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Due to recent advances in technology, medical diagnosis data are be-
coming increasingly complex and, nowadays, applications where measure-
ments are curves or images are ubiquitous. Motivated by the need of model-
ing a functional covariate on a metabolic syndrome case study, we develop
a nonparametric functional regression model for the area under the speci-
ficity receiver operating characteristic curve. This partial area is a meaningful
summary measure of diagnostic accuracy for cases in which misdiagnosis
of diseased subjects may lead to serious clinical consequences, and hence it
is critical to maintain a high sensitivity. Its normalized value can be inter-
preted as the average specificity over the interval of sensitivities considered,
thus summarizing the trade-off between sensitivity and specificity. Our meth-
ods are motivated by, and applied to, a metabolic syndrome study that in-
vestigates how restricting the sensitivity of the gamma-glutamyl-transferase,
a metabolic syndrome marker, to certain clinical meaningful values, affects
its corresponding specificity and how it might change for different curves
of arterial oxygen saturation. Application of our methods suggests that oxy-
gen saturation is key to gamma-glutamyl transferase’s performance and that
some of the different intervals of sensitivities considered offer a good trade-
off between sensitivity and specificity. The simulation study shows that the
estimator associated with our model is able to recover successfully the true
overall shape of the functional covariate-adjusted partial area under the curve
in different complex scenarios.

1. Introduction. Accurate diagnosis of disease is of great importance in pub-
lic health, clinical practice, and medical research. The major goal of a diagnostic
marker is to distinguish diseased from nondiseased subjects, and before a marker
is approved for use in practice, its ability to discriminate between these two states
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must be rigorously assessed through statistical analysis. The accuracy of a dichoto-
mous marker, a marker that yields binary results (e.g., positive or negative), can be
summarized by its sensitivity and specificity. The sensitivity, Se, is the marker-
specific probability of correctly detecting diseased subjects, while the specificity,
Sp, is the test-specific probability of correctly identifying nondiseased subjects. In
turn, the receiver operating characteristic (ROC) curve, which is a plot of 1 − Sp
against Se, for all cutoff points that can be used to convert continuous marker
outcomes into dichotomous outcomes, is the most popular tool to assess the dis-
criminatory ability of a continuous marker.

The most commonly used summary index of diagnostic accuracy is the area
under the ROC curve (AUC), which can be interpreted as the average sensitivity
for all specificity values or, conversely, as the average specificity over all sensitivity
values. The AUC can also be interpreted as the probability that a randomly selected
diseased individual has a greater marker outcome than that for a randomly selected
nondiseased individual. However, in most diagnostic situations, the area under the
curve summarizes the marker’s performance for sensitivity or specificity values of
no clinical interest. For instance, when screening a population for a certain disease
for which further testing and/or treatment is invasive or expensive, the region of the
ROC curve corresponding to high specificities is of primordial interest, while, on
the other hand, when testing for a harmful disease, it is desirable to maintain a high
sensitivity. The concept of the partial area under the curve, which is a meaningful
summary measure of diagnostic accuracy when only certain intervals of sensitivity
or specificity are clinically relevant, thus arises naturally in such contexts.

An overall partial area under the curve is useful to summarize the accuracy
of a marker over a particular region of sensitivities or specificities in a homo-
geneous population. However, a marker’s ability to discriminate between diseased
and nondiseased states may vary substantially over subject-specific characteristics.
It is, therefore, important to understand how the performance of a marker evolves
over covariates. Although there are numerous articles dedicated to the partial area
under the curve in recent years [see, among others, Adimari and Chiogna (2012),
Gigliarano, Figini and Muliere (2014), Hung and Chiang (2011), Ma et al. (2013),
Wang and Chang (2011)], approaches in the literature adjusting the partial AUC
for covariates, to our knowledge, include only Dodd and Pepe (2003) and Cai and
Dodd (2008), and both consider only the cases where the covariate is univariate or
multivariate and restrict the partial area to a relevant range of specificities. How-
ever, nowadays, more often than not, the covariates are curves or images, thus
raising the need for new methodology that can properly handle and analyze such
data. One of our main contributions is the development of a functional covariate-
adjusted estimator for the partial area under the curve for the case where only
particular ranges of sensitivity are clinically meaningful; our proposed estimator
can be regarded as a functional covariate-adjusted Mann–Whitney type of statistic.

A metabolic syndrome application motivates our methodological develop-
ments. Metabolic syndrome is a cluster of risk factors that occur together
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and increase the risk of, among others, cardiovascular disease, stroke, type-
2 diabetes, and atherosclerosis. According to the American Heart Association
(http://www.heart.org), individuals with metabolic syndrome have a twofold in-
crease in risk for heart attack or cardiovascular disease, and a fivefold increase
risk for developing diabetes when compared with individuals who do not have
metabolic syndrome. According to the same source, almost 35% of American
adults are affected by this condition and it has also been acknowledged that the
prevalence of this syndrome is also increasing worldwide [Eckel, Grundy and
Zimmet (2005)]. The identification of diagnostic markers for metabolic syndrome
is thus of crucial importance. Serum gamma-glutamyl transferase (GGT), a well-
known marker of alcohol consumption and liver disfunction, is also associated
with components of the metabolic syndrome. In fact, elevated GGT is an indi-
cator of the presence of metabolic syndrome [Lee et al. (2007)]. GGT also has
the nice feature of being a low-cost and frequently used laboratory marker. Given
that metabolic syndrome is a serious condition that places individuals at a higher
risk for cardiovascular disease, stroke, and diabetes, it is critical to maintain a high
sensitivity when screening for this condition, thus avoiding misdiagnosing subjects
with metabolic syndrome so that intervention can be initiated. However, since re-
stricting the sensitivity above a preselected value corresponds to operating with
lower cutoff values in practice, it is expected that restricting the sensitivity to high
values will result in a loss of specificity. Thus, for each interval that might make
clinical sense to restrict the sensitivity, it is mandatory to ascertain the trade-offs
between sensitivity and specificity. Recent studies suggest a strong association
between GGT levels in serum and nocturnal hypoxemia, which is characterized
by a decrease in arterial oxygen saturation of hemoglobin [Gude et al. (2009)].
To this end, the arterial oxygen saturation was measured densely over patient’s
sleep, leading to a curve of oxygen measurements per patient (see more details in
Section 2).

