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Abstract

In a recent paper from the Annals of Applied Statistics, Cox (2007) discusses the main phases of

applied statistical research ranging from clarifying study objectives to final data analysis and inter-

preting results. As an incidental remark to these main phases, we advocate that beyond cleaning and

preprocessing the data, it is a good practice to audit the data to determine if they can be trusted at

all. A case study based on Ghanaian Official Fishery Statistics is used to illustrate this need, with

Benford’s law being the tool used to carrying out the data audit.
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1 INTRODUCTION

Today’s growing flood of data, and the increasing demand for working in interdisciplinary environ-

ments, has made the field of Statistics more challenging than ever. The deluge of information is

such that it has been recently claimed that “90% of the world’s data have been created in the last

two years” (Horton, 2015). In light of this, the question “Can your data be trusted?” is becoming

increasingly more relevant.

In theory, applied statistical research should follow a logical sequence, starting with clarification

of objectives, then moving to study design, data collection, analysis, and finally interpretation (Cox,

2007). In a footnote to such main phases, here we advocate that beyond cleaning and preprocessing

the data, it is a good practice auditing if the data can be trusted at all. One goal of this article is

to illustrate how statistical principles can be used to investigate the validity of reported data and to

advocate for adding a data audit to the main phases of a statistical data analysis or even in applied

statistical research.
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A famous aphorism in Statistics, one from which the title of this article borrows inspiration,

reads: “All models are wrong, but some are useful” (Box, 1979). This aphorism by George Box

conveys a simple but powerful idea: Statistical models should only be regarded as an approximation,

with some being better suited for that task than others. And what about the data itself? With so

many things that can go wrong during data collection, even in carefully designed experiments, is

it also the case that “All data are wrong, but some are useful”? Although many reasons could in

principle hinder the production of reliable statistics, it is generally agreed that lacking proper data

is the most difficult obstacle a data scientist can face (Nisbet, Elder and Miner, 2009, chap. 20).

Motivated by a case study in official fishery statistics, in this article we illustrate the need of

performing a data audit. Our tool of choice to carry out the audit is Benford’s law. What is

Benford’s law? Roughly speaking, it states that the leading digits of many naturally occurring

quantities, are distributed in a nonuniform way. It is a powerful probabilistic result which has been

widely used for statistical fraud detection (Hill, 1995a; Nigrini, 1996; Leemis, Schmeiser, and Evans,

2000; Bolton and Hand, 2002; Cho and Gaines, 2007; Diekmann, 2007; de Marchi and Hamilton,

2006; Fewster, 2009; Graham, Hasseldine, and Paton, 2009; Judge and Schechter, 2009; Mebane,

2011) and as a simple, yet effective way to test for erroneous, fraudulent, and fabricated data (Cho

and Gaines, 2007; Diekmann, 2007; Leemis, Schmeiser, and Evans, 2000; Ross, 2011). For example,

Benford’s law has been applied in contexts as diverse as tax auditing (Nigrini, 1996), survival

analysis (Leemis, Schmeiser, and Evans, 2000), self-reported toxic emissions data (de Marchi and

Hamilton, 2006), numerical analysis (Berger and Hill, 2007), scientific fraud detection (Diekmann,

2007), quality of survey data (Judge and Schechter, 2009), election fraud analysis (Mebane, 2011),

and fraud detection in a commercial lobster fishery (Graham, Hasseldine, and Paton, 2009).

This article’s principal goal is to encourage the regular practice of performing a data audit when

analyzing data or carrying out applied statistical research. In our particular case study assessing

conformance to Benford’s law was a fairly obvious option for carrying out an audit. In other contexts

carrying out a data audit by employing Benford’s law may not be reasonable. What options for data

auditing exist in these settings? Prado and Sansó (2011) provide a recent example of a statistical

analysis of fraud that might be applicable. Additionally, depending on the applied context, there is

a wealth of other methods for statistical analysis of fraud (e.g., mixture models, classification trees,

and other unsupervised learning statistical techniques) which are surveyed by Bolton and Hand

(2002), and that can potentially be applied for data auditing purposes.
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The rest of paper is organized as follows. In the next section we provide more background

associated with Benford’s law. In Section 3 we formally consider the case study on Official Fishery

Statistics. We conclude in Section 4 with some final remarks.

