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We congratulate the authors for a thought-provoking case study, and for their novel treatment of 
nonstationary spatial extreme value analysis. In what follows, we focus on aspects of the analysis 
related to missing data. In Section 4.3, the authors note that: 

‘The issue of missing data in spatial extremes applications seems to be rarely discussed’. 

In fact, the term ‘missing data’, and any discussion of its treatment, is almost completely missing 
in leading monographs on extreme value theory (e.g. Beirlant et al., 2004; Coles, 2001; de Haan & 
Ferreira, 2006; Resnick, 2007); this omission is not an issue with the monographs themselves, but 
rather a consequence of the level of attention the issue has received within the Neld. To complicate 
matters even further, many analyses of extremes disregard the missing values; this poor practice is 
called, in statistical jargon, a ‘complete case analysis’—an approach that produces valid, yet inef-
fective, results under only speciNc conditions [Missing Completely at Random (MCAR); Little & 
Rubin, 2002]. Ignoring the uncertainty surrounding the missing values is well-known to impact 
the inferences leading, for example, to larger conNdence intervals.  
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To illustrate the strengths and weaknesses of the author’s approach to handling missing data, we 
consider likelihood inference for the Husler–Reiss r-Pareto process; we use the risk functional in Eq. 
(20) with variogram γ(h) = (h/λ)ț, for λ > 0 and ț ∈ (0, 2). Four scenarios are considered: (i) one with
fully observed data, and three where ≈ 50% of observations are missing. In the latter three scenarios,
we consider (ii) MCAR, with values missing uniformly-at-random; (iii) Missing at Random (MAR), 
with observations at sites with smaller inter-site distances more likely to be missing; and (iv) Missing 
Not at Random (MNAR), where higher values are more likely to be missing. We use the same ap-
proach as this article to estimate (λ, ț) for 200 datasets, which each contain 1,000 independent rep-
licates of the standardized process observed at 25 sites (in [0, 1] × [0, 1]); Figure 1 displays the results
from this experiment. The inference framework presented by this article provides rigorous results for 
the case of MCAR and MAR, with a small increase in uncertainty relative to the case of fully observed 
data. However, Figure 1 shows signiNcant bias in parameter estimates under MNAR, suggesting that 
any inferences conducted in this data setting should be highly scrutinized. 

Despite the rigorous modelling of missing values in an r-Pareto process framework by the 
authors, we add that other standard missing data approaches—such as the Expectation– 
Maximization algorithm—could be viable alternatives for some applications, particularly in cases 
where the MAR assumption is tenable. Although computationally intensive, these approaches 
could in principle be adapted for the censored likelihood of the r-Pareto process. Moreover, 
exploring their viability for score matching, as discussed by de Fondeville and Davison (2018), 
present an intriguing possibility. 

Finally, we wonder about the authors’ perspective on integrating calibration methods into their 
framework. As Turkman et al. (2021) suggest, calibrating artiNcial data may be beneNcial for some ap-
plications, especially if their tails are lighter. This calibration can be achieved using the transformation: 

x→(t, s) = F−1
Xo(t,s)[FXc(t,s){x(t, s)}]. (1) 

Incidentally, Eq. (1) can be shown to be an optimal transport between the distribution functions of ob-
served and climate model temperatures (Santambrogio, 2015, Theorem 2.2). 

ConLicts of interest: None declared. 

Figure 1. Boxplots of estimated (λ, ț) when data are (from left to right) (i) fully observed, (ii) Missing Completely at 
Random, (iii) Missing at Random, and (iv) Missing Not at Random. The true values, (λ, ț) = (0.6, 0.6), are denoted by 
the horizontal lines.   
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