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Abstract

We develop a Bayesian time-varying model that tracks periods at which conformance to

Benford’s Law is lower. Our methods are motivated by recent attempts to assess how the

quality and homogeneity of large datasets may change over time by using the First-Digit

Rule. We resort to a smooth multinomial logistic model which captures the dynamics gov-

erning the proportion of first digits, and apply the proposed model to global tropical cyclone

tracks over the past two centuries. Our findings indicate that cumulative technological

improvements may have only had a moderate influence on the homogeneity of the dataset,

and hint that recent heterogeneity could be due to other drivers.

Introduction

Benford’s Law is an empirical observation on the distribution of first digits of numerical data

discovered by [1] and [2]. The law states that, in many situations of applied interest, the fre-

quency of the first digit of numbers follows a logarithmically decreasing distribution—even

though it is generally believed that the probability of occurrence of each number is equally

likely. The probability that the first non-zero digit begins with a number d follows a logarith-

mic distribution given by

pd ¼ PðD ¼ dÞ ¼ log 10 1þ
1

d

� �

; d ¼ 1; . . . ; 9; ð1Þ

where D is the first significant digit of a random variable. The probability of the significant

leading digit equal to 1, for example, is calculated as approximately 0.301, and then the proba-

bility of the leading digit equals d gets smaller as d increase, up to where the probability of the

leading digit 9 equals to only 0.046. A wide variety of datasets, especially a collection of data-

sets, have been reported to conform to Benford’s Law. A statistical foundation of its universal-

ity was presented by [3]. Since the peculiar law of first digits uncovered, a battery of studies

showed that large classes of quantities in different disciplines from both natural phenomena

and social activities are expected to follow the First-Digit Rule, and therefore it can be used for

detecting structural changes or irregularities from various applications [4, 5].
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This paper devises a Bayesian time-varying model that tracks periods at which conformance

to Benford’s Law is lower. Our methods are motivated by recent attempts to assess how the

quality and homogeneity of large datasets may change over time by using the First-Digit Rule

(e.g. [6–8]). As we show in the numerical studies in the Supplementary Materials (S1 File), the

empirical-based approach by [8] suffers often from bias (cf Fig 4, S1 File)—thus questioning

some of their key empirical findings. Our Bayesian smooth multinomial logistic model is how-

ever accurate (cf numerical studies in S1 File), and it is tailored—by construction—for captur-

ing the dynamics governing the proportion of first digits. We apply the proposed model

to global tropical cyclone tracks over the past two centuries, and compare our empirical find-

ings with those of [8]. An application of our model indicates that cumulative technological

improvements may have only had a moderate influence on the homogeneity of the dataset.

Indeed, although technological improvements are cumulative we find that the most recent het-

erogeneity levels actually tend to be higher than the ones from 1842 to 1890 (cf Fig 4, below);

this finding seems to be in contradiction with [8] (cf Fig 5 in their paper), possibly due to the

above-mentioned bias issue. Finally, while we center the article on the tropical cyclone applica-

tion, our Bayesian time-varying approach has the potential to be employed on other contexts

where the target is on learning about the dynamics governing conformance to Benford’s Law

—including fraud analysis.

The paper is organized as follows. We first introduce our motivating global tropical cyclone

data and provide preliminary statistics on their conformance to Benford’s Law. The next sec-

tion describes our proposed Bayesian multinomial logistic smoothing model along with details

on prior specification and on inference. The homogeneity of cyclone data is then analyzed by

inspecting dynamics of the first-digit distribution. Lastly, we discuss data homogeneity and

other issues based on the results. For the convenience of exposition, specific details surround-

ing numerical experiments on the model and relevant code in R [9] are left to the S1 File.

