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Discrimination surfaces with application to
region-specific brain asymmetry analysis

Gabriel Martosa and Miguel de Carvalhob∗

Discrimination surfaces are here introduced as a diagnostic tool for localizing brain regions where discrimination
between diseased and non-diseased subjects is higher. To estimate discrimination surfaces, we introduce a Mann–
Whitney type of statistic for random fields, and present large-sample results characterizing its asymptotic behavior.
Simulation results demonstrate that our estimator accurately recovers the true surface and corresponding interval
of maximal discrimination. The empirical analysis suggests that in the anterior region of the brain, schizophrenia
patients tend to present lower local asymmetry scores in comparison to subjects in the control group. Copyright c©
2017 John Wiley & Sons, Ltd.
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1. Introduction

The study of brain asymmetries is of fundamental importance to understand the origins of several diseases in humans
and animals; see for instance [1], [2], [3], [4], and references therein. Morphological brain asymmetries have also been
studied so to assess whether they contain information that can be used to discriminate between diseased and non-diseased
subjects. For example, in a recent paper, [5] propose a Bayesian registration method for 3D MRI brain images and analyze
brain-shape asymmetries by comparing schizophrenia with healthy (or control) subjects. To this aim, the authors propose
a global measure of symmetry that consists in the ratio between the estimated left brain volume minus the estimated right
brain volume, relative to the total volume of the brain, for each patient, and find weak evidence of differences between the
two groups: schizophrenia vs. control patients. Neuroanatomical differences between schizophrenia patients and control
patients have been widely discussed in other studies in the medical literature [e.g. 6, 3, 7, 8, 9]. Beyond differences at a
morphological level, asymmetries of the brain at a functional level have also been examined [e.g. 10]. Neuroanatomical
differences, between diseased and non-diseased subjects—rather than functional differences—will be the ones of interest
in this article.

Despite the results by [5], the evidence for differences in morphological asymmetries between schizophrenia and control
patients is not clear cut, and for instance in Narr et al. [11, p. 945] it can be read:

”Many studies have observed schizophrenia-related reductions (or reversals) in asymmetric perisylvian
regions, but negative findings are common...”

With the exception of [5], most aforementioned studies are mainly descriptive and do not address from a rigorous statistical
perspective where the location of structural differences between groups take place with higher probability.

In this article, we propose a novel statistical approach to localize specific regions on the brain where the asymmetry,
measured as the difference between left and right sides in the brain, is more likely to be observed when comparing the
group of schizophrenia patients with healthy controls subjects. To this aim, we propose what we refer to as a discrimination
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surface, and we use it to define two sets, namely: intervals of maximal discrimination (IMD) and regions of over-threshold
discrimination (ROTD). Such surfaces and corresponding sets allow us to identify regions of the brain at which left-to-
right morphological differences between diseased and non-diseased subjects are more likely to occur. From a conceptual
viewpoint, discrimination surfaces—as formally defined in Section 3—have connections with the area under conditional
ROC curves, as discussed for example by [12] and [13]. However, while in conditional ROC curves the objective is often
on assessing how the discrimination ability of a diagnostic test changes over a predictor, here the goal is on searching for
regions of maximum discrimination. Another object which has connections with discrimination surfaces is the so-called
free-response ROC curve [14]; yet an important distinction between the two paradigms is that discrimination surfaces
deliver as output a suspected location, wheras free-response ROC curve take as input suspected locations—along with
a rating on the level of suspicion. Brain curves are modeled here as a functional data analysis [15, 16, 17] object, and
are used to generate a random field of local asymmetry scores. To estimate discrimination surfaces we propose what
we call as empirical discrimination surfaces, which can be regarded as a Mann–Whitney type of statistic for random
fields, in the sense that such empirical surfaces consist of pointwise Mann–Whitney estimates. Some large-sample results
characterizing the asymptotic behavior of our methods are derived, and in particular we show that under mild conditions
the empirical surface is strongly uniformly consistent and that the corresponding IMD is weakly consistent. A smoothed
version of the estimator is also discussed.

The article is organized as follows. In Section 2 we describe the data, from a schizophrenia study, that motivates the
paper. In Section 3 we present the proposed discrimination surface-based methods. In Section 4 we assess the finite-sample
performance of the proposed estimator in a simulation study. In Section 5 we analyze the data from the above-mentioned
schizophrenia study. We conclude in Section 6. Proofs are included in the Appendix.
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Figure 1. (a) Brain sections on the axial plane, for healthy and diseased subjects; x-axis: posterior→ anterior (back to front); z-axis: right→ left (“left” = patient’s left); and (b)
Brain curves B̃ : [0, 2π]→ R2. (c) Left BL : [0, 1]→ L ⊂ [0,∞) and (d) Right BR : [0, 1]→ R ⊂ [0,∞) brain curves after suitable rotations, reflections, and domain
rescaling.