Another contribution of this work rests on applying the developed methods for
approaching the question: How does the restriction of GGT sensitivity above a
preselected value affect its corresponding specificity and how does such a trade-
off change for different curves of arterial oxygen saturation? We thus extend the
work of Inácio et al. (2012), who introduced the functional covariate-adjusted
ROC curve and studied how the discriminatory ability of the GGT, as a marker for
metabolic syndrome, was affected by different curves of oxygen saturation when
neither the sensitivity nor the specificity were restricted.

In Section 2, we describe our motivating metabolic syndrome data. Preliminary
concepts, our modeling framework for the estimation of the nonparametric func-
tional covariate-adjusted partial area restricted to a meaningful sensitivity interval,
and its practical implementation are presented in Section 3. In Section 4, we apply
our methods to the motivating metabolic syndrome case study. In Section 5, we
assess the finite sample performance of our methods by simulation. Concluding
remarks are given in Section 6.

http://www.heart.org
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2. Metabolic syndrome data. With the aim of evaluating the hypothesized
relationship between GGT levels and nocturnal hypoxemia, a study was con-
ducted using a sample of 220 subjects randomly selected from the Galician (NW
Spain) adult population; further details on this study can be found in Gude et al.
(2009). Metabolic syndrome diagnosis was conducted through the Adult Treat-
ment Panel III criterion, which is based on the following five items: (a) abdominal
obesity, (b) hypertriglyceridaemia, (c) low HDL-cholesterol levels, (d) increased
blood pressure, and (e) hyperglycemia. Subjects who met at least three of these
criteria were classified as metabolic syndrome patients. Arterial oxygen saturation
was recorded at the patient’s home using a pulse oximeter, which is a noninva-
sive monitoring technique used to estimate the percentage of hemoglobin saturated
with oxygen at the time of measurement. Measurements were made every 20 sec-
onds during the patient’s sleep, thus leading to genuine functional data. As it is
known that the nocturnal arterial oxygen saturation has different patterns during
the several sleep phases, for all subjects we skipped the first two hours of mea-
surements and focused on the following three hours. Hence, at the end, we had
a total of 540 measurements per subject. Since GGT values are elevated among
regular drinkers, we restricted the analysis to 115 women who reported no alcohol
consumption so that possible higher values are not due to differences in alcohol
consumption and gender. In short, the data analyzed consist of GGT values plus
three hours of oxygen saturation measurements for 35 women with metabolic syn-
drome and 80 women without metabolic syndrome. Figure 1 of the supplemental
article [Inácio de Carvalho et al. (2016)] shows the histogram and variable-width
boxplot of the GGT (both in the original and in the log scale) for the two group of
women, while Figure 1 shows the curves of arterial oxygen saturation for women
with metabolic syndrome (a) and women without metabolic syndrome (b).

FIG. 1. Levels of arterial oxygen saturation for women with metabolic syndrome (a) and for women
without metabolic syndrome (b).
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3. Functional covariate-adjusted partial area under the specificity-ROC
curve.

3.1. Preliminaries. Let YD and YD̄ be two independent continuous random
variables denoting the marker outcomes in the diseased and nondiseased popula-
tions with cumulative distribution functions FD and FD̄ , respectively. Further, let c

be a cutoff value for defining a positive marker result and, without loss of general-
ity, we proceed with the assumption that a subject is classified as diseased when the
marker outcome is equal to or greater than c, and is classified as nondiseased when
it is below c. Then, for each cutoff value c, the sensitivity associated with such
a decision criterion is Se(c) = Pr(YD ≥ c) = 1 − FD(c), while the specificity is
Sp(c) = Pr(YD̄ < c) = FD̄(c). The ROC curve represents the plot {(1−FD̄(c),1−
FD(c)) : c ∈ R} and provides a visual description of the trade-offs between the
sensitivity and specificity as the cutoff c changes. For 0 ≤ p = 1 − FD̄(c) ≤ 1, the
ROC curve can be equivalently written as ROC(p) = 1 − FD{F−1

D̄
(1 − p)}. The

AUC is given by AUC = ∫ 1
0 ROC(p)dp = Pr(YD > YD̄).

As shown by Dodd and Pepe (2003), interpretations of the partial area corre-
sponding to sensitivities in a specified interval are more easily obtained by per-
forming a 270◦ rotation to the ROC curve, so to obtain the graph

(3.1)
{(

1 − FD(c),FD̄(c)
) : c ∈ R

} = {(
Se(c),Sp(c)

) : c ∈ R
}
.

The curve in (3.1) is referred to as the specificity-ROC curve, ROCSp, since
specificity is plotted on the y-axis [Dodd and Pepe (2003)]; see Figure 2. For
p = 1 − FD(c), the ROCSp curve can be expressed as

ROCSp(p) = FD̄

{
F−1

D (1 − p)
}
, 0 ≤ p ≤ 1.

The partial AUC over the range of sensitivities (u,1) is defined as

pAUCSe(u) =
∫ 1

u
ROCSp(p)dp.

Although we consider the interval (u,1), note that the pAUCSe between u1 and u2,
with 0 ≤ u1 < u2 ≤ 1, can be obtained by pAUCSe(u1)−pAUCSe(u2). In Figure 2,
we plot the ROCSp and ROC curves corresponding to a perfect marker, a use-
less marker, and a marker whose underlying distributions are YD ∼ N(2,0.82)

and YD̄ ∼ N(1,1.552). For a useless marker, Sp(c) = 1 − Se(c) for all c, and
pAUCSe = (1 − u)2/2, while, on the other hand, a curve that reaches the upper
right corner, with Se(c) = Sp(c) = 1 for some c, corresponds to a perfect marker
and pAUCSe = 1 − u.

In Figure 2, we also plot the regions of the ROC and ROCSp curves, whose
underlying distributions are the same as those referred to above, corresponding to
sensitivities in the interval (0.8,1). As can be observed, computations of the partial
area of interest are possible in both cases, but they are much more straightforward
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FIG. 2. ROC curve (a) and ROCSp curve (b) corresponding to a perfect marker (dashed line),

a useless marker (dotted line), and a marker whose underlying distributions are YD ∼ N(2,0.82) and

YD̄ ∼ N(1,1.552) (solid line); the shaded regions correspond to the partial AUC over the interval of
sensitivities (0.8,1), represented on the ROC curve (a) and ROCSp curve (b).

when working with the ROCSp curve. The area of the region of the ROC curve
plotted in Figure 2 corresponding to sensitivities over (0.8,1) can be computed
by

∫ 1
ROC−1(0.8)

ROC(p)dp − {1 − ROC−1(0.8)} × 0.8, while the area on the cor-
responding region of the ROCSp curve is simply the area under this curve, that is,∫ 1

0.8 ROCSp(p)dp.
As pointed out by Jiang, Metz and Nishikawa (1996), the normalized pAUCSe,

pAUCSe(u)/(1−u), offers several advantages. First, it can be interpreted as the av-
erage specificity over the interval of sensitivities (u,1), denoted by Average Sp(u),
and thus summarizes the trade-off between gains in sensitivity and losses in speci-
ficity. Second, the normalization allows us to express the values of the partial area
on a numerical scale similar to that of AUC, since the normalized area ranges from
(1−u)/2 to 1. Hereby, all reported results will be based on the average specificity.