Materials and methods

Global tropical cyclones (GTC) dataset

The GTC dataset provides information on the distribution, frequency, and intensity of tropical

cyclones worldwide, which is collected as a project of International Best Track Archive for Cli-

mate Stewardship (IBTrACS). The dataset includes a register of tropical cyclones since 1842,

and is available from the website of IBTrACS (https://www.ncdc.noaa.gov/ibtracs). It has mul-

tiple observed records of each cyclone such as geographical location, temperature, and wind

speed. As of May of 2018, a total of 348,703 traveled locations are recorded with the corre-

sponding climatic information. Fig 1 presents the traveled path of each cyclone in the dataset

over the entire period.

Apart from the intrinsic heterogeneity of tropical cyclones, there has been a debate on the

quality of early records in the dataset for assessing the influence of climate change on the

occurrence of tropical cyclones [10, 11].

We retrieve observed location records of each cyclone from 1842 to 2016 in the GTC data-

set and then trace a geometric path by connecting points which each cyclone traveled. We

measure distance per cyclone in meters along the path using the geosphere package [12]

from the R programming language. Except for the small cyclones with a single geographical

location (latitude/longitude), we obtain 12,741 observations of traveled distances in total; Fig 2

depicts the frequency of tropical cyclones over the period under analysis. This allows us to

analyze dynamics of the first-digit proportion throughout the period under analysis. Before

specifying our statistical model, we first test the overall validity of Benford’s Law in the GTC

dataset. Fig 2 shows the proportion of first digits in the GTC dataset against Benford’s Law.

Bayesian modeling of time-varying conformance to Benford’s Law
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The first-digit proportions in the pooled GTC data resemble the probability mass from Ben-

ford’s Law. In Fig 2, digit 1 and digit 6 to digit 9 exhibits higher proportion than the probability

from Eq (1) among all digits, whereas digits 2 to 4 present lower than the counterpart values.

We discuss the variation of each proportion in detail with our time-varying model.

Modeling time-varying conformance to Benford’s Law

Model specification. We construct a smooth multinomial model which will capture the

time-varying proportions in the leading digits and compare the variation with Benford’s distri-

bution. Our GTC dataset is composed of two records for each cyclone: the first digit of traveled

distance and the year a cyclone was first observed. Let Nt be the number of cyclones occurring

in year t, and let nt = (n1,t, . . ., n9,t) with nd,t denoting the frequency of cyclones whose first

digit of traveled distance equals to d, during year t. Below, nt is assumed to follow a multino-

mial distribution with parameter

ðNt; p1;t; . . . ; p9;tÞ; ð2Þ

where the pd,t’s obey
P9

d¼1
pd;t ¼ 1, for all t.

Fig 1. Map of the global tropical cyclones tracks from International Best Track Archive for Climate Stewardship

(IBTrACS). (Top) paths from 1842 to 1960; (Bottom) paths from 1961 to 2017;(Left) Map projection on longitude

10˚E�170˚W; (Right) Map projection on Longitude 170˚W�10˚E.

https://doi.org/10.1371/journal.pone.0213300.g001
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Our primary interest is in the probability pt = (p1,t, . . ., p9,t), that is the probability of occur-

rence of each digit at year t; we will refer to pt as the first-digit probability. More precisely, our

target below will be on learning from the data about the dynamics governing the first-digit

probability, pt, and on contrasting it with Benford’s Law, pd, in Eq (1).

Since our data is composed of frequencies of nine digits together with time t, it is natural to

relate the first-digit probability to the time predictor via a generalized linear model [13]. We

consider a multinomial logistic model where elements of pt are connected to a vector of time

predictor ηt = (η1,t, . . ., η8,t) by

pd;t ¼
exp ðZd;tÞ

1þ
P8

i¼1
exp ðZi;tÞ

; d ¼ 1; � � � ; 8; ð3Þ

and p9,t is inferred from
P9

d¼1
pd;t ¼ 1. Time-varying conformance to Benford’s Law will then

be assessed by contrasting pd,t as in (3) against the benchmark pd, from Eq (1).