2 BENFORD’S LAW

2.1 Background

Benford’s law (also known as the ‘first-digit law’) was discovered by Newcomb (1881) and Benford

(1938) who suggested that for many naturally occurring quantities, the probability of the first

significant digit being d is a logarithmic distribution given by

πd := P (first digit = d) = log10(1 + d−1), (1)

for d = 1, . . . , 9. Benford’s law thus predicts that the probability of observing a leading digit equal

to 1 is 0.301, and hence almost seven times larger than the probability of observing a leading digit

equal to 9. Feller (1971) briefly describes the law in his seminal monograph:

“A distinguished applied mathematician was extremely successful in bets that a number chosen at

random in the Farmer’s Almanac or the Census Report or similar compendium, would have the first

significant digit less than 5. One expects naively that all 9 digits are equally likely, in which case the

probability of a digit 6 4 would be 4/9. In practice it is close to 0.7.”

The mathematical and probabilistic roots of Benford’s law can be found in Hill (1995a,b); simplified

yet instructive descriptions are given for instance in Raimi (1976), Fewster (2009), Formann (2010),

and Ross (2011).

Benford’s law is employed in fraud detection by comparing the empirical first digit relative fre-

quencies with those in Eq. (1). There are a number of statistical procedures that can be used to

formally test this comparison. In this article we employ the χ2 goodness-of-fit test and briefly com-

ment on alternatives in Section 3.4. Datasets for which the χ2 test indicates a deviation from Eq. (1)

are thought to be fabricated or at least suspicious motivating the need for further investigation.

However, before making such conclusions one must be reasonably confident that absent fraud, the

data should follow Benford’s law.

Two general justifications for assuming that Benford’s law applies in a particular context are as

follows: Hill (1995a,b) shows that Benford’s law can be understood as a central-limit type theorem
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for significant digits, and Leemis, Schmeiser, and Evans (2000) show that Benford’s law applies to a

rich class of mixture models. Hence, in contexts where we expect the data to have originated from

a diversity of populations, Benford’s law should be regarded as a theoretically grounded working

assumption. In practice, a remarkable number of naturally occurring first digit distributions have

been shown to follow Benford’s law. In fact, Fewster (2009) states that the leading digits of numerical

values generated from any distribution that is relatively smooth will at least approximately follow

Benford’s law if the sample size is large enough (>100) and if the recorded values span approximately

4 orders of magnitude. In the absence of such criteria, Morrow (2010) provides a transformation

technique (similar in spirit to the Box–Cox transformations in linear models) such that the first

digits of the transformed response variable will approximately follow Benford’s law.

3 CASE STUDY: OFFICIAL FISHERY STATISTICS

3.1 Motivation for the Analysis

The global scale of the recent Chinese scandal regarding excessive fishery harvests has put the ocean

policy community in disarray (Pauly et al., 2014). The illegal exploitation of marine resources is

particularly troublesome in West Africa, where it poses serious threats to livelihoods and marine

ecosystems (Pala, 2013). This scandal has highlighted the need of designing and implementing

enhanced evidence-based fishery policies which can only be carried out if reliable fishery data are

collected. Unfortunately, over the past few years, the confidence in official fishery statistics has been

widely questioned (see, for instance, Watson and Pauly, 2001; Tesfamichael and Pauly, 2011; Pala,

2013; Pham et al., 2013; Pauly et al., 2014). Sustainable marine policies certainly need to take

into account the impact of fisheries on marine ecosystems and biodiversity. For this to be possible,

regular stock assessment must be carried out; as put simply by Daniel Pauly, a widely cited fisheries

scientist (Pala, 2013): “We can’t assess the state of the oceans without knowing what’s being taken

out of them.” Data regarding stock assessment are collected regularly, including catch, fishing

effort, vessel type, location, type of fishing gear, and temperature. As can be understood from the

recent scandal on excessive catches by China, the challenge however is on collecting accurate data,

particularly catch data.