3.2. Modeling framework. The key object of our model framework is the func-
tional covariate-adjusted ROCSp curve, which consists of a 270◦ rotation of the
functional covariate-adjusted ROC curve proposed by Inácio et al. (2012). For a
random curve X, whose realizations are defined on a certain functional space X,
the functional covariate-adjusted ROCSp curve is defined as

(3.2) ROCSp(p|X) = FD̄

{
F−1

D (1 − p|X)|X}
, 0 ≤ p ≤ 1,

where FD and FD̄ are the conditional distribution functions of YD and YD̄ given a
curve X, that is,

FD(y|X) = Pr(YD ≤ y|X), FD̄(y|X) = Pr(YD̄ ≤ y|X).

For each curve X of interest, we possibly obtain a different ROCSp curve. We
incorporate functional covariate information on the ROCSp curve in an alternative
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way, through the specification of functional regression models for YD and YD̄ .
More specifically, we assume that the relationship between YD and YD̄ and a curve
X can be expressed using location–scale regression models

(3.3) YD = μD(X) + σD(X)εD, YD̄ = μD̄(X) + σD̄(X)εD̄,

where μs(X) = E(Ys |X) and σ 2
s (X) = var(Ys |X) are the conditional mean and

conditional variance functions, for s ∈ {D,D̄}. The errors εD and εD̄ are indepen-
dent of X, with zero mean, and unit variance. The specification in (3.3) allows us
to rewrite the functional covariate-adjusted ROCSp curve in (3.2) as

ROCSp(p|X)
(3.4)

= FεD̄

{
μD(X) − μD̄(X)

σD̄(X)
+ σD(X)

σD̄(X)
F−1

εD
(1 − p)

}
, 0 ≤ p ≤ 1,

where FεD
and FεD̄

are the distribution functions of the regression errors εD and
εD̄ , respectively. An advantage of this formulation is that the distribution and quan-
tile functions of the regression errors are not conditional, thus reducing the compu-
tational burden [Pardo-Fernández, Rodríguez-Álvarez and Van Keilegom (2014),
page 31].

For a given lower limit of sensitivity, u ∈ (0,1), the functional covariate-
adjusted pAUCSe is defined as

pAUCSe(u|X) =
∫ 1

u
ROCSp(p|X)dp.

Integrating by parts yields a simple, yet important, result which will be the basis
for the construction of our estimator,

pAUCSe(u|X) = −uROCSp(u|X) −
∫ 1

u
p dROCSp(p|X)

(3.5)
= E

[
max{u,ZX}|X] − u.

Here, ZX = SD(YD̄|X) = 1 − FD(YD̄|X) and E[max{u,ZX}|X] is computed with
respect to ZX . Note that the survival function of ZX is ROCSp(p|X); see Sec-
tion 1.1 of the supplemental article [Inácio de Carvalho et al. (2016)] for further
details. The average specificity over the interval (u,1) for a curve X is thus given
by

(3.6) Average Sp(u|X) = pAUCSe(u|X)/(1 − u).

3.3. Proposed estimator and its implementation. Let {(XDj ,YDj )}nD

j=1 and

{(XD̄i, YD̄i)}nD̄

i=1 be random samples from the diseased and nondiseased groups,
respectively, where XDj is the covariate curve for the j th diseased subject and YDj

is the marker outcome for the j th diseased subject; XD̄i and YD̄i are analogously
defined.
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Suppose for now that we have estimates of the conditional mean and conditional
variance functions, and respectively denote these by μ̂s(X) and σ̂ 2

s (X) for s ∈
{D,D̄}; later we discuss how they can be estimated. The starting point for the
construction of our estimator is the estimation of the standardized residuals in each
group

ε̂Dj = YDj − μ̂D(XDj )

σ̂D(XDj )
, ε̂D̄i = YD̄i − μ̂D̄(XD̄i)

σ̂D̄(XD̄i)
,

and, using these estimated standardized residuals, we can construct the so-called
working samples [Yao, Craiu and Reiser (2010)], {ŶDj |X}nD

j=1 and {ŶD̄i|X}nD̄

i=1, as
if they were all observed at a curve X,

ŶDj |X = μ̂D(X) + σ̂D(X)̂εDj , ŶD̄i|X = μ̂D̄(X) + σ̂D̄(X)̂εD̄i .

An empirical version of (3.5) leads us to the following functional covariate-
adjusted estimator for pAUCSe:

p̂AUCSe(u|X) = 1

nD̄

nD̄∑
i=1

[
max

{
u,

1

nD

nD∑
j=1

I (ŶDj |X ≥ ŶD̄i|X)

}]
− u

= 1

nD̄

nD̄∑
i=1

[
max

{
u,

1

nD

nD∑
j=1

I
(
μ̂D(X) + σ̂D(X)̂εDj(3.7)

≥ μ̂D̄(X) + σ̂D̄(X)̂εD̄i

)}]
− u,

where I (·) denotes the indicator function, and hence

(3.8) ̂Average Sp(u|X) = p̂AUCSe(u|X)/(1 − u).

The estimator in (3.7) can be regarded as a functional covariate-adjusted Mann–
Whitney type of statistic. It should be noticed that we are often interested in es-
timating Average Sp(u|X) even for curves X which were not measured in either
group or both. We remark that when u = 0, (3.7) is an extension to the func-
tional covariate case of the estimator of Yao, Craiu and Reiser (2010). In the sup-
plemental article [Inácio de Carvalho et al. (2016)] we provide a calculus-based
construction of (3.7). An estimate of the pAUCSe(u|X), similar to that obtained
by using (3.7), could be obtained by performing a 270◦ rotation of the estimated
functional covariate-adjusted ROC curve as presented in Inácio et al. (2012) and
then integrating over the interval (u,1). However, the estimator in (3.7) has the
nice feature of having a closed-form expression, hence not requiring rotation and
numerical integration, which should be appealing for practitioners.

