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1. Supplementary technical details and proof of Lemma 2

We start with some comments on monotonicity of the F−1
t (p) = inf{y : Ft(y) > p}. Let 0 6 a0 6 a1 < b 6 1. Note that

since F(a,·)(·) is nondecreasing it follows that F(a0,b)(y) 6 F(a1,b)(y), for all y ∈ S, and so

F−1
(a0,b)

(y) = inf{y : F(a0,b)(y) > p} 6 inf{y : F(a1,b)(y) > p} = F−1
(a1,b)

(y). (1)

Thus, Equation (1) implies that F−1
(a,·)(·) is nondecreasing; similar arguments can be used to show that F−1

(·,b)(·) is
nonincreasing.

We now prove Lemma 2. Below, F̂−1
t (p) = inf{y : F̂t(y) > p} are the marginal empirical quantiles, with F̂t(y) =

n−1
∑n

i=1 I{Yi(t) 6 y} denoting the marginal empirical distribution function. In addition, Y , is the space of all non-
negative and differentiable random functions on T , such that ∂Y (t)/∂a 6 0 and ∂Y (t)/∂b > 0, and which are supported
over S = [0,M ], for some M > 0, for every t ∈ T = {(a, b) ∈ [0, 1]2 : 0 6 a < b 6 1}.

Proof of Lemma 2. Since we are assuming that Ft(y) is strictly increasing on [0,M ] it follows that F−1
t (p) is continuous

for all p ∈ [F−1
t (0), F−1

t (1)] = [0, 1], by keeping in mind [1, Problem 45] and the assumption that random curves in Y
are supported over S = [0,M ], for some M > 0.

Our line of attack is now similar to that of [2, p. 62]. Let Ci,j,k = [pi, pi+1]× [aj , aj+1]× [bk, bk+1], with

0 = p0 < p1 < · · · < pI−1 < pI = 1, 0 = a0 < a1 < · · · < aJ−1 < aJ = 1, 0 = b0 < b1 < · · · < bK−1 < bK = 1,

be such

|F (pi+1, aj+1, bk)− F (pi, aj , bk+1)| < ε,

for a given ε > 0, for i = 0, . . . , I , j = 0, . . . , J , and k = 0, . . . ,K. By the monotonicity properties of F−1
t (p) and F̂−1

t (p)
on [0, 1]3 (namely: F−1

(·,·)(p) and F−1
(a,·)(·) are nondecreasing, F−1

(·,b)(·) is nonincreasing, and analogous properties hold for
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F̂−1
t (p)), it follows that

∇n ≡ sup
(p,t)∈[0,1]×T

|F̂−1
t (p)− F−1

t (p)| 6 sup
(p,t)∈[0,1]×[0,1]2

|F̂−1
t (p)− F−1

t (p)|

= max
i,j,k

sup
(p,t)∈Ci,j,k

|F̂−1
t (p)− F−1

t (p)|

6 max
i,j,k

max{|F̂−1(pi+1, aj+1, bk)− F−1(pi, aj , bk+1)|,

|F−1(pi+1, aj+1, bk)− F̂−1(pi, aj , bk+1)|},

and thus by taking the limit and using standard arguments on pointwise convergence of F−1
t (p) [3, p. 305], it follows that

lim sup
n→∞

∇n = max
i,j,k
{|F−1(pi+1, aj+1, bk)− F−1(pi, aj , bk+1)|} < ε, a.s.

2. Transforming brain raw data into functional data

Most functional data analysis approaches for preprocessing raw data suggest proceeding as follows: Choose an orthogonal
basis of functions Φ = {φ1, . . . , φN}, where each φi belongs to a general function space H, and then represent each
functional datum by means of a linear combination in the Span(Φ) [4, 5]. A usual choice is to considerH as a Reproducing
Kernel Hilbert Space (RKHS) of functions [6]. In this case, the elements in the spanning set Φ are the eigenfunctions
associated to the positive-definite and symmetric kernel function Kh : A×A→ R that span H, and with h > 0 being a
bandwidth.

