
Supplementary Materials

This supplement includes numerical experiments showcasing the performance of the

methods and R code to implement the proposed approach along with some supporting

reports on empirical results and Bayesian inferences.

Numerical Experiments

Simulation Configurations and Preliminary Experiments

To assess the performance of our method, we simulate data from

(n1,t, . . . , n9,t) ∼ Mult(30, p1,t, . . . , p9,t), t = 1, . . . , 80, (1)

where (n1,t, . . . , n9,t) are the joint counts of leading digits with
∑9
d=1 nd,t = 30 at time

t, and where we assume that the time-varying first-digit probabilities are

pd,t = log10

[
1 + 9 · (d/9)θt

1 + 9 · {(d− 1)/9}θt

]
, θt = 1 + 0.5 · sin

(
t

10

)
, d = 1, . . . , 9. (2)

Note that
∑9
d=1 pd,t = 1, for every t. Fig 1 illustrates the dynamics over time of the

true first-digit probability as in (2).

Fig 1. Dynamics of the first-digit cumulative probability. Each line represents
the cumulative multinomial probability up to digit d, i.e.

∑d
i=1 pi,t.

First, we concentrate on illustrating the method on a single-run experiment; Monte

Carlo evidence is reported in the next section. We generate a random sample from (1),

March 29, 2019 1/11



and then apply our model to obtain posterior distribution of the first-digit probability.

We run four chains of size 2,000 using Metropolis–Hastings algorithm with burning-in

first 1,000 iteration and thinning 4. Fig 2 depicts the posterior mean of pd,t, along with

95% credible bands and the true multinomial probabilities. As can be seen from Fig 2,

the posterior mean of pd,t follows closely the true pd,t as defined in (2), and the credible

bands tend to include the true pd,t. Moreover, if the pooled dataset follows Benford’s

Law, we can make an inference on when the first-digit probability deviates from the

first-digit rule by comparing the posterior distribution of the first digit probability mass

with the horizontal line from Benford’s Law. For now, the result should be regarded as

Fig 2. A single-run experiment with data simulated according to (2). On
each panel, we represent the posterior mean of pd,t (solid line), the 95% credible bands
(shaded area), empirical distribution (points), the true pd,t (dashed line), and the
probability mass of Benford’s Law (dotted line).

tentative, since Fig 2 summarizes the outcome of a single-run experiment. Next, we

assess how robust these findings are over other runs of simulated data.

Monte Carlo Evidence. A Monte Carlo study was conducted by simulating B = 500

samples from the model in (1), using the same setting as in the previous section (that is,

Nt = 30 and pd,t as in (2)). Fig 4 displays trajectories of the posterior means across 500
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simulated datasets and their Monte Carlo mean. Our method successfully recovers the

corresponding true first-digit probability, in spite of considerable variations of the

multinomial probabilities over the period.

Fig 3. Trajectories resulting from fitting the model on simulated datasets
and their Monte Carlo mean. On each panel, we present all the trajectories
(translucent lines), the Monte Carlo mean (solid line), and the true pd,t (dashed line).

Discretization Effects. Fig 4 highlights that the empirical-based approach by [1] can

suffer from bias.
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Fig 4. Sum of Squared Deviations (SSD) over six different sample sizes. On
each panel, we present the true (blue line), smooth (green line), and empirical (red
points) SSD.
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R code

In this section, we present R code for implementing the time-varying model used in the

Numerical Experiments. The interpretation of the results in the script is discussed in

the previous section. In the code chunks below, we follow the 80 characters per line

standard. Before running the code chunks, we start by installing the packages splines2

and R2jags (if not installed). The splines2 package yields B-splines basis functions

and the R2jags package implements a Metropolis–Hastings algorithm by calling JAGS

(Just Another Gibbs Sampler), a statistical software for Bayesian data analysis.

## Install required packages

packages <- c("R2jags", "splines2")

new <- packages[!(packages %in% installed.packages()[, "Package"])]

if (length(new)) install.packages(new)

## Load required packages

sapply(packages, require, character.only = TRUE)

## R2jags splines2

## TRUE TRUE

Next, we define the true time-varying first-digit probability in (2) and then generate

multinomial random vectors in (1) at time t using the rmultinom function. The seed

(set.seed) is fixed below for reproducibility reasons.

## Define the true time-varying first-digit probability

t <- 1:80 # time span

d <- 1:9 # digits

N <- 30 # number of realizations at each time

theta <- 1 + 0.5 * sin(t / 10)

prob <- matrix(0, nrow = 80, ncol = 9)

for (i in t) {

prob[i, ] <- log10(1 + 9 * (d / 9)^theta[i]) - log10(1 + 9 * ((d - 1) / 9)^theta[i])

}

## Generate a sample from the true time-varying probability

set.seed(789)

y <- matrix(0, nrow = 80, ncol = 9)

for (j in t) y[j, ] <- rmultinom(1, size = N, prob[j, ])

We then set the number of knots and compute B-spline predictors, and set the penalty

matrix to use penalized splines.
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## Setting up penalized splines

no.in.knots <- 15 # number of internal knots

in.knots <- quantile(t, # Generate equi-distant knots

probs = (1:no.in.knots) / (no.in.knots + 1), type = 1)

Bsp <- bSpline(t, knots = in.knots, degree = 3, intercept = TRUE)

Dd <- cbind(diag(length(in.knots) + 3), 0) - cbind(0, diag(length(in.knots) + 3))

Kmat <- t(Dd) %*% Dd # Penalty matrix

The following code chunks are used for calling and implementing our method in JAGS.