To use (3.8) in practice, we need to estimate only the mean and variance func-
tions, which we estimate through an extension of the Nadaraya–Watson estima-
tor to the functional context [Ferraty and Vieu (2002)]. The main reason for this
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choice is that with functional data it is difficult to know which parametric model
would best fit the data, so nonparametric regression comes naturally in this con-
text. Given a random curve X, the estimates of μ(X) = (μD(X),μD̄(X)) and
σ 2(X) = (σ 2

D(X),σ 2
D̄

(X)) are, respectively, given by

μ̂(X) =
(∑nD

j=1 K{h−1
Dμd(X,XDj )}YDj∑nD

j=1 K{h−1
Dμd(X,XDj )}

,

∑nD̄

i=1 K{h−1
D̄μ

d(X,XD̄i)}YD̄i∑nD̄

i=1 K{h−1
D̄μ

d(X,XD̄i)}
)
,

σ̂ 2(X) =
(∑nD

j=1 K{h−1
Dσd(X,XDj )}{YDj − μ̂D(XDj )}2∑nD

j=1 K{h−1
Dσd(X,XDj )}

,(3.9)

∑nD̄

i=1 K{h−1
D̄σ

d(X,XD̄i)}{YD̄i − μ̂D̄(XD̄i)}2∑nD̄

i=1 K{h−1
D̄σ

d(X,XD̄i)}
)
,

where K is a kernel function, hDμ,hD̄μ,hDσ , and hD̄σ are positive smoothing
parameters or bandwidths, and d :X×X �→ [0,∞) is a semimetric [van der Vaart
(1998), page 255].

Once we have estimates of the regression and variance functions, we can com-
pute our estimator by substituting (3.9) into (3.7). The practical implementation
of our estimator requires three choices: kernel, bandwidths, and semimetric. It is
well known that the choice of the kernel has little impact on the estimates and so,
following the most commonly made choice, throughout this work we have used
the asymmetric Gaussian kernel

(3.10) K(w) = 2√
2π

exp
(−w2/2

)
I (w ≥ 0).

In turn, the bandwidth plays a key role on the performance of the estimator, and
its choice entails a bias-variance trade-off. We have chosen the four bandwidths
in a data-driven way using generalized cross-validation (GCV). The criterion for
selecting, for instance, hDμ, is to choose the bandwidth which minimizes the fol-
lowing GCV objective function:

GCV(hDμ) = 1

nD

nD∑
j=1

(
YDj − μ̂D(XDj )

1 − n−1
D

∑nD

j=1 SDjj

)2
,

(3.11)

SDjj = K{h−1
Dμd(XDj ,XDj )}∑nD

l=1 K{h−1
Dμd(XDj ,XDl)}

.

The estimator of σ 2
D(X) (σ 2

D̄
(X)) depends on both bandwidths, hDμ and hDσ (hD̄μ

and hD̄σ ), which are selected sequentially. Finally, the semimetric d , which mea-
sures the proximity between the curves in the functional space X, must be related
to the particular features of the data at hand. Specifically, when the curves are
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Algorithm 1 Bootstrap algorithm
Consider a fixed X ∈ X.
for (b = 1, . . . ,B) do:

Step 1. Sample with replacement from the estimated standardized residuals
{̂εD̄i}nD̄

i=1 and {̂εDj }nD

j=1 to form bootstrap sets {̂ε(b)

D̄i
}nD̄

i=1 and {̂ε(b)
Dj }nD

j=1.
Step 2. Use the estimated mean and variance functions from the observed data to

construct bootstrap samples at curve X,

Ŷ
(b)

D̄i|X = μ̂D̄(X) + σ̂D̄(X)̂ε
(b)

D̄i
, Ŷ

(b)
Dj |X = μ̂D(X) + σ̂D(X)̂ε

(b)
Dj .

Step 3. Estimate Average Sp(u|X) using (3.8), that is, compute

̂Average Sp
(b)

(u|X)

=
(

1

nD̄

nD̄∑
i=1

[
max

{
u,

1

nD

nD∑
j=1

I
(
Ŷ

(b)
Dj |X ≥ Ŷ

(b)

D̄i|X
)}]

− u

)/
(1 − u).

smooth, Ferraty and Vieu (2006), pages 28–32, suggest using the L2-norm of the
qth derivative of the curves, and thus, in what follows, we use the L2[a, b]-norm,
that is,

d
(
X,X∗) =

[∫ b

a

{
X(t) − X∗(t)

}2 dt

]1/2

for any two curves X and X∗.

3.4. Bootstrap-based inference. Confidence intervals for the covariate-
adjusted average specificity can be obtained through the bootstrap [Davison and
Hinkley (1997)]. As it is advised in the nonparametric kernel regression literature
[Härdle and Marron (1991), page 781], we use a bootstrap of the residuals to re-
sample the regression models and then the percentile method to obtain pointwise
bootstrap intervals for the functional covariate-adjusted average specificity; a re-
lated bootstrap scheme can be found in Ferraty, Van Keilegom and Vieu (2010).
More specifically, the bootstrap confidence interval for ̂Average Sp(u|X) is ob-
tained with the resampling algorithm described in Algorithm 1.

Once this process is completed, and according to the percentile method, a boot-
strap confidence interval for Average Sp(u|X) of confidence level 1 − α is given
by (

̂Average Sp(u|X)α/2, ̂Average Sp(u|X)1−α/2)
,
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where ̂Average Sp
τ
(u|X) represents the τ th percentile of the estimated

̂Average Sp
(b)

(u|X) for b = 1, . . . ,B . It is worth mentioning that this bootstrap
scheme tends to produce intervals that show some undercoverage.

