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Abstract. A complex frame is a collection of vectors that span CM and define measure-
ments, called intensity measurements, on vectors in CM . In purely mathematical terms, the
problem of phase retrieval is to recover a complex vector from its intensity measurements,
namely the modulus of its inner product with these frame vectors. We show that any vector
is uniquely determined (up to a global phase factor) from 4M − 4 generic measurements.
To prove this, we identify the set of frames defining non-injective measurements with the
projection of a real variety and bound its dimension.

1. Introduction

In signal processing, a signal x ∈ CM often cannot be measured directly. Instead,
one can only measure the absolute values of its inner product with a fixed set of vectors
Φ = {φ1, . . . , φN} ∈ CM . Here we take CM with the inner product 〈x, y〉 =

∑M
m=1 xmym.

An N -element complex frame Φ is a collection of vectors φ1, . . . , φN which span CM . A
complex frame Φ = {φn}Nn=1 ⊂ CM defines N intensity measurements of a vector x ∈ CM ,

(1) |〈φn, x〉|2 = φ∗nxx
∗φn for n = 1, . . . , N,

where we use v∗ to denote the conjugate transpose of a vector (or matrix) v.
The problem of phase retrieval is to reconstruct a vector x ∈ CM from its intensity

measurements. Note that multiplying x by a scalar of unit modulus does not change the
measurements (1), so we can only reconstruct x up to a global phase factor. For phase
retrieval to be possible, any two vectors x and y with the same intensity measurements must
differ by a scalar multiple of norm one, namely x = eiθy. In other words, the non-linear map

(2) AΦ : (CM/S1)→ (R≥0)N given by x 7→
(
|〈x, φn〉|2

)
n=1,...,N

is injective, where (CM/S1) is obtained by identifying x ∈ CM with eiθx for every θ ∈ [0, 2π].
Our main result states that 4M − 4 generic intensity measurements suffice to determine a

vector in CM . This proves part (b) of the “4M − 4 Conjecture” made in [2].

Theorem 1.1. If N ≥ 4M − 4, then for a generic frame Φ the map AΦ is injective.

By generic we mean that Φ corresponds to a point in a non-empty Zariski open subset
of CM×N ∼= (RM×N)2 (see Section 2.2). In particular, this theorem implies that when
N ≥ 4M − 4, there is an open dense set of frames Φ (in the Euclidean topology on CM×N)
for which AΦ is injective. Part (a) of the conjecture in [2] says that this result is tight, i.e.
that for N < 4M − 4 the map AΦ is never injective. This part is still open.

The history of this problem in the context of finite frames will be discussed in Section 2.
There, we also define some necessary concepts from algebraic geometry, such as generic
points and the dimension of algebraic sets. In Section 3 (specifically on page 5) we prove
Theorem 1.1. A polynomial vanishing on the set of frames giving non-injective measurements
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is found and discussed in Section 4. Finally, in Section 5 we discuss what our algebraic
approach can say about injectivity with fewer measurements. We end by rephrasing the
open part of conjecture of [2] in the language of real algebraic geometry and operator theory.

2. Background

Here we give a short review of the history of phase retrieval in the context of finite frames
and review some needed terminology from algebraic geometry.

2.1. The phase retrieval problem. Phase retrieval is an old problem in signal processing,
and the literature on this subject is vast. However, in the context of finite frame theory it
was first considered Balan, Casazza, and Edidin [1]. In [1, Theorem 3.3], the authors show
that the map AΦ (2) is injective for a generic frame Φ when N ≥ 4M − 2. However,
Bodmann and Hammen exhibit an explicit family of frames with 4M − 4 vectors for which
injectivity holds, which suggests the possibility of a better bound [3]. On the other hand
Heinosaari, Mazzarella and Wolf [10] used embedding theorems in homotopy theory to show
that N ≥ (4 + o(1))M is necessary for the injectivity of AΦ. Recently, Bandeira, Cahill,
Mixon, and Nelson [2] conjectured the following.