To trace the dynamics governing pt, we employ degree 3 B-spline basis [14], also known as

cubic splines, which produce a smooth curve for each element of ηt; cubic splines are the stan-

dard choice in the literature as they are twice continuously differentiable and thus allow for a

reasonable amount of smoothness [15]. We assume that the B–spline basis functions have

K+ 1 equally spaced knots, tmin = t0 < t1 < � � �< tK−1 < tK = tmax over the entire observation

period, and thus the smooth curve ηd,t can be expressed by the following linear combination of

B–splines,

Zd;t ¼
XKþ3

k¼1

bd;kBkðtÞ; d ¼ 1; . . . ; 8: ð4Þ

Fig 2. Descriptive statistics for GTC data. Above: Frequency of tropical cyclones from 1842–2016. Below: Empirical first-digit

distribution of the traveled distance (in meters) per cyclone is represented (red) along with the corresponding probability mass for

Benford’s distribution (blue).

https://doi.org/10.1371/journal.pone.0213300.g002
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Here the βd,k’s are regression coefficients of B-splines predictors for digit d, and Bk(t) is a set

of B–splines basis functions of degree 3.

To assess overall conformance over nine digits with the First-Digit Rule in each year, we

use the smooth sum of squared deviations (SSD) of each digit as a summary statistic. The

smooth SSD is computed by a sum of squares of the individual discrepancies between leading

digits, i.e.

SSDðtÞ ¼
X9

d¼1

ðpd;t � pdÞ
2
; ð5Þ

where pd,t and pd are respectively the first-digit probability from (3), and the probability from

Benford’s Law from (1). The smooth SSD will be exactly zero when the first-digit probability

happens to equal to Benford’s first-digit distribution.

To sum up, the goal of the model is on tracking the dynamics governing the first-digit prob-

ability over time, conformance to the benchmark will be assessed via the smooth SSD as in (5),

and we next concentrate on discussing how the Bayesian paradigm can be used to learn about

pt from the data.

Bayesian inference. We follow a Bayesian version of the penalised spline approach [16,

17] so as to learn about the first-digit probability pt. We assign a first-order random walk prior

to the regression coefficients βd = (β1,d, . . ., βK+3,d)
T, which relate an independent and identical

Gaussian error εd with mean zero and variance t2
d, that is,

bd;k ¼ bd;k� 1 þ εd; εd � Nð0; t2
dÞ; k ¼ 2; . . . ;K þ 3; ð6Þ

a flat (uniform) prior is set for the initial coefficient βd,1. The first order random walk prior can

be represented in a matrix form, Fβd = εd, where εd is a (K + 2)-vector of εd’s and F is a difference

matrix of dimension (K + 2, K + 3). The F has a diagonal of 1’s (i = j), −1’s for the next elements

to the diagonal (i = j + 1), and zero otherwise for the (i, j)th element with i 2 {1, . . ., K + 2} and j
2 {1, . . ., K + 3}.

The variance t2
d controls amount of smoothness of ηd,t—and hence that of pd,t—with a

lower t2
d indicating that variability of the next regression coefficient is restricted around the

value of the previous coefficient. Accordingly, the conditional probability of the regression

coefficients βd given t2
d is given by

pðβd j t
2
dÞ / exp �

1

2t2
d
βT
dKβd

� �

; ð7Þ

where K is a penalty matrix, K = FT F obtained from the random walk prior in Eq (6). The pre-

cision parameters t2
d’s are estimated along with the regression coefficients in the model by

assigning an additional prior. We place a diffuse inverse gamma prior t2
d � IGða0; b0Þ with

two constants a0 and b0 and then apply a uniform prior for performing a sensitivity analysis.

To ease notation, in what follows we let β and τ stand for the set {β1, . . ., β8} and fτ2
1
; . . . ; τ2

8
g

respectively.