4. Metabolic syndrome data revisited.

4.1. Exploratory analysis. Our data consist of GGT values (in international
units per milliliter, IU/ml) plus three hours of oxygen saturation for 35 women
with metabolic syndrome and 80 women without metabolic syndrome. We use
the same preprocessing step as in Inácio et al. (2012), and thus the arterial oxy-
gen saturation curves were smoothed with a Gaussian kernel [Febrero-Bande and
Oviedo de la Fuente (2012), Section 2.2]; description of additional details of the
data can be found in Section 2. Women with metabolic syndrome tend to have
larger GGT values (IQR = 26–15, IU/ml) than women without metabolic syn-
drome (IQR = 18.00–10.75, IU/ml). Figure 1(top) of the supplemental article
[Inácio de Carvalho et al. (2016)] shows the histogram along with the variable-
width boxplot of GGT for each group of women, while Figure 1(bottom) of the
supplemental article [Inácio de Carvalho et al. (2016)] displays the same infor-
mation but for the log transformed GGT. Since the log transformation helped to
symmetrize the GGT data in both groups, hereby we proceed with the log trans-
formed data. In Figure 1 we present the arterial oxygen saturation curves, and,
as it can be observed, there is a clear difference between arterial oxygen satura-
tion curves of women with and without metabolic syndrome, with women suffer-
ing from metabolic syndrome tending to have lower levels of oxygen saturation
and higher variance. This is in line with what has been reported in the literature
[Gude et al. (2009)]. Results from an exploratory functional principal component
analysis reported in the supplemental article [Inácio de Carvalho et al. (2016)]
further reveal that the estimated scores associated with the first principal compo-
nent of the arterial oxygen saturation curves, by themselves, have already a quite
good ability to discriminate between women with and without metabolic syndrome
[AUC = 0.811 (0.727,0.887)]. In Figure 3 we present the functional boxplot [Sun
and Genton (2011)] of each group of curves; once more, the different type of pat-
tern of arterial oxygen saturation in each group of women is evident. Some curves
are also identified as atypical.

Additionally, we have also investigated in the case where the oxygen saturation
is not taken into account, how restricting the sensitivity of the GGT above a pre-
selected value affects its corresponding specificity. To our knowledge, there is no
current standard of clinically meaningful intervals for the sensitivity when testing
for metabolic syndrome, and hence we have evaluated different intervals, namely,
we have considered u = 0,0.6,0.7,0.8,0.9, and 0.95. The no covariate-adjusted
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FIG. 3. Functional boxplot of arterial oxygen saturation curves for women with metabolic syn-
drome (a) and for women without metabolic syndrome (b). Outlier curves are represented by dashed
lines, while the solid black line is the median curve. The solid dark gray curves denote envelopes.

estimator of the average specificity is computed using p̂AUCSe(u)/(1 − u), where

p̂AUCSe(u)

= 1

nD̄

nD̄∑
i=1

[
max

{
u,

1

nD

nD∑
j=1

(
I (YDj > YD̄i) + 1

2
I (YDj = YD̄i)

)}]
− u,

where YDj and YD̄i , respectively, denote GGT levels for women with and with-
out metabolic syndrome for j = 1, . . . ,35 and i = 1, . . . ,80. Although GGT is
measured in a continuous scale, in practice, ties can occur, and so the extra term
(1/2) × I (YDj = YD̄i) corrects for ties. However, we point out that with our oxy-

gen saturation-adjusted p̂AUCSe estimator (3.7) ties do not occur. Table 1 of the
supplemental article [Inácio de Carvalho et al. (2016)] presents the resulting es-
timates along with 95% bootstrap confidence intervals (B = 1000). As can be
observed, the average specificity decreases from 0.790 (0.709,0.868) when the
sensitivity is not restricted to 0.459 (0.330,0.630), when u = 0.95, that is, when
the sensitivity belongs to the interval (0.95,1). Between these two extreme cases,
the intervals corresponding to sensitivities in (0.7,1) and (0.8,1) seem to provide
a good balance between gains in sensitivity and losses in specificity.

4.2. Arterial oxygen saturation-adjusted analyses. Our goal is to assess how
the trade-offs between sensitivity and specificity of the GGT, when restricting the
sensitivity to some prespecified intervals, might change for different curves of ar-
terial oxygen saturation. We thus go one step ahead of the analysis presented in
Inácio et al. (2012) who assessed the discriminatory ability of the GGT in the
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FIG. 4. Four observed curves of arterial oxygen saturation.

absence of any restriction. We consider the same sensitivity intervals that were
considered for the no oxygen saturation-adjusted analyses. In the results reported
below we have used the asymmetric Gaussian kernel (3.10); the bandwidths were
chosen using the generalized cross-validation criterion (3.11), and the semimetric
d has been set to be the usual L2[0,3]-norm. For the curves presented in Figure 4,
we have estimated the ROCSp curves (Figure 2 of the supplemental article [Inácio
de Carvalho et al. (2016)]) and the corresponding average specificity, which are
presented in Table 1. Roughly, the results suggest that the discriminatory ability
is better for curves with higher levels of oxygen saturation, across all intervals. It
is interesting to note (see also Table 2 in the supplemental article [Inácio de Car-
valho et al. (2016)]) that for curves that present substantial variation, there is a
marked decreasing in average specificity from u = 0 to u = 0.6. For oxygen sat-
uration curves corresponding to high values, the intervals (0.7,1) and (0.8,1), as
in the no oxygen saturation-adjusted analyses, seem to provide a good sensitiv-

TABLE 1
Estimated average specificity and 95% bootstrap confidence interval for the four different curves of

arterial oxygen saturation presented in Figure 4

̂Average Sp(u|X) (95% bootstrap CI)

XD4 XD12 XD̄51 XD̄65

u = 0 0.631 (0.493,0.863) 0.552 (0.406,0.857) 0.877 (0.782,0.955) 0.772 (0.700,0.910)

u = 0.6 0.357 (0.160,0.735) 0.225 (0.088,0.711) 0.775 (0.631,0.907) 0.595 (0.467,0.820)

u = 0.7 0.316 (0.131,0.702) 0.195 (0.068,0.678) 0.758 (0.593,0.894) 0.559 (0.402,0.796)

u = 0.8 0.263 (0.105,0.659) 0.157 (0.054,0.638) 0.727 (0.536,0.882) 0.500 (0.318,0.768)

u = 0.9 0.191 (0.075,0.600) 0.113 (0.036,0.573) 0.663 (0.448,0.852) 0.382 (0.210,0.721)

u = 0.95 0.173 (0.055,0.560) 0.093 (0.025,0.500) 0.608 (0.386,0.830) 0.313 (0.163,0.682)
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ity/specificity balance. While it would be interesting to smooth the ROCSp curves,
the corresponding estimates of the covariate-adjusted average specificity, which
are the main object of interest, tend to be smooth (Figure 6), and thus we prefer to
avoid adding another bandwidth into the analysis.