The 4M− 4 Conjecture [2]. Consider a frame Φ = {φn}Nn=1 ⊆ CM and the mapping
AΦ : (CM/S1)→ (R≥0)N taking a vector x to its intensity measurements (|〈x, φn〉|2)n=1,...,N .
If M ≥ 2 then the following hold.

(a) If N < 4M − 4, then AΦ is not injective.
(b) If N ≥ 4M − 4, then AΦ is injective for generic Φ.

In [2], this conjecture was proved for M = 2, 3. Our Theorem 1.1 establishes part (b).

Injectivity of the map AΦ implies that phase retrieval is possible, but the problem of
effectively reconstructing a vector from its intensity measurements is quite difficult. There
have been many papers devoted to determining efficient reconstruction algorithms. For
references we direct the reader to [2].

Remark 2.1. In [1], Balan, Casazza, and Edidin characterized frames giving injective mea-
surements in the real case. Precisely, [1, Theorem 2.8] says that a real frame Φ defines
injective measurements (on RM/{±1}) if and only if Φ satisfies the finite complement prop-
erty, which means that for every subset S ⊂ {1, . . . , N} either {φn}n∈S or its complement
{φn}n∈Sc spans RM . In particular, if N < 2M − 1 then the corresponding map AΦ cannot
be injective, and if N ≥ 2M − 1 then for a generic frame Φ, AΦ is injective.

It would be very interesting to have an analogous characterization for complex frames. As
a first step in this direction, in Section 4 we describe some polynomials that vanish on the
set of frames Φ for which AΦ is non-injective.

Remark 2.2. A frame Φ determines an M -dimensional subspace of CN by taking the row
span of the M ×N matrix whose columns are the vectors φn, 1 ≤ n ≤ N . It was observed in
[1, Proposition 2.1], that if Φ and Φ′ determine the same subspace in CN , then AΦ is injective
if and only if AΦ′ is injective. In other words, injectivity of AΦ only depends on subspace
determined by Φ. This subspace corresponds to a point in the Grassmannian G(M,N) of
M -dimensional subspaces of CN . Thus there is a subset of G(M,N) parameterizing frames
for which AΦ is injective. This approach was applied in [1].
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2.2. Terminology from algebraic geometry. Let F be a field (specifically F = R or
F = C). A subset of Fd defined by the vanishing of finitely many polynomials in F[x1, . . . , xd]
is called an affine variety. If these polynomials are homogeneous, then their vanishing defines
a subset of projective space P(Fd), which is called a projective variety.

The Zariski topology on Fd (or P(Fd)) is defined by declaring affine (resp. projective)
varieties to be closed subsets. Note that a Zariski closed set is also closed in the Euclidean
topology. The complement of a variety is a Zariski open set. A non-empty Zariski open set
is open and dense in the Euclidean topology. We say that a generic point of Fd (or P(Fd))
has a certain property if there is a non-empty Zariski open set of points having this property.

The space of complex frames F(M,N) can be identified withM×N matrices of full rank,
so it is a Zariski-open set in CM×N . For the statement of Theorem 1.1 we identify CM×N

with (RM×N)2 and view F(M,N) as an open subset of (RM×N)2. Theorem 1.1 then states
that for N ≥ 4M − 4, there is a Zariski open subset U of F(M,N) such that for every frame
Φ corresponding to a point of U , the map AΦ is injective.

In our main proof, we also rely heavily on the notion of the dimension of a variety defined
over C. For an introduction and many equivalent definitions of the dimension of a variety,
see [9, §11] or [4, Chapter 9]. In particular, the dimension of an irreducible variety (meaning
that it is not the union of two proper subvarieties) X equals the dimension of its tangent
space at a generic point of X.

We will also make use of the interplay between real and complex varieties. Given a complex
variety X defined by equations with real coefficients we denote its set of real points by XR.