In our setting, A = [0, 2π] and the functional representation problem can be framed as follows: We have m = 500 (x, z)
coordinates for each of the n = 68 brain curves (cf Figure 2 (a) in the paper), and thus let {(θj , r(θj)) ∈ [0, 2π]×R}mj=1

be the discrete version of a brain curve B ∈ H represented in a polar coordinate system. The functional data estimator for
each brain curve is obtained solving the following regularization problem:

r̃(θ) := arg min
g∈H

m∑
j=1

V (r(θj), g(θj))
2 + γΩ(g), (2)

where V is a strictly convex functional with respect to the second argument, γ > 0 is a regularization parameter (chosen
by cross–validation), and Ω(g) is a regularization term. By the Representer Theorem [7, Th. 5.2, p. 91] [8, Pr. 8, p. 51] the
solution of the problem stated in Equation (2) exists, is unique, and admits a representation of the form

r̃(θ) =

m∑
j=1

αjKh(θ, θj). (3)

where Kh is a kernel—say, Kh(x, y) = exp{−(x− y)2/2h}. In the particular case of a squared loss function V (w, z) =

(w − z)2 and considering Ω(g) =
∫ 2π

0
g2(θ) dθ, the coefficients of the linear combination in Equation (3) are obtained

solving the following linear system

(γmI + K)α = y, (4)

where α = (α1, . . . , αm)T, y = (r(θ1), . . . , r(θm))T, I is the identity matrix of order m, and K the is the Gram matrix
with the kernel evaluations, [K]k,l = Kh(θk, θl), for k = 1, . . . ,m and l = 1, . . . ,m. In Figure 2, we show the raw data
on the left and the estimated functional data obtained by solving the regularization problem in Equation (2). To obtain
the brain curves in Figure 1 (b) in the paper, we use the Cartesian coordinate system, B̃i(θ) = (r̃i(θ) sin(θ), r̃i(θ) cos(θ)),
where r̃i is the functional data estimator of the ith brain curve for θ ∈ [0, 2π] and i = 1, . . . , n.
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Figure 1. Raw data in polar coordinates (left) and brain curves obtained by solving the regularization problem in Equation (2) (right).

3. Supplementary empirical reports
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Figure 2. Region of T at which the null hypothesis H0 : Λ(t) = 1/2 is rejected in the data application in Section 5 in the paper.

4. R code

The following chunks of R code can used to replicate the numerical experiments introduced in Section 4 of the manuscript.
Below we estimate the empirical discrimination surface and empirical discrimination level sets given a random sample of
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(log)normal distributed asymmetry scores, as formally introduced in Example 1 of the manuscript.
We start by loading the relevant packages.

## Required packages:
list.of.packages <- c("akima", "fields", "MASS", "rgl", "Bolstad",

"hdrcde", "lattice")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[, "Package"])]
if(length(new.packages)) install.packages(new.packages) else {print('OK')}
lapply(list.of.packages, require, character.only = TRUE)

We now setup the simulation settings and simulate data according to Scenario A.

## Localization parameters; T as formally defined in Equation (2).
T <- expand.grid(seq(0, 1, l = 100), seq(0, 1, l = 100))
T <- T[T[, 1] > T[, 2], ]
colnames(T) = c('b','a')

## Simulating random scores according to Scenario A
nD <- nnD <- 100
hat.Lambda <- c()
for(i in 1:dim(T)[1]) {
b <- T[i, 1]
a <- T[i, 2]
alpha <- 1 - 10 * (b - 3 / 4)ˆ2 - 10 * (a - 1 / 2)ˆ2
YD <- rnorm(nD, alpha, 1)
YnD <- rnorm(nnD, 0, 1)
ans <- vapply(YD, function(YD) YD > YnD, logical(length(YnD)))
hat.Lambda[i] <- sum(ans) / (nD * nnD)

}

We are now ready to fit the empirical discrimination surface underlying the simulated data. See Figure 3.

a
b

Λ(t)

Figure 3. Empirical discrimination contour: Replicating Figure 3 1) in the manuscript.

The IMD estimates can be computed using the following code.

## IMD estimates
max(hat.Lambda)

## [1] 0.8312

T[which(max(hat.Lambda)==hat.Lambda, arr.ind = TRUE), ]

## b a
## 5277 0.7676768 0.5252525

## True: a* = 1/2 and b* = 3/4
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The chunk of code below can be used to replicate the empirical discrimination contour from Figure 3 1) in the manuscript.
See Figure 4.

## Empirical discrimination contour
resolution <- 0.01
interpol <- interp(x = hat.Lambda.t[, 2], y = hat.Lambda.t[, 1],

z = hat.Lambda.t[, 3], xo = seq(min(hat.Lambda.t[, 1]),
max(hat.Lambda.t[, 1]), by = resolution),
yo = seq(min(hat.Lambda.t[, 2]), max(hat.Lambda.t[, 2]),

by = resolution), duplicate = "mean")
filled.contour(interpol, color.palette = function(x)rev(heat.colors(x)),

axes = TRUE, frame.plot = TRUE, xlab='a', ylab='b',
plot.axes = {axis(1); axis(2);
points(0.5, 0.75, pch = 19, lwd = 6)})
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Figure 4. Empirical discrimination contour: Replicating Fig. 3 1) in the manuscript.
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