Motivated by the fallout of excessive catches by China in West Africa, in our case study we

work with tuna catch data from the Gulf of Guinea, and we focus on questioning and examining the
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reliability of reported catches. In the Gulf of Guinea, tuna is one of the most valuable fish, being

the number one species exported with value of USD 200,604,000 as of 2011 (FishStatJ, 2014).

Although it is widely recognized that official fishery statistics often fail to account for what

has been actually harvested (Pham et al., 2013), our analysis is based on Benford’s law and thus

allows us to assess the extent to which the raw data used to produce such statistics, are themselves

trustworthy.
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Figure 1: Frequency histograms of total catch weight (in metric tons) for each of the three species considered

regardless of location, time, or boat type. The horizontal axis represents the percentage of observations that fall in

each bin. Notice the extreme right skew of the data resulting in a difference between minimum and maximum that

is a few orders of magnitude.

3.2 Data Description

We analyze tuna catch data of the three main species caught from the Gulf of Guinea, and landed

in Ghana, West Africa. The data includes the subset of Chinese vessels which have been recently

accused of misreporting which are registered in Ghana. The species considered are skipjack tuna

(Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus).

Data per species include the catch weight (in metric tons, mt), time (day, month, and year), location

of the catch (latitude and longitude), and vessel type (baitboat, or purse seine). The Ghanaian

Marine Fisheries Research Division of the Ministry of Fisheries and Aquaculture Development

(www.ghana.gov.gh), granted access to the data except for the following years 1993, 2000, and 2002.

In addition, we were not given access to part of 2008. We are thus led to believe that all the data
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to which we were given access, corresponds to the part of data which the Marine Fisheries Research

Division most trusts.

As a means to visualize the total catch amounts for each species we provide histograms in Figure

1. Notice that the shape for each species is heavily right skewed and as a result the difference between

the minimum and maximum is a few orders of magnitude providing some justification for employing

Benford’s law for these data. Additionally, it can be argued that the catch data originate from a

mixture of processes (e.g., fishing methods, time, ocean temperature and other characteristics).

This consideration along with the relatively large sample sizes (13,735 skipjack, 11,702 yellowfin,

and 2,969 bigeye) provide more justification to believe that these data if absent fraud should follow

Benford’s law.

3.3 Benford’s Law-Based Data Analysis

We start with a separate analysis for each tuna species and then conduct a pooled analysis of all

species. (We also explored the influence that other factors such as location have on conformance to

Benford’s law. These results are provided in an one-line supplementary material report.) In Figure 2

we depict some outputs from our Benford’s law-based data analysis. In the first row of Figure 2

we plot the histogram of the proportion of observations having d as the leading digit (pd = n−1Od),

and compare it with the proportion predicted by Benford’s law (πd). Notice, for example, that for

yellowfin the observed proportion of first digits equal to 9 is almost half of Benford’s law predicts.

Similar deviations can be observed for skipjack and bigeye, but to formally test whether such

deviations are significant, we use χ2 goodness-of-fit tests. The Pearson residuals are plotted in the

lower row of Figure 2, and they can be used to visualize the degree of the deviation from Benford’s

law in a sample size corrected scale. A χ2 goodness-of-fit test of πd against pd for each species rejects

the null hypothesis with p-values close to 0 for each species. The results were the same for the pooled

species, and thus it is evident that there is a general lack of conformity to Benford’s Law. As it can

be observed from the Pearson residual plots in Figure 2, the significant deviation is mostly driven

by the higher-than-expected occurrence of digit ‘5’, and by the lower-than-expected occurrence of

digit ‘9’; the only exception is bigeye tuna for which, the lower-than-expected occurrence of digit ‘7’

plays an even more important role than the one of the lower-than-expected occurrence of the digit

‘9.’

Another analysis was carried out for each species based on the type of fishing vessel. The
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Figure 2: Benford’s law-based analysis by species and for pooled species. Above: Density of first digits of catch

weight; the solid dots (•) represent Benford’s first digits probability law in Eq. (1). Below: Pearson residuals; the

asterisks (?) in the title of the Pearson residuals graphs represent rejections at 5% significance level.

economic motivation for this inquiry is as follows: Vessels with different capacities can in principle

be owned by business players with different utility functions, and who can have different incentives

to misreport catch. The null hypothesis is rejected in both type of fishing vessel for all three species.