3. Proof of Theorem 1.1

We prove Theorem 1.1 by showing that the subset of CM×N ∼= (RM×N)2 corresponding to
frames Φ for which AΦ is not injective is contained in a proper real algebraic subset. The
complement of this algebraic set is an open dense set corresponding to frames Φ for which
AΦ is injective. A key ingredient of this proof is a reformulation, due to Bandeira, Cahill,
Mixon, and Nelson [2], of the injectivity of the map AΦ : (CM/S1)→ RN defined in (2).

Proposition 3.1 (Lemma 9 [2]). The map AΦ is not injective if and only if there is a
nonzero Hermitian matrix Q ∈ CM×M for which

(3) rank(Q) ≤ 2 and φ∗nQφn = 0 for each 1 ≤ n ≤ N.

We use this condition to translate injectivity of the map AΦ into a question in algebraic
geometry. Let CM×M

sym denote the set of symmetric complex M ×M matrices, and CM×M
skew the

set of skew-symmetric complex M ×M matrices.

Definition 3.2. Let BM,N denote the subset of P(CM×N × CM×N) × P(CM×M
sym × CM×M

skew )
consisting of quadruples of matrices ([U, V ], [X, Y ]) for which

(4) rank(X + iY ) ≤ 2 and uTnXun + vTnXvn − 2uTnY vn = 0 for all 1 ≤ n ≤ N,

where un and vn are the nth columns of U and V , respectively.

The set BM,N is defined by the vanishing of polynomials in the entries of U , V , X, and
Y , namely the 3× 3 minors of X + iY and the polynomials uTnXun + vTnXvn− 2uTnY vn = 0.
Note that these polynomials are homogeneous in the entries of U, V and X, Y . In other
words, they are invariant under scaling U and V by a non-zero scalar, and also X and Y by
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a non-zero scalar. Thus BM,N is a well-defined subvariety of the given product of projective
spaces. Let π1 be the projection onto the first coordinate,

π1 : P
(
CM×N × CM×N) × P

(
CM×M

sym × CM×M
skew

)
→ P

(
CM×N × CM×N).

Recall that we use XR to denote the set of real points of a complex variety X.

Proposition 3.3. Let Φ = {φn}Nn=1 ⊂ CM be a complex frame. Write φn = un + ivn and let
U (resp. V ) be the real matrix with columns un (resp. vn). Then the map AΦ is injective if
and only if [U, V ] does not belong to the projection π1((BM,N)R).

Proof. Consider the incidence correspondence I of frames and Hermitian matrices given by

I =
{

(Φ, Q) ∈ CM×N × CM×M
Herm : Q 6= 0, rank(Q) ≤ 2, and φ∗nQφn = 0 for n = 1, . . . , N

}
.

Note that the conditions for I involve complex conjugation, an inherently real operation.
Thus we cannot view I as a complex algebraic variety. However, complex conjugation is a
polynomial on the real parts. So we decompose Φ and Q into their real and imaginary parts,
i.e., Φ = U + iV , φn = un + ivn with un, vn ∈ RM and Q = X + iY , with X symmetric and
Y skew symmetric. Then I is linearly isomorphic over R to the subset J ,

J = {(U, V,X, Y ) : X + iY 6= 0, rank(X + iY ) ≤ 2, and uTnXun + vTnXvn − 2uTnY vn = 0},
of the real vector space RM×N × RM×N × RM×M

sym × RM×M
skew .

By Proposition 3.1, AΦ is injective if and only if (U, V ) is not contained in the projection
of J onto the first two coordinates. Since (BM,N)R is the projectivization of J , (U, V ) is not
contained in this projection if and only if [U, V ] /∈ π1((BM,N)R). �

To bound the dimension of the projection π1(BM,N) we find the dimension of BM,N itself.

Theorem 3.4. The projective complex variety BM,N has dimension 2MN −N + 4M − 6.