2. Description of study data

The raw data consists of n = 68 3D MRI (Magnetic Resonance Images), gathered from a neuroscience study conducted
at the University of British Columbia, Canada, and documented in [5]; the study involved nD = 30 schizophrenia patients
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and nD̄ = 38 healthy controls. Some comments on the geometry of the data are in order. Following common practice in
neuroscience, each brain was registered into the so-called Talairach space [18]—so that brains can be compared on the
same three-dimensional referential coordinate space. The x-axis is created through the identification of two landmarks: the
AC (anterior commissure) and the PC (posterior commissure), with the AC being the origin (0, 0, 0); the remainder axes
are the y-axis: inferior→ superior (bottom to top) and the z-axis: right→ left (“left” = patient’s left). Of main interest is
the so-called axial plane, which corresponds to the x-z plane. In Figure 1 (a) we show the raw data corresponding to the
x-z plane registered by the MRI scanner with m = 500 (x, z) coordinates on each subject; the other relevant perspectives,
not shown here, are the sagittal plane (x-y) and the coronal plane (y-z). This data are in nature continuous, therefore the
framework of functional data analysis [15, 16, 17] is natural to model brain sections on the axial plane. The raw data are
available from the R package shapes [19].

Such data have been converted into functional data using a reproducing kernel Hilbert space approach discussed in the
Supplementary Materials. After transforming the raw data into functions we obtain the brain curves B̃i : [0, 2π]→ R2 for
i = 1, . . . , n shown in Figure 1 (b).

Following [5], we assume the midline plane of the brain as the line of symmetry, therefore we decompose the brain
curves into left B̃L and right B̃R as follows:

B̃L(θ) =

{
B̃(θ), if θ ∈ (π2 ,

3π
2 ],

0, otherwise,
, B̃R(θ) =

{
B̃(θ), if θ ∈ (−π2 ,

π
2 ],

0, otherwise.

It is clear that B̃(θ) = B̃L(θ) + B̃R(θ) from the previous decomposition. To analyze the brain asymmetries with respect
to the midline plane we rotate and reflect the functions B̃L and B̃R and also rescale the domain of both functions to the
interval [0, 1]. In Figures 1 (c) and (d) we respectively represent left and right brain curves after these transformations; we
denote these curves throughout as BL : [0, 1]→ L ⊂ [0,∞) and BR : [0, 1]→ R ⊂ [0,∞).

3. Discrimination surfaces

3.1. Distance to symmetry

Denote by D and D̄ the population of diseased and non-diseased subjects respectively, then for pairs of functional brain
curves (BL,D, BR,D) and (BL,D̄, BR,D̄) we define the distance to local symmetry as follows:

YD(t) =

∫ b

a

{BL,D(x)−BR,D(x)}2 dx, YD̄(t) =

∫ b

a

{BL,D̄(x)−BR,D̄(x)}2 dx, (1)

for t = (a, b) ∈ T , where
T = {(a, b) ∈ [0, 1]2 : 0 6 a < b 6 1}. (2)

The scores in Equation (1) should be interpreted as measures of distance to symmetry in the region [a, b], and for this
reason we will refer to these as local asymmetry scores; indeed, for a completely symmetric brain, BL = BR, it holds that
Y (t) = 0, for all t ∈ T . The larger the value of Y (t) =

∫ b
a
{BL(x)−BR(x)}2 dx, the less symmetric the brain should be

on the region parametrized by t. We refer to a and b as localization parameters.

3.2. Discrimination Surfaces, IMD, and ROTD

Using the local asymmetry scores YD(t) and YD̄(t) from Equation (1) we define the discrimination surface as

Λ(t) = P{YD(t) > YD̄(t)}, t ∈ T. (3)

Such surfaces can be used for assessing discrimination between the local asymmetry scores of diseased and non-diseased
subjects by appraising how likely it is for YD(t) to be larger than YD̄(t), over the regions of the brain corresponding to the
interval (a, b) = t ∈ T . For the purpose of consistency with existing literature, the definition in Equation (3) follows the
standard convention in medical diagnostic statistics—that a higher value of the ‘marker’ YD(t) would be more indicative
of disease—but all concepts in the paper can be readily adapted to the setting where a higher value of YD(t) is less
indicative of disease.

Another graphical device that can be used to summarize information on the discrimination ability over different intervals
is the discrimination contour, which is defined as λu = {t : Λ(t) = u}, for u ∈ (0, 1). We can interpret λu as the sets of
intervals with the same discrimination power.
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Discrimination surface Discrimination contour

Figure 2. (Left) Bi-lognormal discrimination surface and corresponding discrimination contour (Right) using the configuration of parameters in Example 1. The solid black dot
(•) represents the coordinates t∗ = (a∗, b∗) = (1/2, 3/4) underlying the interval of maximal discrimination, IMD = [a∗, b∗].

Example 1 (Discrimination surfaces for lognormal distributed asymmetry scores). Consider the location and scale
functions µ· : [0, 1]2 → R and σ· : [0, 1]2 → [0,∞), with µD(t) > µD̄(t). Let YD(t) ∼ LN(µD(t), σ2

D(t)) and YD̄(t) ∼
LN(µD̄(t), σ2

D̄
(t)) be two independent and lognormal distributed asymmetry scores. Then,

Λ(t) = P{YD(t) > YD̄(t)} = Φ

(
α(t)

{1 + β2(t)}1/2

)
, t ∈ T,

where Φ is the cumulative distribution function of the standard normal distribution, α(t) = {µD(t)− µD̄(t)}/σD̄(t) and
β2(t) = σD(t)/σD̄(t). The so-called bi-normal model is a particular case of the current model and it corresponds to the
case µD(t) = µD, µD̄(t) = µD̄, σD(t) = σD, σD̄(t) = σD̄, with µD(t) > µD̄(t), and σD, σD̄ > 0; cf. Section 4.4 in [20].
In Figure 2 we plot an example of a bi-lognormal discrimination surface and corresponding discrimination contours with
σD(t) = σD̄(t) = 1, µD̄(t) = 0, and µD(t) = 1− 10(b− 3/4)2 − 10(a− 1/2)2, for 0 6 a < b 6 1; note that in the latter
specification, α(t) = µD(t) and β(t) = 1.

