Stat Comput (2013) manuscript No. (will be inserted by the editor)

On the distribution of linear combinations of independent Gumbel random variables (Supplementary Material)

Filipe J. Marques · Carlos A. Coelho · Miguel de Carvalho

Received: 08 Aug 2012 © Science+Business Media, LLC 2012

1 Mathematica code

The 'sample code' presented in Figures 1 and 2 was developed for Mathematica 7.0; further code is available from the corresponding author. In Figure 1 we provide code for computing the near-exact distribution function, and in Figure 2 we provide code for computing the corresponding near-exact probability density function.

For example, if we wish to plot the density and cumulative distribution functions of W for $\mu = (-20, -1, -50, 12, 40)$, $\sigma = (2, 1/2, 5/4, 10, 50)$ and $\alpha = (2, 12, 24, 50, 10)$, with $\gamma = 6$, we should use

mu={-20,-1,-50,12,40};				
sigma={2,1/2,5/4,10,50};				
alpha={2,12,24,50,10};				
gamma= 6;				
Plot[LinearGumbelsPDF[alpha,	mu,	sigma,	gamma,	w],
{w,-2000,4000}]				
Plot[LinearGumbelsCDF[alpha,	mu,	sigma,	gamma,	w],
{w,-2000,4000}]				

and the result should be the first two plots in Figure 3; similar code was use to produce all the remainder examples of near-exact densities and near-exact distribution functions in Figures 3 and 4.

F. J. Marques \cdot C. A. Coelho

M. de Carvalho

2 Further numerical reports

2.1 Sums of independent Gumbel random variables

In Table 1 and 2 we report further numerical results for sums of independent Gumbel random variables, all with the same scale parameter, according to the following scenarios:

- -Scenario 1: $\mu_1 = (2,3), \ \sigma_1 = 1/100 \times \mathbf{1}_2^{\mathrm{T}}, \text{ and} \ \alpha_1 = \mathbf{1}_2^{\mathrm{T}};$
- -Scenario 2: $\boldsymbol{\mu}_2 = (-4, -1, 2, 3), \, \boldsymbol{\sigma}_2 = 5 \times \mathbf{1}_4^{\mathrm{T}}, \, \text{and} \, \boldsymbol{\alpha}_2 = \mathbf{1}_4^{\mathrm{T}};$
- --Scenario 3: $\boldsymbol{\mu}_3 = (-10, 10, 20, 30, 40), \ \boldsymbol{\sigma}_3 = 50 \times \mathbf{1}_5^{\mathrm{T}}, \text{ and } \boldsymbol{\alpha}_3 = \mathbf{1}_5^{\mathrm{T}}.$

Table 1 Values of Δ for Scenarios 1, 2, and 3

γ	Scenario 1 $(\boldsymbol{\mu}_1, \boldsymbol{\sigma}_1, \boldsymbol{\alpha}_1)$ p = 2	Scenario 2 $(\boldsymbol{\mu}_2, \boldsymbol{\sigma}_2, \boldsymbol{\alpha}_2)$ p = 4	Scenario 3 $(\boldsymbol{\mu}_3, \boldsymbol{\sigma}_3, \boldsymbol{\alpha}_3)$ p = 5
4	$1.3 imes 10^{-4}$	$4.5 imes 10^{-5}$	3.3×10^{-5}
10	7.5×10^{-6}	2.4×10^{-6}	1.8×10^{-6}
15	$2.1 imes 10^{-6}$	$6.9 imes 10^{-7}$	$5.0 imes 10^{-7}$
20	$8.8 imes 10^{-7}$	$2.8 imes 10^{-7}$	$2.1 imes 10^{-7}$
50	5.4×10^{-8}	1.7×10^{-8}	$1.3 imes 10^{-8}$
100	6.7×10^{-9}	2.1×10^{-9}	1.6×10^{-9}
500	5.3×10^{-11}	1.7×10^{-11}	1.2×10^{-11}

In Table 2 we present the computation time, in seconds, for the calculation of the *p*-values 0.10, 0.05, 0.01, using the near-exact quantiles. These calculations were done using an Intel i7 2GHz processor; for values of γ larger than 50 the computation times start to increase quite a bit.

DM–CMA–FCT, Universidade Nova de Lisboa, Portugal email: fjm@fct.unl.pt

Pontificia Universidad Católica de Chile, Santiago, Chile

	Scenario 1 $(\boldsymbol{\mu}_1, \boldsymbol{\sigma}_1, \boldsymbol{\alpha}_1)$ n=2			Scenario 2 $(\boldsymbol{\mu}_2, \boldsymbol{\sigma}_2, \boldsymbol{\alpha}_2)$ n = 4			Scenario 3 $(\boldsymbol{\mu}_3, \boldsymbol{\sigma}_3, \boldsymbol{\alpha}_3)$ n=5		
γ	1	p - 2	$\frac{-2}{\text{alues}} \qquad p - 4$			p-values			
	0.10	0.05	0.01	0.10	0.05	0.01	0.10	0.05	0.01
4	0.03	0.02	0.02	0.08	0.08	0.09	0.14	0.14	0.16
10	0.13	0.11	0.13	0.58	0.62	0.72	1.14	1.19	1.34
15	0.23	0.25	0.30	1.50	1.52	1.62	3.01	3.18	3.57
20	0.42	0.44	0.53	3.03	3.23	3.67	6.03	6.44	7.24
50	3.37	3.70	4.35	29.1	31.0	35.1	63.1	66.2	74.4