Proof. Let B′M,N be the subvariety of P(CM×N ×CM×N)× P(CM×M) consisting of triples of
matrices ([U, V ], [Q]) satisfying

rank(Q) ≤ 2 and (un − ivn)TQ(un + ivn) = 0 for all 1 ≤ n ≤ N,

where un and vn are the nth columns of U and V , respectively. This is a well defined sub-
variety of the product of projective spaces because the defining equations are homogeneous
in each set of variables.

Note that BM,N and B′M,N are linearly isomorphic. We can identify CM×M
sym × CM×M

skew

with CM×M by the map (X, Y ) 7→ X + iY = Q. Indeed any complex matrix Q can be
uniquely written as Q = X + iY where X = (Q + QT )/2 is a complex symmetric matrix
and Y = (Q−QT )/(2i) is a complex skew symmetric matrix. Hence it suffices to prove that
B′M,N has the desired dimension.

We define π1 and π2 to be projections onto the first and second coordinates, namely

π1

(
[U, V ], [Q]

)
= [U, V ] and π2

(
[U, V ], [Q]

)
= [Q].

We will determine the dimension of B′M,N by finding the dimension of its second projection
π2(B′M,N) and the dimension of the preimages π−1

2 (Q) for Q ∈ CM×M .
The image of B′M,N under the projection π2 is precisely the set of rank ≤ 2 matrices in

P(CM×M). To see that any rank ≤ 2 matrix Q belongs to this image, take any non-zero
vector (u, v) ∈ CM × CM satisfying the equation (u − iv)TQ(u + iv)T = 0. (Such a vector
exists because the zero set of this polynomial is a hypersurface in CM ×CM .) Now let U and
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V be the matrices with N repeated columns un = u and vn = v. Then ([U, V ], [Q]) belongs
to B′M,N and [Q] is its image under π2.

The set of matrices of rank ≤ 2 in CM×M is an irreducible (affine) variety of dimension
4M − 4 [9, Prop. 12.2]. So its projectivization in P(CM×M) has dimension 4M − 5, meaning

dim(π2(B′M,N)) = 4M − 5.

Now fix Q ∈ π2(B′M,N). We will show that the preimage, π−1
2 (Q) in P(CM×N ×CM×N) has

dimension 2MN −N − 1. By Lemma 3.5 below, Q defines a nonzero polynomial equation

(un − ivn)TQ(un + ivn) = 0

on the n-th columns of U and V . For each pair of columns (un, vn), this polynomial defines a
hypersurface of dimension 2M−1 in (CM)2. Thus the preimage of Q in B′M,N is a product of
N copies of this hypersurface in ((CM)2)N ∼= (CM×N)2, one for each pair of columns (un, vn)
for 1 ≤ n ≤ N . Therefore after projectivization, this preimage π−1

2 (Q) has dimension
N(2M − 1)− 1 = 2MN −N − 1. We put these together using the following theorem about
dimensions of projections and their fibers [9, Cor. 11.13]. It states that the dimension of the
projective variety B′M,N is the sum of the dimension of the image of the projection π2(B′M,N)

and the minimum dimension of a preimage π−1
2 (Q). Since the dimension of the preimages is

constant, we conclude that

dim(B′M,N) = dim(π2(B′M,N)) + dim(π−1
2 (Q)) = (4M − 5) + (2MN −N − 1). �

Above we used that any non-zero matrix Q imposes a nontrivial condition on each pair
(u, v) of columns of U and V . We now verify this statement.

Lemma 3.5. For a nonzero matrix Q = (q`m) ∈ CM×M , the polynomial

q(u, v) = (u− iv)TQ(u+ iv) ∈ C[u1, . . . , uM , v1, . . . , vM ],

where u = (u1, . . . , uM)T and v = (v1, . . . , vM)T , is not identically zero.

