:
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1. for a given value x of the covariate, estimate the regression functions µ0 and µ1 as

µ̂0(x) = ψ̂(x, {(y0i, x0i)}n0
i=1, h0, p0),

µ̂1(x) = ψ̂(x, {(y1j , x1j)}n1
j=1, h1, p1),

where φ̂ is the local polynomial kernel estimator (Fan & Gijbels, 1996), h0 and h1 are the smoothing

parameters or bandwidths, and p0 and p1 are the orders of the polynomials, in the healthy and

diseased populations, respectively;

2. estimate the variance functions σ20 and σ21 in a similar fashion

σ̂20(x) = ψ̂(x, {(z0i, x0i)}n0
i=1, g0, q0),

σ̂21(x) = ψ̂(x, {(z1j , x1j)}n1
j=1, g1, q1),

where z0i = (y0i − µ̂0(x0i))2, z1j = (y1j − µ̂1(x1j))2, g0 and g1 are the bandwidths and q0 and q1

are the orders of the polynomials;

3. estimate the cumulative distribution functions F0 and F1 on the basis of the empirical distributions

of the standardized residuals

F̂0(y) =
1

n0

n0∑
i=1

I
[
y0i − µ̂0(x0i)
σ̂0(x0i)

6 y

]
and F̂1(y) =

1

n1

n1∑
j=1

I
[
y1j − µ̂1(x1j)
σ̂1(x1j)

6 y

]
;

4. compute the covariate specific ROC curve as follows:

R̂OC(u | x) = 1− F̂1

(
µ̂0(x)− µ̂1(x)

σ̂1(x)
+
σ̂0(x)

σ̂1(x)
F̂−10 (1− u)

)
, 0 6 u 6 1.
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Appendix D: Sensitivity analysis for the simulation study

Table 1: Simulated data: Average (standard deviation), across simulations, of the empirical global mean

squared error of the ROC curve for the different approaches under consideration. The results are presented

for each of the simulation scenarios and sample sizes (n).

Approach

Scenario n Sem. Linear Sem. B–splines Kernel B–splines DDP B–splines DDP II

I 50 0.0084 (0.0057) 0.0140 (0.0080) 0.0131 (0.0073) 0.0138 (0.0075) 0.0138 (0.0080)

100 0.0045 (0.0026) 0.0076 (0.0048) 0.0074 (0.0043) 0.0079 (0.0048) 0.0075 (0.0045)

200 0.0022 (0.0014) 0.0037 (0.0023) 0.0036 (0.0020) 0.0042 (0.0022) 0.0040 (0.0024)

II 50 0.0385 (0.0056) 0.0122 (0.0058) 0.0130 (0.0064) 0.0125 (0.0061) 0.0106 (0.0056)

100 0.0364 (0.0037) 0.0076 (0.0037) 0.0079 (0.0041) 0.0079 (0.0039) 0.0070 (0.0035)

200 0.0345 (0.0022) 0.0045 (0.0015) 0.0042 (0.0017) 0.0047 (0.0017) 0.0049 (0.0032)

III 50 0.0534 (0.0090) 0.0218 (0.0112) 0.0302 (0.0156) 0.0162 (0.0090) 0.0160 (0.0093)

100 0.0499 (0.0057) 0.0127 (0.0052) 0.0155 (0.0064) 0.0091 (0.0051) 0.0087 (0.0047)

200 0.0470 (0.0036) 0.0091 (0.0032) 0.0098 (0.0041) 0.0062 (0.0031) 0.0056 (0.0028)
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Appendix E: Sensitivity analysis for the application

In this section, we show the results of the sensitivity analysis carried out for the application. Figure 2 shows

the results under prior specification under the B-splines DDP mixture model. This figure corresponds to

Figure 8 of the manuscript. In turn, Figure 3 shows the results under prior specification under the B-splines

DDP II mixture model.
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Figure 1: Simulated data: True (dotted line) and mean across simulations (solid line) of the posterior

mean of the AUC function. A band constructed using the point-wise 2.5% and 97.5% quantiles across

simulations is presented in gray. Panels (a)–(c), (d)–(f) and (g)–(i) display the results for Scenarios I, II

and III under the B-splines DDP II mixture model.
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Figure 2: Results for glucose data under the B-splines DDP mixture model: Conditional ROC curve. Panel

(a) displays the surface of the posterior mean of the conditional ROC curves across age. Panel (b) displays

the posterior mean (solid line) and 95% point-wise HPD band for the area under the curve (AUC) as a

function of the age. Panels (c), (d), (e) and (f) display the posterior mean and 95% point-wise HPD bands

for the ROC cuve corresponding to the 5th, 25th, 75th and 95th quantiles of the empirical distribution of

the age, respectively.
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Figure 3: Results for glucose data under the B-splines DDP II mixture model: Conditional ROC curve.

Panel (a) displays the surface of the posterior mean of the conditional ROC curves across age. Panel

(b) displays the posterior mean (solid line) and 95% point-wise HPD band for the area under the curve

(AUC) as a function of the age. Panels (c), (d), (e) and (f) display the posterior mean and 95% point-wise

HPD bands for the ROC cuve corresponding to the 5th, 25th, 75th and 95th quantiles of the empirical

distribution of the age, respectively.