Table 2 Computation time (in seconds) for the near-exact cumulative distribution functions for Scenarios 1–3

Fig. 1 Mathematica module for the cumulative distribution function of positive linear combinations of independent Gumbel random variables

Fig. 2 Mathematica module for the density function of positive linear combinations of independent Gumbel random variables

Fig. 3 Near-exact densities and near-exact distribution functions for positive linear combinations of independent Gumbel random variables: (a-b) $\mu = (-20, -1, -50, 12, 40)$, $\sigma = (2, 1/2, 5/4, 10, 50)$, $\alpha = (2, 12, 24, 50, 10)$, and $\gamma = 6$; (c-d) $\mu = (2, 3, 4, 5^{1/2}, \pi, -6, -7, -7)$, $\sigma = (1/2, \pi, \exp(1), 2^{1/2}, 1.2, 3.1, 2, 1)$, $\alpha = (1, 2, 3, 1/2, 5, 1, 1, 1)$, and $\gamma = 8$; (e-f) $\mu = (1, 2, 3, -3, -2, -1)$, $\sigma = (1, 2, 3, 4, 5, 6)$, $\alpha = (2, 4, 6, 8, 10, 12)$, and $\gamma = 8$; (g-h) $\mu = (-2, -4)$, $\sigma = (5, 6)$, $\alpha = (3, 7)$, and $\gamma = 20$.

Fig. 4 Near-exact densities and near-exact distribution functions for sums of independent Gumbel random variables: (a-b) $\boldsymbol{\mu} = (2, 3, 4, 5, 6, 7, 8), \boldsymbol{\sigma} = 5 \times \mathbf{1}_7^{\mathrm{T}}, \text{ and } \gamma = 2; \text{ (c-d) } \boldsymbol{\mu} = (2/10, 3/10, 4/10, 5/10), \boldsymbol{\sigma} = 55/1000 \times \mathbf{1}_4^{\mathrm{T}}, \text{ and } \gamma = 5; \text{ (e-f) } \boldsymbol{\mu} = (-29, -25, -35), \boldsymbol{\sigma} = 1/15 \times \mathbf{1}_3^{\mathrm{T}}, \text{ and } \gamma = 7; \text{ (g-h) } \boldsymbol{\mu} = (-9, -5, -5, -7, 2, 3, 1/2), \boldsymbol{\sigma} = 15 \times \mathbf{1}_7^{\mathrm{T}}, \text{ and } \gamma = 9.$

2.2 Further reports on measuring accuracy

In Figure 3 we plot the near-exact density and nearexact distribution function of four examples of positive linear combinations of independent Gumbel random variables. To assess the quality of our approximation we also report in Figure 3 the values of Δ , and of the measure

$$\delta = \frac{1}{2\pi} \int_{\mathbb{R}} \left| \Phi_W(t) - \Phi_{W^*}(t) \right| \, \mathrm{d}t \,, \tag{1}$$

which provides an upper bound analogous to equation (14) in the paper, but for the case of the nearexact density $f_{W^*} = dF_{W^*}/dw$, i.e.

$$||f_W - f_{W^{\star}}||_{\infty} \le \delta \le \frac{1}{2\pi} \int_{\mathbb{R}} |\Phi_{W_1}(t) - \Phi_{W_1^{\star}}(t)| \mathrm{d}t,$$

with $||f_W - f_{W^*}||_{\infty} = \sup_{w \in \mathbb{R}} |f_W(w) - f_{W^*}(w)|$, and where $f_W = dF_W/dw$ is the exact density. Thus similarly to Δ , the measure δ also provides an upper bound—in the sup-norm—for the error of our approximation, but for f_{W^*} instead of F_{W^*} ; further details on the measure δ can be found in Marques and Coelho (2008, p. 732).

The quality of our approximation is visible in the extremely reduced values of Δ and δ , which also show that if we plotted the exact density and the exact distribution function, obtained through the inversion formulas in Gil-Pelaez (1951), these would be virtually indistinguishable from our near-exact approximations. Similar conclusions can be drawn for Figure 4, where we plot near-exact densities and near-exact distribution functions, but now considering examples of sums of independent Gumbel random variables, all with the same scale parameter.

References

- Gil-Pelaez, J.: Note on the inversion theorem. Biometrika **38**, 481–482 (1951)
- Marques, F.J., Coelho, C.A.: Near-exact distributions for the sphericity likelihood ratio test statistic. J. Stat. Plann. Infer. 138, 726–741 (2008)