In practice, one may also be interested in assessing on what regions discrimination is above a certain threshold and this
leads us to define the regions of over-threshold discrimination (ROTD):

ROTDu = {t : Λ(t) > u or 1− Λ(t) > u}, u ∈ (0, 1). (4)

Discrimination surfaces—as defined above—have connections with the area under conditional ROC curves [12, 13],
defined as AUC(x) =

∫ 1

0
ROC(p | x) dp, where ROC(p | x) = 1− FD(F−1

D̄
(1− p | x) | x), with x in Rp being a

covariate. Yet as it can be seen from Equation (4) (and as it will be seen from (5)), here the target is on seeking for
regions of maximum discrimination, and not simply on assessing how discrimination ability changes over a covariate.
Also, while in a typical conditional ROC curve setting, data are of the type {(XD,i, YD,i)}nD

i=1 and {(XD̄,j , YD̄,j)}
nD̄

j=1, in
our context data consist of the random fields of asymmetry scores, that is

{YD,i(t) : t ∈ T}nD

i=1, {YD̄,j(t) : t ∈ T}nD̄

j=1,

which we compute using {(BL,D,i, BR,D,i)}nD

i=1 and {(BL,D̄,j , BR,D̄,j)}
nD̄

j=1.
Since the goal is to localize brain regions where schizophrenia patients differ further from healthy controls. Then the

regions of interest are those where one of the random variables is stochastically greater than the other with maximum
probability. Therefore let t+ := arg maxt∈T Λ(t) and t− := arg maxt∈T 1− Λ(t) = arg mint∈T Λ(t), both well defined
if we assume Λ(t) is a uniformly continuous surface (note that T in Equation (2) is a compact set), then the region of
interest is determined by t∗ := t+ if Λ(t+) > 1− Λ(t−) or t∗ := t− otherwise. In this way we define the interval of
maximal discrimination as

IMD = [a∗, b∗], (5)

where the limits of this interval are defined through the elements in the vector t∗ = (a∗, b∗).
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3.3. Estimating discrimination surfaces and their functionals

We start by noting that the trajectories of the random fields of asymmetry scores, as defined in Equation (1) live in Y ,
the space of all non-negative and differentiable random functions on T such that ∂Y (t)/∂a 6 0 and ∂Y (t)/∂b > 0, a.s.
Indeed, it holds that 

∂Y

∂a
=

∂

∂a

(∫ b

a

{BL(x)−BR(x)}2 dx

)
= −{BL(a)−BR(a)}2 6 0,

∂Y

∂b
=

∂

∂b

(∫ b

a

{BL(x)−BR(x)}2 dx

)
= {BL(b)−BR(b)}2 > 0.

(6)

Keeping in mind the applied context under analysis—and to rule out uninteresting cases from a morphological
perspective—we further assume that random functions in Y are ‘bounded,’ in the sense that P{Y (t) ∈ S} = 1, with
S = [0,M ], for some possibly large but finite M > 0, for all t ∈ T .

Let Ft(y) = P{Y (t) 6 y}, and define the marginal empirical distribution function as,

F̂t(y) =
1

n

n∑
i=1

I{Yi(t) 6 y}, y ∈ S, t = (a, b) ∈ T,

where I{·} is the indicator function, and Y1(t), . . . , Yn(t) is a sequence of independent identically distributed random
functions in Y . Given that for each fixed t, Ft(y) is a distribution function, the standard Glivenko–Cantelli theorem
implies that, as n→∞, it holds that

sup
y
|F̂t(y)− Ft(y)| = o(1), a.s. (7)

Yet, since the trajectories of asymmetry scores live in Y , a stronger result actually holds for our setting. Indeed, F(·,·)(y)
is nondecreasing, and as a consequence of Equation (6) it follows that for 0 6 a0 6 a1 < b 6 1 then:

P{Y (a1, b) 6 y | Y (a0, b) 6 y} = 1 and P{Y (a0, b) 6 y | Y (a1, b) 6 y} 6 1. (8)

Therefore, by evaluating the ratio of the two conditional probabilities in Equation (8), we obtain that P{Y (a0, b) 6 y} 6
P{Y (a1, b) 6 y}, that is F(a,·)(·) is nondecreasing; the same reasoning can be used to verify that F(·,b)(·) is nonincreasing.
The same monotonicity properties hold for the marginal empirical distribution function F̂t(y). Thus, monotonicity on each
dimension of Ft(y) and F̂t(y), along with the extra assumption that the true Ft(y) is continuous, allows us to go beyond
and state the following generalization of the result presented in Equation (7).