In R, we can write the model in BUGS language and specify parameters, initial values,

and data. The command jags connects inputs in R to JAGS and saves the simulations

for easy access in R.

## Define objects for JAGS software

# JAGS model (BUGS language)

model <- function() {

for (l in 1:8) {

beta[1, l] ~ dnorm(0, 0.0001) # prior for beta1

for (m in 2:(no.in.knots + 4)){ # random walk priors for beta's

beta[m, l] <- beta[m - 1, l] + u[m - 1, l]

u[m - 1, l] ~ dnorm(0, tau[l]) }

tau[l] ~ dgamma(0.0001, 0.0001) } # prior for tau's

for (i in 1:80) { # likelihood

y[i, 1:9] ~ dmulti(pt[i, 1:9], N)

for (j in 1:8) {

eta[i, j] <- inprod(Bsp[i, ], beta[, j])

eeta[i, j] <- exp(eta[i, j])

pt[i, j] <- exp(eta[i, j]) / (1 + sumeeta[i]) }

pt[i, 9] <- 1 / (1 + sumeeta[i])

sumeeta[i] <- sum(eeta[i, ]) } }

# JAGS initial values for tau's

inits <- list( list(tau = rep(0.5, 8)), list(tau = rep(1, 8)),

list(tau = rep(2, 8)), list(tau = rep(3, 8)))

# JAGS parmeters

parameters <- c("pt", "tau")

# JAGS data

data <- list("y", "N", "Bsp", "no.in.knots")

## Run JAGS in R

results <- jags(data, inits, parameters, model, n.chains = 4,

n.iter = 5000, n.thin = 10, n.burnin = 2500)
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We now plot the resulting outcomes. Below, we present the empirical distribution as

points, the posterior mean as a solid line, the credible bands as a polygon and the true

multinomial probability as a dashed line.

## Extract MCMC samples

pt.array <- results[["BUGSoutput"]][["sims.list"]][["pt"]]

pt.mean <- apply(pt.array, c(2, 3), FUN = mean)

pt.ci <- apply(pt.array, c(2, 3), quantile, probs = c(0.025, 0.975))

## Plot the time-varying multinomial probabilities

par(mfrow = c(3, 3), mar = c(4, 4, 1, 0) + 0.5)

for (i in 1:9) {

plot(t, y[, i] / N, type = "p", pch = 20, xlab = "time",

ylab = "probability", ylim = c(0, 0.8))

polygon(c(t, rev(t)), c(pt.ci[1, , i], rev(pt.ci[2, , i])),

col = rgb(190, 190, 190, 127, maxColorValue=255) , border = FALSE)

lines(t, prob[, i], lwd = 2, lty = 3)

mtext(side = 3, text = bquote(leading ~ digit ~ .(i)), line = 0, cex = 0.8)

lines(t, pt.mean[, i], lwd = 2)

}
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Finally, the code below can be used for comparing the sum of squared deviations (SSD)
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among empirical distribution, the first-digit probability, and the true multinomial

probabilities.

## Calculate SSD's

Ben.prob <- log10(1 + 1 / 1:9)

Ben.matrix <- matrix(Ben.prob, byrow = TRUE, nrow = 80, ncol = 9)

SSD.true <- rowSums((prob - Ben.matrix)^2) # true SSD

SSD.emp <- rowSums((y / N - Ben.matrix)^2) # empirical SSD

dev <- array(NA, dim(pt.array))

for (i in 1:9) {

dev[, , i] <- pt.array[, , i] - matrix(Ben.prob[i], dim(pt.array)[1], dim(pt.array)[2])

}

SSD.dev <- apply(dev, c(1, 2), FUN = function(x) sum(x^2)) # smooth SSD

SSD.mean <- colMeans(SSD.dev)

SSD.ci <- apply(SSD.dev, 2, quantile, probs = c(0.025, 0.975))

par(mfrow = c(1, 1), mar = c(4, 4, 1, 0) + 0.5)

Below, we present the empirical SSD as points, the posterior mean of the smooth SSD

as a solid line, the credible bands of the smooth SSD as a polygon and the true SSD as

a dashed line.
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Supporting Reports on Empirical Results and Bayesian

Inferences

S Fig. Frequency of Cyclones and Relative Frequency of Traveled

Distances

The chart shows the number of tropical cyclones since 1850 and the relative frequency

of traveled distances in kilometers in each year.

Fig 5. The frequency and relative frequency of traveled distances since
1850. The blue solid line depicts the number of tropical cyclones over time. In each
year, the bars show the relative frequency of traveled distances in kilometers.
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S1 Fig. Posterior Predictive Checks

This chart shows the posterior predictive distribution for the first-digit probability pt

from our model. As it can be observed, most observed proportions for each digit are

covered by the respective 95% credible bands of the predictive distribution, thus

suggesting that the model fits well the data.

Fig 6. Posterior predictive distribution and model fitting.
The posterior predictive distribution for each digit is presented over the period under
analysis. The chart shows the posterior mean (solid line) and 95% predictive credible
bands (shaded area), and the sample empirical distribution (point).
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S1 Fig. Sensitivity Analysis

Fig 7. Sensitivity analysis with different priors. The chart compares the
dynamics of SSD between two different priors for τd. The results from the inverse
gamma prior (red) used in the paper are plotted against those from a uniform prior
(blue).
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