The likelihood of observing n = {n1, . . ., nT} is given by the product of multinomial proba-

bilities, that is,

LðβÞ ¼ f ðn1; . . . ; nT j p1; . . . ; pTÞ /
YT

t¼1

Y9

d¼1

fpd;tðβÞg
nd;t ; ð8Þ

where pd,t(β) and nd,t are respectively the probability and the realized frequency of digit d in

Bayesian modeling of time-varying conformance to Benford’s Law

PLOS ONE | https://doi.org/10.1371/journal.pone.0213300 April 12, 2019 5 / 11

https://doi.org/10.1371/journal.pone.0213300


year t; note that pd,t is connected to the regression coefficients β via the link function in (3) and

the linear predictors ηd,t in (4). The model is summarized in Box 1.

Bayesian inference is based on the joint posterior distribution given by

pðβ; τ2 j nÞ / LðβÞ pðβ j τ2Þpðτ2Þ; ð9Þ

where pðτ2Þ ¼
Q8

d¼1
pðtdÞ, with π(τd) denoting the density of an inverse gamma distribution

with parameters (a0, b0), and pðβ j τ2Þ ¼
Q8

d¼1
pðβd j t

2
dÞ with pðβd j t

2
dÞ as in (7). We calculate

a full conditional distribution for the regression coefficients β and τ2 from Eq (9),

pðβ j n; τ2Þ / LðβÞ pðβ j τ2Þ; pðτ2 j n; βÞ / pðβ j τ2Þpðτ2Þ: ð10Þ

Since the full conditional distribution p(βjn, τ2) in Eq (10) does not result in a closed form,

a natural option to generate posterior samples is to resort to a Metropolis–Hastings algorithm

with iteratively weighted least-squares (IWLS) proposals [18, 19]. In practice, a version of our

model can be readily implemented with the aid of existing statistical software. The S1 File

includes examples with R code.

Results

We now apply our smooth multinomial logistic model to the GTC data. The masterplan of this

section is as follows: first, we learn about the dynamics of the first-digit probability; second, we

examine conformance of the first-digit probability to Benford’s Law, and assess the homogene-

ity within the dataset over the observation period; third, we further examine evidence on the

behavior of the second-digit probability. To streamline the comparisons with [8], below we

partition the time horizon into two periods (S1: 1842–1960; S2: 1960–2010).

Dynamics of the first-digit probability

We present the dynamics of the probability pt in Fig 3. The posterior mean of pd,t and the 95%

credible band is compared to the corresponding probability from Benford’s Law, along with

the empirical distribution on each panel. The dynamics of posterior distributions of pd,t’s show

Box 1. Summary description of the fitted Bayesian smoothing model.

Bayesian multinomial logistic smoothing model

ðLikelihoodÞ ðn1;t; . . . ; n9;tÞ � MultðNt; p1;t; . . . ; p9;tÞ;

ðModel SpecificationÞ pd;t ¼
exp ðZd;tÞ

1þ
P8

d¼1
exp ðZd;tÞ

; p9;t ¼
1

1þ
P8

d¼1
exp ðZd;tÞ

;

Zd;t ¼
XKþ3

k¼1

bd;kBd;kðtÞ;

ðRandom Walk PriorÞ b1;d � Uðc0; d0Þ; bkþ1;d ¼ bk;d þ εd; εd � Nð0; t2
dÞ;

ðHyper � PriorÞ t2
d � IGða0; b0Þ:

Bayesian modeling of time-varying conformance to Benford’s Law
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different patterns over the period between leading digits. As expected, we see that in the very

early stage of the dataset, e.g. around the 1850s, the corresponding credible bands are much

wider than those in the period of 1900s onward due to small sample sizes (see Fig 2). Among

all the nine curves, the probability of leading digit one p1,t has a pronounced variation over the

entire period. The posterior mean of p1,t rises to around 0.4 until the early 1910s, and then

steadily drops for more than a century to around 0.2. This implies that the proportion of

cyclones whose traveled distance start with digit one decreased approximately by half from

around 1900s to recent years. On the contrary, the dynamics of the probability of leading digit

three, i.e. p3,t moves upward the benchmark around the same period as the downward move of

leading digit one, although the magnitude of the move is much smaller than that of digit one.