Theorem 1. Let Y1(t), . . . , Yn(t) be a sequence of independent identically distributed random functions in Y . Suppose
Ft(y) is continuous for all (y, t) in S × T . Then, as n→∞, it holds that

sup
(y,t)

|F̂t(y)− Ft(y)| = o(1), a.s.

Given a random sample of size n = nD + nD̄ of random fields of asymmetry scores from diseased and non-diseased
subjects, define the empirical discrimination surface as

Λ̂(t) =
1

nDnD̄

nD∑
i=1

nD̄∑
j=1

I{YDi(t) > YD̄j(t)}. (9)

Here, YDi(t) is the distance to symmetry score, as defined in Equation (1), for the ith individual in the sample of diseased
patients, and YD̄j(t) is the distance to symmetry score of the jth non-diseased subject in the control group.

Let t̂+ := arg maxt∈T Λ̂(t) and t̂− := arg maxt∈T 1− Λ̂(t), then we define the estimated optimal localization vector
parameter t̂∗ := t̂+ if Λ̂(t̂+) > 1− Λ̂(t̂−) and t̂∗ := t̂− otherwise. The corresponding interval of maximum discrimination
estimate consists of a random interval, ÎMD = [â∗, b̂∗], where the limits of this random interval are defined through the
elements in the vector t̂∗ = (â∗, b̂∗).

Empirical ROTD can be obtained by setting a high level of discrimination u ∈ (0, 1), and consist of the following
random subset of T ,

R̂OTDu = {t : Λ̂(t) > u or 1− Λ̂(t) > u}. (10)
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Some comments are in order. For each t ∈ T , our estimator in Equation (9) is a Mann–Whitney type of statistic, and thus
it is straightforward to show that it is pointwisely unbiased and pointwisely weakly consistent, i.e.

E{Λ̂(t)} = Λ(t), Λ̂(t)− Λ(t) = op(1), (11)

assuming nD/n→ ρD ∈ (0, 1) and nD̄/n→ ρD̄ ∈ (0, 1), with ρD + ρD̄ = 1. Beyond such straightforward statements,
more can actually be said by taking advantage of our extended Glivenko–Cantelli theorem (Theorem 1 above).

In the theoretical considerations made below, we work under the following assumptions:

(A1) Suppose YD(t) and YD̄(t) are in Y , the space of all non-negative and differentiable random functions on T ,
such that ∂Y (t)/∂a 6 0 and ∂Y (t)/∂b > 0, and which are supported over S = [0,M ], for some M > 0, for every
t ∈ T = {(a, b) ∈ [0, 1]2 : 0 6 a < b 6 1}.

(A2) Suppose FDt(y) = P{YD(t) 6 y} and FD̄t(y) = P{YD̄(t) 6 y} are continuous in T × S, and strictly
increasing in y ∈ S.

(A3) Let YD,1(t), . . . , YD,nD
(t) and YD̄,1(t), . . . , YD̄,nD̄

(t) be two independent sequences of independent
identically distributed random functions in Y .

(A4) Suppose that as n→∞, it holds that nD/n→ ρD ∈ (0, 1) and nD̄/n→ ρD̄ ∈ (0, 1), with ρD + ρD̄ = 1.

Here, A1 and A2 are regularity conditions on the true data-generating process, whereas A3 and A4 are conditions about
the way we sample from such process. For identification reasons, throughout we assume that Λ(t) is uniquely maximized
at t∗; this plays no role on the consistency of Λ̂(t). The following results hold.

Theorem 2. Suppose assumptions A1 to A4 hold. Let Λ(t) be a discrimination surface, and Λ̂(t) be its empirical
discrimination surface; let t∗ = (a∗, b∗) ∈ T be the pair of points delimiting the interval of maximal discrimination, and
t̂∗ ∈ T be their corresponding estimates. Then, as n→∞, it holds that:

1. supt |Λ̂(t)− Λ(t)| = o(1), a.s.

2. t̂∗ − t∗ = op(1).

In addition to the empirical estimate of the discrimination surface, smooth estimations can be obtained by considering
the following kernel-based version of our estimator in Equation (9),

Λ̃(t) =

L∑
l=1

KH(t− t′)Λ̂(t), (12)

where L is the length of the grid over which we smooth the empirical discrimination surface, and H is a positive definite
bandwidth matrix. In practice, both L and H act as smoothing parameters in the sense that if we increase L and fix H , we
should expect to get smoother estimates.

4. Simulation study

4.1. Preliminary experiments and preparations for Monte Carlo study

In this section we illustrate numerically the proposed methodology to estimate discrimination surfaces and corresponding
IMD. To this aim, we use as a reference framework the bi-lognormal model introduced in Example 1. A Monte Carlo
study will be reported in Section 4.2.