As in the univariate setting [González-Manteiga, Pardo-Fernández and Van Kei-
legom (2011), Inácio de Carvalho et al. (2013), Pardo-Fernández, Rodríguez-
Álvarez and Van Keilegom (2014)], it is helpful to graphically represent how the
average specificity changes for different curves of arterial oxygen saturation so that
the practitioner can have an idea of what is going on. Below we construct a data-
based set of curves conditionally on which we predict the functional covariate-
adjusted average specificity. The main ideas underlying this construction are as
follows. We are interested in predicting Average Sp(u|X) over a grid of arterial
oxygen saturation curves X of interest. Such curves should reflect the observed
curves, and in some way they should have an order. In a univariate context, we
would plot on the x-axis a grid over the domain of the covariate and on the y-axis
the corresponding predicted average specificity values, but in the functional con-
text this is impossible since we cannot plot curves on the x-axis. To overcome this
difficulty, and with the aim of creating a grid of curves that resemble the structure
and range of variation of observed arterial oxygen curves, we follow Inácio et al.
(2012) and consider curves of the form

(4.1) Xz(t) = X̄(t) + zv̂1(t), t ∈ [0,3].
Here X̄ is the mean function of the pooled data, z is a weight parameter that lies
on the range of the estimated first principal component scores, and v̂1(t) is the
estimated eigenfunction associated with the first principal component. As we vary
z, we obtain data-based curves, which act as a grid of curves conditionally on
which we predict the functional-adjusted average specificity; to mimic the range
of levels of arterial saturation in our data, we have chosen z to lie on the interval
[−4,4]. The generated grid of oxygen curves, which are depicted in Figure 5(a),
vary, roughly, from an oxygen saturation of 93% to one of 99%, and formally
consist of {(

t,Xz(t)
) : Xz(t) = X̄(t) + zv̂1(t); t ∈ [0,3]}z∈Z ,

(4.2)
Z = {−4 + 0.5k : k ∈ {0,1, . . . ,16}}.

Note that |Z| = 17, where | · | denotes the cardinal operator, and thus below we will
be considering a grid of 17 curves; of course, Z could consist of a finer grid, but the
one in (4.2) suffices for our purposes. An oxygen saturation of 93% corresponds to
a moderately low value, with 90% being already a worrying value from a clinical
perspective. The standard desirable values of oxygen saturation are between 95%
and 99%. It would be interesting to study the performance of GGT even for oxygen
saturation values below 90%, since such values may still occur in practice, but, as it
can be seen from Figure 1, we have few women for which the most part of the curve
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FIG. 5. (a) Grid of artificial curves of arterial oxygen saturation constructed according to (4.2)
and conditionally on which we predict the average specificity. (b) Curves corresponding to z = −3
(solid line), z = 0 (dashed curve), and to z = 3 (dotted curve).

lies below 90%, thus ruling out the possibility of producing reliable inferences for
such low levels.

There is a direct and unique correspondence between z and each curve of the
generated grid (4.2). Higher values of z correspond to lower values of arterial
oxygen saturation and vice versa [due to a programming error, Inácio et al. (2012)
concluded the opposite]. In Figure 5(b) are shown arterial oxygen saturation curves
corresponding to z values of −3, 0, and 3. This relationship depends on the signal
of the estimated first eigenfunction, v̂1(t). If the signal of v̂1(t) is positive, then
higher values of z will correspond to curves with higher values. On the other hand,
if the signal of v̂1(t) is negative, then higher values of z will correspond to curves
with lower values. In short, this relationship is data dependent. Using this trick,
we can graphically represent ̂Average Sp(u|Xz) against z so that we can easily

assess how the predicted values of ̂Average Sp(u|Xz) change for different curves
of arterial oxygen saturation levels Xz. Note that this is not a data reduction step,
since we use all the available data. This is just a way to graphically represent the
average specificity over the sequence of data-driven curves in (4.2).

For the 17 curves presented in Figure 5(a), we have estimated the oxygen
saturation-adjusted average specificity using (3.8). The results are shown in Fig-
ure 6, where at each panel we present the estimated oxygen saturation-adjusted
average specificity, along with the 95% bootstrap confidence bands (B = 1000),
and the corresponding estimate of the average specificity that ignores the effect of
oxygen saturation on GGT (and its 95% bootstrap confidence interval). We can
thus have an idea of how the average specificity evolves over different curves of
arterial oxygen saturation, which can possibly reveal nonlinearities or other fea-
tures that would be difficult to assess just by inspecting a few curves. Overall,
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FIG. 6. Predicted average specificity (solid line), along with 95% bootstrap confidence bands (gray
area) for GGT as a diagnostic test to detect women with metabolic syndrome, adjusted for oxygen
saturation, over different intervals of sensitivity, namely the intervals: (0,1), (0.6,1), (0.7,1) (top),
and (0.8,1), (0.9,1), (0.95,1) (bottom). The no covariate-adjusted average specificity and its 95%
bootstrap confidence interval are also represented (dashed line and dotted lines, respectively).

regardless of the interval of sensitivities considered, GGT appears to have a good
performance for high values of oxygen saturation (low z), while, conversely, for
moderately low values (large z) its discriminatory ability is not so good; a slight
nonlinearity is also observed (although with a large variance associated). Specif-
ically, for z > 2 which corresponds, roughly, to arterial oxygen saturations below
94%–95%, the discriminatory ability is quite poor. Note further that, for all values
of u considered, by ignoring the oxygen saturation effect, we would be under-
estimating the accuracy of GGT for women with high oxygen saturation values,
and overestimating its accuracy for those who have moderately low levels of oxy-
gen saturation. Additionally, for some levels of the covariate curves, the whole
confidence interval of the no covariate-adjusted average specificity is almost com-
pletely outside of the confidence bands of the oxygen saturation-adjusted average
specificity. Similarly to the results presented before, it can be observed that as u

increases, the specificity decreases, and the decreasing is much more marked for
lower levels of oxygen saturation. For instance, when u = 0, that is, when the sen-
sitivity is not constrained, the average sensitivity ranges from 0.896 (0.776,0.972)

(z = −4, high values of oxygen saturation) to 0.518 (0.327,0.833) (z = 2.5, i.e.,
oxygen saturations around 94.5%). On the other hand, when u = 0.95, the aver-
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age specificity varies from 0.675 (0.359,0.886) (z = 4) to 0.088 (0.013,0.459)

(z = 2.5). In particular, and as noted earlier, the intervals (0.7,1) and (0.8,1), for
curves of oxygen saturation around 95% or above, exhibit a good balance between
gains in sensitivity and losses in specificity. We recognize that the choice of u to be
used in practice is complex and our aim with this analysis is to provide an insight
on the performance of the GGT, adjusted for oxygen saturation, over different in-
tervals of sensitivity. Of course, we also recognize that our sample size is reduced
and thus further studies are needed.