Proof. Computing explicitly the expression of q(u, v), one has:

q(u, v) =
∑

1≤m≤M

qmm(u2
m+v2

m)+
∑

1≤`<m≤M

(q`m+qm`)(u`um+v`vm)+i(q`m−qm`)(u`vm−v`um).

If the polynomial q(u, v) is identically zero, then so are its coefficients, meaning

qmm = 0 for all 1 ≤ m ≤M,

q`m + qm` = 0 for all 1 ≤ ` < m ≤M, and
q`m − qm` = 0 for all 1 ≤ ` < m ≤M.

It follows that Q is the zero-matrix. �

By bounding the dimension of BM,N , we can bound the dimension of its projection, which
contains the frames Φ for which AΦ is not injective, and thus prove our main theorem.

Proof of Theorem 1.1. By Proposition 3.3, a pair of real M × N matrices (U, V ) for which
AU+iV is not injective gives a point [U, V ] in π1((BM,N)R) ⊂ (π1(BM,N))R. The dimension
of the projection is at most the dimension of the original variety [9, Cor. 11.13]. Thus the
dimension of π1(BM,N) can be bounded using Theorem 3.4:

dim
(
π1(BM,N)

)
≤ dim(BM,N) = 2MN + 4M − 6−N.
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When N is 4M − 4 or higher, the dimension of this projection is strictly less than 2MN − 1,
which is the dimension of P((CM×N)2), the target of the projection π1. Thus the image of
this projection is contained in a hypersurface defined by the vanishing of some polynomial.

This still holds when we restrict to real matrices U and V . In the real vector space
(RM×N)2, there is some nonzero polynomial that vanishes on all of the pairs (U, V ) for which
AU+iV is not injective. The complement of the zero-set of this polynomial is a Zariski open
subset of (RM×N)2 and for any pair (U, V ) in this open set, AU+iV is injective. �

4. A hypersurface containing bad frames

When N ≥ 4M − 4, the proof of our main theorem guarantees a polynomial that is zero
on the set of frames Φ for which AΦ is non-injective. Here we discuss how to obtain such a
polynomial and compute its degree.

Specifically, here we describe a polynomial in the variables umn, vmn for 1 ≤ m ≤ M
and 1 ≤ n ≤ N vanishing on the projection π1(BM,N). The projection from a product of
projective spaces onto one of its coordinates, Pr × Ps → Pr, is a closed map in the Zariski
topology [11, Theorem I.5.3]. Thus π1(BM,N) is indeed a subvariety of P((CM×N)2), i.e., a
closed set in the Zariski topology. The equations defining this projection can be in principle
computed using symbolic computations involving eliminations, saturations and resultants.

Suppose F0, . . . , Fs be s+ 1 are homogeneous polynomials in s+ 1 variables x0, . . . , xs of
degrees d0, . . . , ds. We have Fj =

∑
α∈Ns+1,|α|=dj cjαx

α and there exists a unique polynomial
in the coefficients cjα that vanishes if and only if there exists a nontrivial solution to the
equations F0 = · · · = Fs = 0. This polynomial is called the resultant. See Chapter 3 in [5]
for an introduction to resultants and Chapters 12 and 13 in [8] for details and proofs. The
problem of expressing the resultant in an efficient way, for example as a single determinant,
is still a central topic in elimination theory, see for instance [6]. For computing an equation
of the image of the projection of a subvariety of Pr × Ps given by s + 1 bi-homogeneous
equations F0, . . . , Fs in variables y0, . . . , yr, x0, . . . , xs to Pr, we treat y0, . . . , yr as coefficients
and take the resultant with respect to the variables x0, . . . , xs.

Proposition 4.1. There is a nonzero polynomial in R[u11, . . . , uM(4M−4), v11, . . . , vM(4M−4)]

vanishing on the projection π1(BM,4M−4) which has total degree 2 · (4M − 4) · 3(M−2)2 and has
degree 2 · 3(M−2)2 in the set of column variables {umn, vmn, m = 1, . . . ,M} for each n.