First, we simulate random samples of YD and YD̄, the lognormal distributed asymmetry scores corresponding to
the Example 1, with sample size: n = 200, 1000, 2000, 10000 and 20000 assuming that ρD = ρD̄ = 0.5. The estimated
discrimination surfaces Λ̂(t) along with the corresponding discrimination contours λ̂u are presented in Figure 3. The
results of this single-run experiment, suggest a fast convergence of the empirical discrimination surface, along with that of
the corresponding interval of maximal discrimination. To evaluate the uncertainty around the estimation of the interval of
maximal discrimination in this single-run experiment, we compute a bootstrap confidence region (CR) for the IMD. For
that, we use the data relative to the sample size n = 200 and generate B = 1000 bootstrap samples from the original data.
The bootstrap α-confidence regions, based on P̂ (IMD ∈ CRα) = 1− α for α ∈ [0, 1], are reported in Figure 4, and for
95% confidence level, the estimated region contains the true localization parameter, t+ = (a+, b+) = (1/2, 3/4). Coverage
of the bootstrap will be assessed in the Monte Carlo study from Section 4.2.
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Empirical discrimination surfaces

Empirical discrimination contours

Figure 3. Above: Discrimination surface estimates Λ̂(t). Below: Corresponding discrimination contours. 1) n = 200, 2) n = 1000, 3) n = 2000, 4) n = 10000, 5)
n = 20000, 6) True Λ(t) and λc. In 6) the solid black dot (•) represents the coordinates t+ = (a+, b+) = (1/2, 3/4) underlying the interval of maximal discrimination,
IMD = [a+, b+], whereas in 1–5) (•) denotes its corresponding estimates.

4.2. Monte Carlo study

In this Monte Carlo study we investigate the performance of our estimator in Equation (9) over a variety of sample sizes
and over two data configurations (Scenarios A and B). Specifically, we consider the following data generating processes
based on the bi-(log)normal model from Example 1, where σD(t) = σD̄(t) = 1 and

µD̄(t) = 0, µD(t) = 1− 10(b− 3/4)2 − 10(a− 1/2)2, 0 6 a < b 6 1, (13)

Namely, we consider:

• Scenario A: YD(t) ∼ N(µD(t), 1), with µD(t) as in (13), and YD̄(t) ∼ N(0, 1), with and YD(t) independent of
YD(t′) and YD̄(t) independent of YD̄(t′), for t 6= t′.

• Scenario B: YD(t) and YD̄(t) are Gaussian random fields with respective means µD(t) as in (13) and µD̄(t) = 0,
and with Matérn covariance function, γ(h) = σ221−κ/Γ(κ)(h/φ)κKκ(h/φ), for h > 0, where σ = 1, φ = 2 and
κ = 0.5 are the sill, range, and shape parameters, Γ is the gamma function, and with Kκ denoting the modified
Bessel function of order κ.

Scenario A is thus the one we already used to produce the normal distributed asymmetry scores for the one-shot experiment
in Section 4.1. We continue assuming ρD = 0.5 and consider again the sample size: n = 200, 100, 2000, 10000 and 20000.
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Figure 4. Bootstrap confidence regions along with true localization parameter t+ = (a+, b+) = (1/2, 3/4) (in a solid dot (•)) at different confidence levels .

For each sample size, we simulate M = 1000 datasets for each of the Scenarios A and B above. With each dataset we
estimate the discrimination surface and the corresponding IMD; then we compute the mean integrated squared error
(MISE) and mean squared error (MSE) as follows:

MISEnΛ =
1

M

M∑
m=1

∫
T

{Λ̂m(t)− Λ(t)}2 dt, MSEnt+ =
1

M

M∑
m=1

{(â+
m − a+)2 + (̂b+m − b+)2},

where Λ̂m(t) is the estimate produced using the mth simulated dataset, with t̂+
m = (â+

m, b̂
+
m) denoting its corresponding

estimated localization parameters.

Table 1. Mean integrated squared error (MISE) estimates and mean squared error (MSE) (both on a scale of 103),
respectively for Λ and t, over different sample sizes for Scenarios A and B as defined in Section 4.2. The standard-error is

reported in parenthesis.

Sample size
Scenario Parameter 200 1000 2000 10000 20000

A
Λ

3.833 0.765 0.380 0.076 0.038
(0.230) (0.047) (0.024) (0.005) (0.002)

t
5.766 2.761 2.014 0.963 0.739
(5.320) (2.482) (1.787) (0.874) (0.680)

B
Λ

4.239 0.790 0.396 0.076 0.040
(4.666) (0.843) (0.429) (0.088) (0.044)

t
2.137 0.761 0.493 0.217 0.191
(2.002) (0.730) (0.463) (0.135) (0.088)

Table 1 summarizes our Monte Carlo simulation study. As expected, MISE decreases as the sample size increases,
both in terms of the MISE associated with Λ̂ and t̂+. However, it can be seen that in Scenario B the estimates of t+ are
more accurate for all sample sizes. This is due to the dependence structure introduced in the data generating process in
Scenario B, that leads to a reduction of the variability associated to t̂+. Note that MISEnΛ looks proportional to 1/n, while
MSEnt+ seems to converge more slowly. This due to the fact the estimation of IMD is a challenging one, as the empirical
discrimination surface is only smooth in the limit. We have also conducted some Monte Carlo experiments, with n = 200,
so to assess coverage probability of the bootstrap confidence region for t+ in Scenario A and B. The 99% and 95% coverage
probabilities in Scenario A are 0.999 and 0.955, respectively. In Scenario B, the 99% and 95% coverage probabilities are
0.987 and 0.945 respectively. Thus, bootstrap confidence regions achieve nominal coverage in both scenarios.
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5. Brain asymmetry analysis in schizophrenia patients

5.1. Context underlying the analysis

We now apply our methods to the brain curves from the study in Section 2. It has been suggested that schizophrenia
patients may tend to have more symmetric brains than controls in the anterior and perisilvian regions [11, 21]. This result
is controversial [3, 7, 8], and we show in this section that our methods can be used to localize brain regions where with
maximum probability schizophrenic patients may differ further from healthy controls.