A sensitivity analysis has been performed to evaluate the impact of the choices
of the kernel, the semimetric, and the penalizing functions in the GCV criterion;
the results, not shown, do not reveal any significant differences. We have also con-
ducted an additional analysis by removing the outlier curves identified by the func-
tional boxplot in Figure 3; the results obtained do not show substantial changes
and, hence, are not reported.

We end remarking that in the supplemental article [Inácio de Carvalho et al.
(2016)] we show how our method compares with simpler ones, namely, with aver-
age specificity estimators constructed using univariate kernel regression methods
[González-Manteiga, Pardo-Fernández and Van Keilegom (2011)] based on the
mean and minimum arterial oxygen saturation.

5. Simulation study. We have conducted two different simulation studies.
Here, we describe and report a simulation study that, to a certain extent, mimics
the metabolic syndrome data. In the supplemental article [Inácio de Carvalho et al.
(2016)], we report another simulation study, whose main purpose is to evaluate the
performance of the estimator in a general setup.

5.1. Data-generating scenarios. We start by describing how we simulate the
functional covariates, and we then present the data-generating scenarios over
which we assess the finite sample performance of our methods. The simulated co-
variate curves mimic, to a certain extent, the covariate curves from the metabolic
syndrome study in Section 4, where the distribution of the covariate curves varies
by disease status. To this end, we have considered

XD̄(t) = min

{
100, X̄D̄(t) +

3∑
l=1

γD̄lvD̄l(t)

}
,

(5.1)

XD(t) = min

{
100, X̄D(t) +

3∑
l=1

γDlvDl(t)

}
,

where X̄D and X̄D̄ are, respectively, the mean function from the group of women
with and without metabolic syndrome [Figure 5(a) in the supplemental article
(Inácio de Carvalho et al. (2016)]). Additionally, vDl and vD̄l , for l = 1,2,3, are
eigenfunctions from the group of women with and without metabolic syndrome
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and are shown in Figure 5(b) and (c) of the supplemental article [Inácio de Car-
valho et al. (2016)], respectively. Last, γD̄ and γD were set to

γD1 ∼ N
(
0,32)

, γD2 ∼ N
(
0,2.252)

, γD3 ∼ N
(
0,1.752)

,

γD̄1 ∼ N
(
0,32)

, γD̄2 ∼ N
(
0,1.852)

, γD̄3 ∼ N
(
0,1.352)

.

Note that the minimum between 100 and the generated curves using the aforemen-
tioned representation was taken to reflect the fact that, in practice, oxygen satu-
rations above 100% cannot occur. Figure 6 of the supplemental article [Inácio de
Carvalho et al. (2016)] shows 100 curves of each group obtained in one simulation
run.

We consider two different data-generating configurations (Scenarios A and B)
and for each one, M = 1000 datasets were generated for each of three differ-
ent sample sizes: (nD,nD̄) = (50,100), (nD,nD̄) = (100,100), and (nD,nD̄) =
(200,200). Specifically, we assume the following regression models for the marker
outcome in the diseased and nondiseased groups:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

YD̄ = 3 + 2〈β,XD̄ − 94〉 + 2εD̄,
(Scenario A)

YD = 3 + 4〈β,XD − 94〉 + 3εD,

YD̄ = 1.5 + 1.5
〈
β, sin(XD̄ + 1.75)

〉 + 2εD̄,
(Scenario B)

YD = 3 + 2.5
〈
β, sin(XD + 1.25)

〉 + 2.5εD.

In both cases, 〈β,Xs〉 = ∫ 1
0 β(t)Xs(t)dt for s ∈ {D,D̄}, β(t) = t/5 for t ∈ [0,3],

and εD̄ and εD follow the standard normal distribution. These scenarios lead to a
linear (Scenario A) and to a nonlinear (Scenario B) average specificity curve. Note
that

pAUCSe(u|X) =
∫ 1

u
ROCSp(p|X)dp

=
∫ 1

u
FεD̄

(
μD(X) − μD̄(X)

σD̄(X)
+ σD(X)

σD̄(X)
F−1

εD
(1 − p)

)
dp,

and thus the true average specificity for Scenarios A and B are, respectively,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Average Sp(u|X) =
{∫ 1

u
	

(
〈β,X − 94〉 + 3

2
	−1(1 − p)

)
dp

}/
(1 − u),

Average Sp(u|X)

=
{∫ 1

u
	

(
1.5 + 2.5〈β, sin(X + 1.25)〉 − 1.5〈β, sin(X + 1.75)〉

2

+ 2.5

2
	−1(1 − p)

)
dp

}/
(1 − u).

(5.2)

Below we consider four different values of u: 0,0.6,0.8, and 0.95. In addition, we
consider the same grid of curves that was used in Section 4 to predict the average
specificity values; see Figure 5(a).
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FIG. 7. True functional covariate-adjusted average specificity (solid line) versus the mean of Monte
Carlo estimates (dashed line) along with 2.5% and 97.5% simulation quantiles (gray area) for
u = 0,0.6,0.8, and 0.95. For all scenarios (nD,nD̄) = (50,100).

5.2. Simulation results. Our estimator was implemented using the asymmetric
Gaussian kernel (3.10), the bandwidths were selected using the generalized cross-
validation criterion (3.11), and the semimetric d is the L2[0,3]-norm.