Proof. Let X = (x`m) and Y = (y`m) be M ×M symmetric and skew-symmetric matrices of
variables, and let Z denote this collection of these M2 variables:

Z = {x11, x12, . . . , x1M , x22, . . . , xMM , y12, y13, . . . , y1M , y23, . . . , yM−1M}.
We will choose M2 polynomials that vanish on BM,4M−4, so that they cut out a variety

V of codimension M2, necessarily containing BM,4M−4. By [5, Ch. 3, Theorem 2.3], the
resultant of these equations with respect to the variables Z is a non-zero polynomial (since
codim(V ) = M2) that vanishes on π1 (V ). As BM,4M−4 ⊂ V , it follows that this resultant
also vanishes on π1(BM,4M−4) ⊂ π1(V ).

To choose the equations, we start with the N = 4M − 4 equations

gn = uTnXun + vTnXvn − 2uTnY vn = 0 with n = 1, . . . , N

where un and vn are the vector of variables (umn)m and (vmn)m. Note that gn has degree 1
in the Z-variables and degree 2 in the umn, vmn variables. We have already seen in the proof
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of Theorem 3.4 that each polynomial equation gn = 0 cuts down the dimension by one. To
this set we add the vanishing of E = (M − 2)2 general linear combinations (with complex
coefficients) of the 3 × 3 minors of the matrix X + iY , say G1, . . . , GE. Note that these
polynomials have degree 3 in the Z-variables and degree 0 in the umn, vmn variables. (For
small values of M the collection of polynomials G1, . . . , GE can be taken to be a subset of
properly chosen 3× 3 minors. However for higher M one needs to take linear combinations
to make sure that each equation cuts down the dimension by one.)

By [5, Ch. 3, Theorem 3.1], the resultant of homogeneous polynomials F0, . . . , Fs of degrees
d0, . . . , ds is homogeneous in the coefficients of Fj of degree d0 · · · dj−1dj+1 · · · ds. So for each
1 ≤ j ≤ N the resultant is homogeneous of degree 3E in the coefficients of gj. Since the
coefficients of gj are homogeneous of degree 2 in the umj, vmj, it is homogeneous of degree
2 · 3E in the column variables umj, vmj. On the other hand, the resultant is homogeneous
of degree 3E−1 in the coefficients of Gj, but the coefficients are of degree 0 in the umn, vmn
variables. Thus the resultant has total degree 2N3E. �

When N > 4M−4, for every subset S ⊂ {1, . . . , N} of size 4M−4, we can apply the above
construction to the corresponding columns of U and V . The result is a nonzero polynomial
vanishing on the set of frames Φ for which AΦ is not injective and involving only the variables
umn, vmn where n ∈ S.

Example 4.2 (M = 2, N = 4). Since all matrices in C2×2 have rank ≤ 2, the variety B2,4

is defined by the equations gn = 0 where

gn = (u2
1n + v2

1n)x11 + 2(u1nu2n + v1nv2n)x12 + (u2
2n + v2

2n)x22 + 2(u2nv1n − u1nv2n)y12

for n = 1, . . . , 4. These equations are linear in the variables zk ∈ Z = {x11, x12, x22, y12}.
Thus for fixed umn, vmn, there is a nonzero solution to these equations if and only if the
determinant of the Jacobian matrix

(
∂gn
∂zk

)
n,k =


u2

11 + v2
11 2(u11u21 + v11v21) u2

21 + v2
21 2(u21v11 − u11v21)

u2
12 + v2

12 2(u12u22 + v12v22) u2
22 + v2

22 2(u22v12 − u12v22)
u2

13 + v2
13 2(u13u23 + v13v23) u2

23 + v2
23 2(u23v13 − u13v23)

u2
14 + v2

14 2(u14u24 + v14v24) u2
24 + v2

24 2(u24v14 − u14v24)


is zero. This is the hypersurface defining π1(B2,4), which has total degree 8 and degree 2 in
the entries of un and vn. If this determinant is non-zero, then the map AU+iV is injective.