5.2. Discrimination surfaces and regions of maximal discrimination: Region-specific analysis

We estimate the empirical discrimination surface by using the asymmetry scores introduced in Equation (1). In Figure 5,
we show the discrimination surfaces estimated using the methods proposed in Equations (9) and (12): At the top of the
figure we show Λ̂(t) on the left and Λ̃(t) on the right, and 1− Λ̂(t) and 1− Λ̃(t) on the bottom (left and right respectively).
The smoothed empirical discrimination surfaces corresponds to the smoothing parameters L = 2775 and H = 0.13I2×2.
Following Marron [22, p. 533], we conducted inference over a wide range of bandwidth matrices and grid sizes as a way
to assess the sensitivity and reliability of the inference to the smoothing parameters L and H . The results do not differ
substantially from the ones documented here for L and H close to the values selected to conduct the analysis.

Figure 5. Discrimination surface estimates. Above: Empirical discrimination surface Λ̂(t) and its smoothed version Λ̃(t). Below: reversed empirical discrimination surface
1− Λ̂(t) and its smoothed version 1− Λ̃(t) .

In most regions of the brain, as parametrized by t, one finds that Λ̂(t) is lower than 1− Λ̂(t); cf Figure 5; in
particular maxt∈T Λ̂(t) = Λ̂(t̂+) ≤ maxt∈T 1− Λ̂(t) = Λ̂(t̂−). Indeed, evidence provided by empirical discrimination

Statist. Med. 2017, 00 1–15 Copyright c© 2017 John Wiley & Sons, Ltd. www.sim.org 9
Prepared using simauth.cls



Statistics
in Medicine Gabriel Martos and Miguel de Carvalho

surfaces suggests that for the study data one is more likely to observe symmetric brains in the schizophrenia group of
patients than in the healthy control group. Thus, we concentrate in t∗ = t− as the estimation target in what follows.

We now turn our attention to the IMD as defined in (5). The corresponding estimate is ÎMD = [0.44, 0.52] which
corresponds partially to the perisilvian region of the brain. In the region parametrized by t̂∗, the estimated probability
P̂{YD(t̂∗) 6 YD̄(t̂∗)} = 0.66 can be interpreted as the estimated proportion of schizophrenic patients who present lower
local asymmetry scores than a healthy patient in the region parametrized by t̂∗. In Figure 6 we show the estimated average
brain curves (B̄L,D, B̄R,D) and (B̄L,D̄, B̄R,D̄) and, highlighted in red, the region that corresponds to t̂∗ = (0.44, 0.52). As
can be seen, the “average-patient” in the control group have a more asymmetric brain than the “average-patient” in the
disease group (notice that the area highlighted in red on the left-figure is greater that the same brain area on the right-figure)
in the local region parametrized by t̂∗.

Figure 6. Average brain curves and the local region t̂∗ corresponding to estimated IMD (interval of maximal discrimination), as defined in Section 3.3, which corresponds to the
point where the empirical discrimination surface attain its maximum.

The regions over-threshold discrimination, ROTDu as defined in (4), was estimated using the plug-in estimator
in (10); the result is presented in Figure–7 for u = 0.60 (on the left) and u = 0.65 (on the right). For the dataset
we are considering here Λ̂(t) < 0.60 for all t ∈ T , therefore the estimated ROTDu only highlights regions where
P̂{(YD(t) ≤ YD̄(t)} ≥ u. In Figure 7 (left) we can see that schizophrenia patients present more symmetric brains than
healthy patients in the regions of the brain corresponding to the anterior zone. Moreover, in Figure 7 (right), we observe
that this difference in terms of symmetry is more likely to be observed in the perisylvian region of the brain, evidence
which corroborated by the IMD estimate which localizes the region in Equation (10). Therefore, the empirical evidence
obtained in this local-brain asymmetry study agrees with the results obtained by [11, 21]. A sensitivity analysis was
conducted using other distances to local symmetry instead of Equation (1). The choice of the distance does not appear
to affect our main findings; in particular, the IMDs corresponding to the L1 and L∞ distances to local asymmetry are
ÎMDL1

= [0.45, 0.51] and ÎMDL∞ = [0.47, 0.50]. To assess the significance of the identified region of local asymmetry
we used Hsieh and Turnbull [23, Th. 2.3], which implies that asymptotically

√
nD{Λ̂(t)− Λ(t)} ∼ N(0, σ2) + op(1),

with σ2 = 1/12(1/nD + 1/nD̄)—under the null H0 : Λ(t) = 1/2. The null is rejected at the estimated IMD, and more
importantly it is consistently rejected on a neighborhood of (â, b̂). See Section 3 in the Supplementary Materials.