The other seven curves move more tightly around the straight line of Benford’s Law, but digit

two to digit seven are slightly upward and the others downward the benchmark. Given the

variances of the digit probabilities, it is possible that these probabilities stay constant over the

observation period S1.

Fig 3. Dynamics of the time-varying first-digit probability pt. Time-varying first-digit probability for digits 1 to 9 (p1,t, . . ., p9,t) are

presented from top left to bottom right. The chart further includes the posterior mean (solid line) and 95% credible bands (shaded

areas) of pd,t, the sample empirical distribution (point), and Benford’s distribution (dashed line).

https://doi.org/10.1371/journal.pone.0213300.g003
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Time-varying conformance to Benford’s Law

We now turn to time-varying conformance of the first-digit probability to Benford’s Law. To

assess overall conformance over nine digits with the First-Digit Rule in each year, we resort to

the smooth SSD statistics from Eq 5. Fig 4 depicts the posterior mean and the 95% credible

Fig 4. Dynamics of sum of squared deviations (SSD). The chart gives the posterior mean of SSD (solid blue line) and 95% credible

bands (shaded blue area) in each year. The time horizons suggested in the previous study is labeled for reference: Two long-term

division (Period 1 and 2) and four short-term episodes (Episode A, B, C, and D).

https://doi.org/10.1371/journal.pone.0213300.g004

Fig 5. Dynamics of the time-varying second-digit probability pð2Þt . Time-varying second-digit probability for digits 0 to 9

ðpð2Þ0;t ; . . . ; pð2Þ9;t Þ are presented from top left to bottom right. The chart further includes the posterior mean (solid line) and 95%

credible bands (shaded areas) of pð2Þd;t , the sample empirical distribution (point), and Benford’s distribution (dashed line).

https://doi.org/10.1371/journal.pone.0213300.g005
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band of the smooth SSD. As with the first digit probability, the SSD also reflects uncertainty

from different sample sizes and intrinsic variability of pd,t’s.

The smooth SSD avoids overestimation of the misfit due to a discretization effect, whereas a

naive empirical SSD as in [8] can be shown to be biased. As the numerical experiments in the

S1 File illustrate, the empirical SSD can provide a biased and misleading snapshot of confor-

mance to Benford’s Law (see Fig 4, S1 File). For the GTC dataset, the empirical SSD (not

reported) would be generally well above the smooth SSD curve from Fig 4, especially in the

years where the number of cyclones was lower.

The smooth SSD examines the heterogeneity within the dataset over time in terms of Ben-

ford’s Law. Our results reject the hypothesis of homogeneity across the entire period of obser-

vation, as no horizontal line would fit the credible band of the smooth SSD. For the early

decades prior to 1880s, the smooth SSD is susceptible to considerable variability due to small

sample size, and hence it is difficult to tell either conformance or lack of conformance. How-

ever, ever since then, the posterior mean of the smooth SSD starts soon to increase gradually

from the 1880s, reaches a peak value of 0.0184 in 1903, and then returns to a lower level around

1940, which constitute the first long-term cycle in the variation of the smooth SSD. Another

substantive long-term deviation is currently in progress since the 1970s. The first peak occurs

in 1989 with the posterior mean 0.00995 and then the mean falls slightly to 0.00757, ending up

with the highest value of 0.0153 in 2016. As shown in Fig 4, the second period has a large SSD

value for the first period in magnitude, and hence these periods represent two different hetero-

geneity in the dataset.

To streamline comparisons, Fig 4 includes the sub-period division of [8]: Episode A and C

show periods of decreasing misfit, which was claimed to be explained by technical advance-

ments of collecting and coordinating data as a result of the introduction of telegraph lines

and aircraft; Episode B, a sudden rise in a downward trend, was claimed to be possibly due by

potential climate variation such as El Nino Southern Oscillation (ENSO); a small bump of mis-

fit during Episode D was claimed to be possibly explained by a mix of effects of new technology

and potential climate change.