Pooling all the data together based on the type of vessel tells the same story. In Figure 3 we plot the

Pearson residuals corresponding to this analysis. Similarly to the analysis by species, the significant

deviation is mostly explained by an unexpected frequency of digits ‘5’ and ‘9.’

3.4 Monitoring Reliability of Inferences

In Section 3.3 we assessed conformance to Benford’s law through a χ2 goodness-of-fit test. This

procedure is simple and can be easily implemented to assess conformity of the observed first digits

of total catch to Benford’s Law. That said, as with all statistical tests, valid inference depends on

assumptions and power. Among the concerns that accompany the χ2 goodness-of-fit test is that

in order to invoke asymptotic results a large sample size is needed. However, it is known that a

large sample size also increases power leading to a decision to reject H0 even for small insignificant

deviations from Benford’s (practical vs statistical significance). In light of this, a number of other

tests with varying assumptions and power have been developed (Nigrini , 2012) many of which are

included in the R package BenfordTests (Joenssen, 2015). To assess the reliability of the inferences
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Figure 3: Benford’s law-based analysis by vessel; the asterisks (?) in the titles of the graphs represent rejections at

5% significance level.

reported above, we employ a few of these tests to conduct a battery of additional experiments. In

particular, we assess conformance to Benford’s law using a discrete Kolmogorov–Smirnov statistic

a version of the Cho–Gaines Euclidean distance statistic (Cho and Gaines, 2007, p. 221), and a

variant of the Leemis–Schmeiser–Evans statistic (Leemis, Schmeiser, and Evans, 2000, p. 237). The

later two tests are discussed in Morrow (2010). Peculiarities with the Kolmogorov–Smirnov test for

discrete data are discussed in Conover (1972) and Wood and Altavela (1978).

In all cases we obtained critical values through Monte Carlo simulation, and in terms of our

data analysis the main conclusions are as follows. Apart from some minor exceptions, the inference

remains unchanged regardless of the test used. The results are reported in Supporting Information.

Lastly, we consider the mean absolute deviation test (MAD) which (Nigrini , 2012, chap. 7) argues

is not overly sensitive to huge sample sizes. Conclusions based on this test are the same as those

arrived at using the previously mentioned tests. Namely that the first digits associated with total

tuna catch off the coast of Ghana do not conform to Benford’s law.

4 DISCUSSION

In applied work we argue that more emphasis needs to be put on academic data auditing, in the

sense that datasets used in research should be more carefully audited for accuracy and dependability.

We provided a case study illustrating this need. In our particular case study assessing conformance
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to Benford’s law was a fairly obvious option for carrying out an audit. In other contexts carrying

out a data audit by employing Benford’s law may not be reasonable. Even though the statistician’s

toolbox contains a variety of solutions—many of which discussed by Bolton and Hand (2002)—the

need for developing statistical methodology for spatial, functional, and biometric data auditing is

of the utmost interest in practice.

The findings presented in this article suggest anomalies in reported weights of tuna harvest, and

raise serious suspicion of misreporting. While the reliability of official fishery statistics has been

widely questioned in the fisheries literature (see Watson and Pauly, 2001; Tesfamichael and Pauly,

2011; Pala, 2013; Pham et al., 2013; Pauly et al., 2014, and the references therein), our analysis

provides further statistical evidence supporting the common belief that the reliability of the raw

data themselves is the fundamental problem. In common with other Benford’s law applications

mentioned earlier (Nigrini, 1996; Leemis, Schmeiser, and Evans, 2000; Bolton and Hand, 2002;

Cho and Gaines, 2007; Diekmann, 2007; de Marchi and Hamilton, 2006; Fewster, 2009; Graham,

Hasseldine, and Paton, 2009; Judge and Schechter, 2009; Mebane, 2011), we emphasize however

that this study does not provide conclusive evidence for the existence of fraud or misreporting, it

only suggests that the anomalies identified in the data are compatible with their occurrence and

further investigation is required.
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