To describe the uncertainty around the IMD, we use the bootstrap to build a empirical confidence region for this
parameter. The study was carried out using B = 1000 bootstrap samples from the original data. In Figure 8 we show the
empirical α-confidence regions—computed from P̂{IMD ∈ CRα} = 1− α for α ∈ [0, 1]—that support the evidence of
morphological differences in the brains between groups, being more likely to observe symmetric brains in the perisylvian
and anterior regions in schizophrenia patients. In addition, in Figure 9 we show the bootstrap–based 95%-percentile
functional confidence region for P{YD(t) ≤ YD̄(t)} and 1− P{YD(t) ≤ YD̄(t)}. These empirical functional confidence
regions can be used to assess the variance regarding the estimated discrimination surfaces and in particular the uncertainty
around the estimated IMD.
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Figure 7. ROTD estimate (regions over-threshold discrimination) as defined in Equation (10) with u = 0.60 (left) and u = 0.65 (right), for brain asymmetry analysis data.

Figure 8. Bootstrap estimation of the CR for different confidence levels (1− α).

6. Discussion

Discrimination surfaces are here introduced as a diagnostic tool for localizing brain regions where discrimination between
diseased and non-diseased subjects is higher. To estimate discrimination surfaces and associated regions of maximum
discrimination, we introduce a Mann–Whitney type of statistic for random fields, and present large-sample results
characterizing its asymptotic behavior. We have analyzed the data documented in [5] and found evidence of region-specific
difference in terms of symmetry between the groups of healthy and schizophrenia patients. The empirical analysis suggests
that for this study data, schizophrenic patients are more likely to present symmetric brains in the anterior region. In
particular, with maximum probability, this difference in shape is observed in the perisylvian region as is also documented
in [11, 21] and reference therein. An obvious limitation with empirical discrimination surface stems from the lack of
ability to borrow strength across values of t, which motivates the need for also considering the smoothed version in (12).

A natural possibility for future work entails building alternative IMDs from other measures assessing discrimination
between groups such as the Youden index [24]—which has links with the Kolmogorov–Smirnov statistic—or a
standardized log-rank statistic [25, 26, 27]—which has links with the Wilcoxon rank statistic. Specifically, in a similar
way that we argue here that discrimination surfaces have connections with the area under conditional ROC curves (cf
Section 3.2), it would be natural modeling our applied setting of interest with an analogue of the covariate-adjusted Youden
index [28], YIt = maxct {FD̄t(ct)− FDt(ct)}, with ct being a function of t; the corresponding IMD would in this case
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Figure 9. Empirical functional 95%-confidence interval for the discrimination surfaces: Λ(t) on the left and 1− Λ(t) on the right.

result from maximizing YIt. In addition, a similar approach would entail developing standardized log-rank statistics for
random fields, |Sct |, whose corresponding IMD would result from maximizing the discrimination surface |Sct | over t in
T .

Another natural avenue for future work is on extending the local–asymmetry analysis to 3D functional data so to
estimate 3D regions of maximal discrimination. Accompanying the latest trends in the study of medical images [29, 30],
a natural starting point for this would be to model the brain surface B̃(x, y, z) as a Riemann manifold,M, embedded in a
normed vector space (R3, ‖ · ‖). After a suitable partition and re-parametrization of the brain manifold into left and right
brain sub-manifolds, BL(x, y, z) and BR(x, y, z), one could consider the set C of closed smooth curves γ : [0, 1]→M,
that is, for all γ ∈ C then γ(0) = γ(1) and γ′(0) = γ′(1); a curve belonging to this set determines a 3D closed region in
the brain surface. Asymmetry scores in the local–region determined by the closed curve γ ∈ C could then be defined as

YD(γ) =

∫ 1

0

{BL,D(γ(s))−BR,D(γ(s))}2 ds, YD̄(γ) =

∫ 1

0

{BL,D̄(γ(s))−BR,D̄(γ(s))}2 ds,

along with the discrimination functional for such 3D setting,

Λ(γ) = P{YD(γ) > YD̄(γ)}, γ ∈ C.

The variational problems associated to the local Region of Maximal Discrimination (RMD),

γ+ =: arg maxγ∈C Λ(γ) and γ− =: arg maxγ∈C 1− Λ(γ),

would entail estimation over an infinite-dimensional parameter space C, and thus would require the need of developing
inference methods and asymptotics tailored for that setting.
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Appendix

In this appendix we use F (y, a, b) to denote Ft(y) = P{Y (t) 6 y} when the context so requires, and use the notation
FDt(y) = P{YD(t) 6 y} and FD̄t(y) = P{YD̄(t) 6 y}, for y ∈ S and t ∈ T . Also, F−1

t (p) = inf{y : Ft(y) > p} are the
marginal quantiles, F̂−1

t (p) = inf{y : F̂t(y) > p} are the marginal empirical quantiles, with F̂t(y) = n−1
∑n

i=1 I{Yi(t) 6
y} denoting the marginal empirical distribution function.
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A.1 Proof of Theorem 1

Our line of attack is similar to that of [31, p. 62]. Let Ci,j,k = [yi, yi+1]× [aj , aj+1]× [bk, bk+1], with

0 = y0 < y1 < · · · < yI−1 < yI = M, 0 = a0 < a1 < · · · < aJ−1 < aJ = 1, 0 = b0 < b1 < · · · < bK−1 < bK = 1,

be such
|F (yi+1, aj+1, bk)− F (yi, aj , bk+1)| < ε,

for a given ε > 0, for i = 0, . . . , I , j = 0, . . . , J , and k = 0, . . . ,K. By the monotonicity properties of Ft(y) and F̂t(y) on
S × [0, 1]2 (namely: F(·,·)(y) and F(a,·)(·) are nondecreasing, F(·,b)(·) is nonincreasing, and analogous properties hold for
F̂t(y)), it follows that