Despite the conclusion of [8] that the GTC data tend to conform to Benford’s Law from

1960 onward, our model actually finds a substantial deviation from Benford’s Law over that

period. Keeping in mind that technological improvements are cumulative, we find that the

most recent heterogeneity levels actually tend to be higher than the ones from 1842 to 1890 (cf

Fig 4). This finding seems to be contradiction with [8] (cf Fig 5 in their paper), which is possi-

bly due to the above-mentioned bias issue faced by their approach.

Evidence from the second-digit analysis

We further examine the second-digit probability pð2Þt ¼ ðp
ð2Þ

0;t ; . . . ; pð2Þ9;t Þ in the GTC dataset.

Benford’s Second-Digit Rule is given by

p
ð2Þ

d ¼ PðD2 ¼ dÞ ¼
X9

k¼1

log 10 1þ
1

10 � kþ d

� �

; d ¼ 0; . . . ; 9; ð11Þ

where D2 is the second significant digit of a random variable [20]. Fig 5 illustrates the dynam-

ics of the second-digit probability pð2Þt . The dynamics of each pð2Þd;t yields either gradually

increasing or decreasing linear trends over the entire period, but the variation of each digit is

mostly contained within the credible bands except for digit zero and digit four.

We also examine overall time-evolving conformance to Benford’s Law between ten digits.

The distribution of the second-digit smooth SSD is obtained from Benford’s Second-Digit

Bayesian modeling of time-varying conformance to Benford’s Law
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Rule in Eq (11) and the posterior sample of the second-digit probability, and presented in

Fig 6. The posterior mean of the second-digit SSD starts from high levels and dwindles until

around 1950s, then gradually increasing up to recent years. The posterior mean of pð2Þt gives

consistent results to our finding in the first-digit analysis that the heterogeneity of the dataset

may have been increasing recently.

Closing remarks

This paper devises a smooth Bayesian model based on penalized splines so to track time-vary-

ing conformance to Benford’s law. We have explored the dynamics of the first- and second-

digit probability to test the homogeneity of the GTC dataset by comparing the variation with

Benford’s Law. Our model enables us to track directly spans of years at which conformance to

Benford’s Law is lower, and therefore facilitates the statistical inference about the intrinsic dis-

tribution of the first or second digits by evaluating discrepancies from Benford’s Law. Numeri-

cal studies in the S1 File show that our method avoids pitfalls faced by pointwise empirical

approaches. With respect to our empirical findings versus those of [8]. There seems to be a

consensus that the heterogeneity up to early 20th century could be mainly induced by the

incomplete management of cyclone records and inevitable measurement errors. Technological

developments in the 20th century have enable meteorologists to detect even tiny cyclones and

to precisely locate the tracks of those cyclones, which results in the consistently increasing

number of cyclones until the 1970s. Our results suggest that heterogeneity starts increasing

again, even though the frequency of cyclones has been stable since the 1970s. While technolog-

ical improvements are cumulative we find that the most recent heterogeneity levels actually

tend to be higher than the ones from 1842 to 1890 (see Fig 4); this finding seems to contradict

[8] (cf Fig 5 in their paper), possibly due to the above-mentioned bias issue.

While we have centered the paper on the tropical cyclone application, our Bayesian time-

varying approach has the potential to be applied in other setups where the goal is on inferring

the dynamics governing conformance to Benford’s Law—including fraud analysis.
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Fig 6. Dynamics of the second-digit SSD. The chart presents the posterior mean of the second-digit SSD (solid blue line) and 95%

credible bands (shaded blue area) in each year. The time horizons are labeled for reference as in the first-digit analysis.

https://doi.org/10.1371/journal.pone.0213300.g006
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