In Figure 7 we report the estimated Monte Carlo average of the functional
covariate-adjusted average specificity from the M = 1000 datasets generated
against the true functional covariate-adjusted average specificity, evaluated at the
grid of curves defined by (4.2). Specifically, what is represented in Figure 7
is {M−1 ∑M

m=1
̂Average Spm(u|Xz(t)) : t ∈ [0,3]}z∈Z against {Average Sp(u|

Xz(t)) : t ∈ [0,3]}z∈Z , where ̂Average Spm denotes the mth Monte Carlo estimate;
for each data-generating scenario the true average specificity in (5.2) is evaluated
through numerical integration. The 2.5% and 97.5% simulation quantiles are also
presented. As can be seen from Figure 7, our estimator is able to recover the over-
all true shape of the average specificity for the two different scenarios. Here we
only present the results for the sample sizes (nD,nD̄) = (50,100), which are close
to the metabolic syndrome data sample sizes, but the results for the remaining
cases can be found in the supplemental article [Inácio de Carvalho et al. (2016)].
Specifically, Figures 8 and 10 of the supplemental article [Inácio de Carvalho et al.
(2016)] show for Scenarios A and B, respectively, the true values of the functional
covariate-adjusted average specificity versus the Monte Carlo averages of the esti-
mated functional covariate-adjusted average specificities, along with the 2.5% and
97.5% simulation quantiles, for the different values of u and sample sizes consid-
ered. As can be seen from these figures, our estimator is able to recover the true
functional form of the average specificity over all the different scenarios, values
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of u, and sample sizes considered. As expected, the variability of the estimates
decreases as the sample size increases. It can also be observed that as the sample
size increases and more of the curve is integrated out (i.e., as u decreases), the
bias decreases; Dodd and Pepe (2003) have concluded the same, but in the case
where no covariates are considered. In Figures 7 and 9 of the supplemental article
[Inácio de Carvalho et al. (2016)] we show the true ROCSp curves, for Scenarios
A and B, along with the estimated Monte Carlo average and the 2.5% and 97.5%
simulation quantiles corresponding to covariate curves associated with z values
equal to −3, 0, and 3. From these figures it can be observed that our estimator is
able to successfully recover the true shape of the different ROCSp curves.

A sensitivity analysis has been performed to assess the influence of the choices
of kernel and semimetric, and results, not shown, do not provide evidence of sig-
nificant changes from those reported here and in the supplementary material. In
addition, we have also considered different types of penalizing functions in the
GCV criterion [Härdle (1991)] and results, not shown, also do not reveal signifi-
cant changes.

We point out that methods are not computationally time consuming and a simple
implementation can be made with the aid of routines from the R package [R De-
velopment Core Team (2011)] fda.usc [Febrero-Bande and Oviedo de la Fuente
(2012)]. In the supplemental article [Inácio de Carvalho et al. (2016)] we provide
R code to implement our estimator.

6. Conclusions and discussion. Motivated by a metabolic syndrome appli-
cation, where we aimed to quantify how restricting the sensitivity of the GGT,
a marker of metabolic syndrome, affected its corresponding specificity and how
this might change for different curves of arterial oxygen saturation, we have de-
veloped an estimator for the functional covariate-adjusted partial area under the
specificity-ROC curve and, consequently, for its normalized value, the average
specificity. We learned that the intervals (0.7,1) and (0.8,1) for curves of high
levels of oxygen saturation (say, oxygen saturations levels above 95%) offer a
good balance between sensitivity and specificity.

Simulation studies showed a good performance of the proposed estimator in
recovering the true functional form of the average specificity. The variability of
the estimates decreased with sample size increasing and the bias also decreased
for larger sample sizes and as more of the ROCSp curve was integrated out.

A possible extension of the work developed in this article is to the case where the
average specificity is adjusted for both a functional and a scalar covariate. In this
case, given a covariate curve X and a scalar covariate W , the regression models
between the marker outcomes and the covariates X and W , could, for instance,
take the form

YD = μD(X) + βDW + σD(X,W)εD,
(6.1)

YD̄ = μD̄(X) + βD̄W + σD̄(X,W)εD̄,
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and the partial AUC over the interval (u,1) of sensitivities would be given by

pAUCSe(u|X,W) =
∫ 1

u
FεD̄

{
μD(X) − μD̄(X) + W(βD − βD̄)

σD̄(X,W)

+ σD(X,W)

σD̄(X,W)
F−1

εD
(1 − p)

}
dp.

Estimation can be accomplished by

p̂AUCSe(u|X,W) = 1

nD̄

nD̄∑
i=1

[
max

{
u,

1

nD

nD∑
j=1

I (ŶDj |X,W > ŶD̄i|X,W )

}]
− u

= 1

nD̄

nD̄∑
i=1

[
max

{
u,

1

nD

nD∑
j=1

I
(
μ̂D(X) + β̂DW + σ̂D(X,W)̂εDj

> μ̂D̄(X) + βD̄W + σ̂D̄(X,W)̂εD̄i

)}]
− u.

Details on how to estimate each quantity in (6.1) are given in Aneiros-Pérez and
Vieu (2006).

The proposed methods can be easily adapted to the case where the interest is to
restrict the specificity to a relevant clinical interval (1 − u,1) so that 1 − Sp lies in
(0, u). In such a case, interest lies on

pAUC(u|X) =
∫ u

0
ROC(p|X)dp

=
∫ u

0

[
1 − FεD

{
μD̄(X) − μD(X)

σD(X)
+ σD̄(X)

σD(X)
F−1

εD̄
(1 − p)

}]
dp,

which can be estimated using

p̂AUC(u|X) = u − 1

nD

nD∑
j=1

min

{
u,

1

nD̄

nD̄∑
i=1

I (ŶD̄i|X ≥ ŶDj |X)

}

= u − 1

nD

nD∑
j=1

min

{
u,

1

nD̄

nD̄∑
i=1

I
(
μ̂D̄(X) + σ̂D̄(X)̂εD̄i

≥ μ̂D(X) + σ̂D(X)̂εDj

)}
.

The normalized value, pAUC(u|X)/u, can be interpreted as the average sensitivity
over the interval of specificities (1 −u,1). The estimators of Cai and Dodd (2008)
and Wang and Chang (2011) are particular cases of this estimator when no covari-
ates are considered. Also, when u = 1, this estimator corresponds to an extension
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to the functional covariate case of the estimator proposed by Yao, Craiu and Reiser
(2010).

Finally, we remark that the approach used in (4.1) to construct the grid of curves
to graphically represent the results obtained is not unique; for instance, grids based
on depth measures [López-Pintado and Romo (2009)] could be a possible alterna-
tive.
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SUPPLEMENTARY MATERIAL

Supplement to “Functional covariate-adjusted partial area under the
specificity-ROC curve with an application to metabolic syndrome diagno-
sis” (DOI: 10.1214/16-AOAS943SUPP; .zip). Technical details and supplemen-
tary empirical reports. The supplement consists of three parts. The first part pro-
vides auxiliary results on the construction of our estimator. The second contains
supplemental empirical analysis of the metabolic syndrome data and a comparison
with simpler approaches. Finally, the third part contains an additional simulation
study and R code to implement our methods.
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