∆n ≡ sup
(y,t)∈S×T

|F̂t(y)− Ft(y)| 6 sup
(y,t)∈S×[0,1]2

|F̂t(y)− Ft(y)|

= max
i,j,k

sup
(y,t)∈Ci,j,k

|F̂t(y)− Ft(y)|

6 max
i,j,k

max{|F̂ (yi+1, aj+1, bk)− F (yi, aj , bk+1)|, |F (yi+1, aj+1, bk)− F̂ (yi, aj , bk+1)|},

and thus by taking the limit and using the strong law of large numbers,

lim sup
n→∞

∆n = max
i,j,k
{|F (yi+1, aj+1, bk)− F (yi, aj , bk+1)|} < ε, a.s.

A.2 Auxiliary results

This appendix includes auxiliary lemmas which streamline the proof of Theorem 2 in Appendix A.3.

Lemma 1. Let t ∈ T , and let g(t) be a function. Suppose that: i) g(t) is uniquely maximized at t∗, ii) T is compact, iii)
g(t) is continuous, and iv) ĝ(t) converges uniformly in probability to g(t), and t̂ = arg maxt ĝ(t). Then, as n→∞, it
holds that

t̂− t∗ = op(1).

Proof. See Newey and McFadden [32, p. 2121].

Lemma 2. Let Y1(t), . . . , Yn(t) be a sequence of independent identically distributed random functions in Y . Suppose
Ft(y) is continuous for all (y, t) in S × T and strictly increasing for all y in S. Then, as n→∞, it holds that

sup
(p,t)

|F̂−1
t (p)− F−1

t (p)| = o(1), a.s.

Proof. The proof follows the same reasoning as that of Theorem 1 and can be found in the Supplementary Materials.

Lemma 3. Suppose assumptions A1 to A4 of Section 3.2 hold. Then, as n→∞, it holds that

sup
(p,t)

|FDt{F̂−1
D̄t

(p)} − FDt{F−1
D̄t

(p)}| = o(1), a.s.

Proof. Since FD̄t(y) is a bounded and continuous function for all (y, t) in S × T , it is uniformly continuous and thus for
every ε > 0 there exists a δ > 0 such that

sup
(p,t)∈[0,1]×T

|F̂−1
D̄t

(p)− F−1
D̄t

(p)| < δ ⇒ sup
(p,t)∈[0,1]×T

|FDt{F̂−1
D̄t

(p)} − FDt{F−1
D̄t

(p)}| < ε, a.s. (14)

Then, by the uniform convergence of F̂−1
D̄t

(p) (Lemma 2), we can always find an n > N(ε) such that the right-hand side
of (14) holds, from where the final result follows.
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A.3 Proof of Theorem 2

Keeping in mind that the AUC coincides with the area under the ordinal dominance curve [23, p. 27], it follows that:

|Λ̂(t)− Λ(t)| =
∣∣∣∣ ∫ 1

0

F̂Dt{F̂−1
D̄t

(p)} dp−
∫ 1

0

FDt{F−1
D̄t

(p)} dp

∣∣∣∣
6
∫ 1

0

|F̂Dt{F̂−1
D̄t

(p)} − FDt{F̂−1
D̄t

(p)}|dp+

∫ 1

0

|FDt{F̂−1
D̄t

(p)} − FDt{F−1
D̄t
{p)}|dp

6 sup
p∈[0,1]

|F̂Dt{F̂−1
D̄t

(p)} − FDt{F̂−1
D̄t

(p)}|+ sup
p∈[0,1]

|FDt{F̂−1
D̄t

(p)} − FDt{F−1
D̄t

(p)}|,

and thus

sup
t
|Λ̂(t)− Λ(t)| 6 sup

(p,t)∈[0,1]×T
|F̂Dt{F̂−1

D̄t
(p)} − FDt{F̂−1

D̄t
(p)}|+ sup

(p,t)∈[0,1]×T
|FDt{F̂−1

D̄t
(p)} − FDt{F−1

D̄t
(p)}|.

Strong uniform consistency of Λ̂ follows by observing that a.s. convergence to zero of the left-hand term follows by
Theorem 1, whereas a.s. convergence to zero of the right-hand term follows by Lemma 3.

Weak consistency of t̂ then follows from Lemma 1 and by noting that Λ(t) is continuous. To justify the latter claim note
that by assumption FDt{F−1

D̄t
(p)} is a bounded and continuous function for (p, t) in [0, 1]× T , and thus it is uniformly

continuous, so that for every ε > 0 there exists a δ > 0, such that if max{|p− p′|, |a− a′|, |b− b′|} < δ, then

|FDt{F−1
D̄t

(p)} − FDt′{F−1
D̄t′

(p′)}| < ε. (15)

Continuity of Λ(t) then follows from (15) and the fact that to ensure |Λ(t)− Λ(t′)| < ε, we only need to set δ >
max{|a− a′|, |b− b′|}.
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