Example 4.3 (M = 3, N = 8). For fixed umn, vmn the polynomials gn give 8 linear equations
in the 9 variables Z = {zk} = {x11, x12, x13, x22, x23, x33, y12, y13, y23}. We can solve for this
solution symbolically. To do this consider the Jacobian matrix:

J =

(
∂gn
∂zk

)
n,k with 1 ≤ n ≤ 8, 1 ≤ k ≤ 9.

The solution to the equations g1 = · · · = g8 = 0 is then given by the 8× 8 sub-determinants

zk = Dk = (−1)k det(J{k})

where J{k} is obtained by erasing the k-th column of J . Note that Dk has total degree 2 · 8
and degree 2 the entries of un and vn for each n. This solution gives a 3× 3 matrix X + iY
satisfying the desired equations gn = 0. In order for the pair ([U, V ], [X, Y ]) to belong to
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B3,8, this matrix X + iY must have rank ≤ 2, meaning that its 3× 3 determinant,

det

 D1 D2 + iD7 D3 + iD8

D2 − iD7 D4 D5 + iD9

D3 − iD8 D5 − iD9 D6

 ,

must vanish. The vanishing of this determinant defines π1(B3,8). As promised, it has total
degree 2 · 8 · 3 = 48 and degree 2 · 3 = 6 in the entries of un and vn for each 1 ≤ n ≤ 8.

Remark 4.4. The set of frames Φ such that AΦ is not injective is π1((BM,N)R). Since
projective space is compact, π1 is a closed map with respect to the Euclidean topology. In
particular, the locus of frames Φ for which AΦ is non-injective is closed in the Euclidean
topology on P((RM×N)2). Note however, that the image of the set of real points of a variety
need not be Zariski closed as the example below shows. This means that there may be real
points belonging to the projection π1(BM,N) which are not the projection of real points of
BM,N . That is, in principle there may be a real point [U, V ] in π1(BM,N) whose corresponding
frame Φ = U + iV is nonetheless injective.

Example 4.5. Let C ⊂ C2 be the parabola defined by x2 = y and let π : C → C1 be the
projection onto the second factor. Since every real number has a complex square root, every
point in R is the image of a point of C. However, if a < 0 then a is not image of a real
point of C. In particular the image of CR is the closed subset {a ≥ 0} ⊂ R. Any polynomial
vanishing on π(CR) vanishes on all of R, so the Zariski closure of π(CR) is all of R.

5. The case of fewer measurements

Here we use our algebraic reformulation to discuss some cases of part (a) of the 4M − 4
Conjecture. We show that when N ≤ 4M − 5 the projection π1(BM,N) fills the entire space
and show that the projection of the real points (BM,N)R does this in the case M = 2k + 1.

Proposition 5.1. If N ≤ 4M − 5, then for every [U, V ] ∈ P(CM×N)2, the preimage under
the first projection π−1

1 ([U, V ]) is a non-empty variety of degree

(5) dM,2 =
M−3∏
i=0

(
M+i

2

)(
2+i

2

) .
In particular, the projection π1(BM,N) is all of P((CM×N)2).

Proof. Fix U and V in CM×N . Each pair of columns un and vn define (at most) one linear
condition on an M ×M matrix Q, namely that (un − ivn)TQ(un + ivn) = 0. Thus in total
U and V define (at most) N linear conditions. The subvariety of P(CM×M) of matrices
satisfying these linear conditions is a linear subspace

LΦ = {Q ∈ P(CM×M) : (un − ivn)TQ(un + ivn) = 0 for each 1 ≤ n ≤ N}
of dimension at least M2 − 1−N .

On the other hand, the projective variety H2 ⊂ P(CM×M) of matrices of rank ≤ 2 has
dimension 4M − 5 [9, Prop. 12.2]. When N ≤ 4M − 5,

dimLΦ + dimH2 ≥ M2 − 1.

Thus by [9, Prop. 11.4], there is a point in the intersection LΦ ∩H2. Since the degree of H2

is dM,2 (see for example [9, Ex. 19.10]), it follows that the degree of LΦ ∩ H2 is also dM,2.
Note that LΦ ∩H2 is the preimage of the first projection of the variety B′M,N introduced in
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the beginning of the proof of Theorem 3.4. As noted in the same proof, B′M,N is linearly
isomorphic to BM,N . This isomorphism preserves the fibers under the first projection. Thus
the claims follow. �

Recall from Proposition 3.3 that Part (a) of the 4M − 4 Conjecture is equivalent to saying
that when N ≤ 4M − 5, we have π1((BM,N)R) = P((RM×N)2). In other words, for [U, V ]
real, π−1

1 ([U, V ]) contains a real point, or equivalently the variety LΦ ∩H2 introduced in the
proof of Proposition 5.1 contains a Hermitian matrix. In particular, if we could show that
for N ≤ 4M − 5 we have (π1(BM,N))R ⊂ π1((BM,N)R) Proposition 5.1 would imply part (a)
of the 4M − 4 conjecture. Unfortunately, as noted in Example 4.5 in general the image of
the set of real points of a variety need not equal the set of real points of the image. Despite
this subtlety, there is one case where we can use algebro-geometric methods to prove part(a)
of the 4M − 4 Conjecture.

Proposition 5.2. If M = 2k + 1 and N ≤ 4M − 5, then AΦ is not injective.

Proof. By the discussion in the preceeding paragraph, we have to show that for every [U, V ]
in P(RM×N ×RM×N) the preimage π−1

1 ([U, V ]) contains a real point. By Proposition 5.1 the
degree of this preimage is dM,2, and by Lemma 5.3 below, dM,2 is odd when M = 2k + 1.
Hence the claim follows from the fact that any projective variety defined over R and having
odd degree has real point.1 �

Lemma 5.3. When M = 2k + 1, the degree dM,2 of the variety of M × M matrices of
rank ≤ 2 is odd.

Proof. Recall the definition of dM,2 in (5). Let sp(n) denote the sum of the digits in the base
p expansion of n. Legendre’s formula says that the highest power of a prime dividing n! is
given by (n− sp (n)) /(p− 1). Thus (sp(n− 2) + sp(2)− sp(n))/(p− 1) is the highest power
of p dividing

(
n
2

)
. Using this formula we see that the highest power of 2 dividing dM,2 is

(6)

(
M−3∑
i=0

s2(M + i− 2)− s2(M + i)

)
−

(
M−3∑
i=0

s2(i)− s2(i+ 2)

)
.

Since M = 2k + 1 we know that for 0 ≤ n ≤M − 2 we have that s2(M − 1 + n) = s2(n) + 1.
Thus the expression (6) simplifies to

(7) s2(M − 2)− s2(M) +

(
M−3∑
i=1

s2(i− 1)− s2(i+ 1)

)
−

(
M−3∑
i=0

s2(i)− s2(i+ 2)

)
= s2(M − 2)− s2(M)− s2(M − 3) + s2(M − 1).

When M = 2k + 1, we can see that s2(M) = 2, s2(M − 1) = 1, s2(M − 2) = k and
s2(M − 3) = k − 1. Hence the expression in (7) is zero and dM,2 is odd. �

Example 5.4 (M = 2, N = 3). As shown in [2], here part (a) of the 4M − 4 Conjecture
holds, meaning that the intersection LΦ ∩ H2 contains a Hermitian matrix. Every matrix
has rank ≤ 2, H2 is all of C2×2, and d2,2 = 1. The projective linear space LΦ is nonempty

1When the dimension of the variety is zero, this follows from the fact that such a variety is invariant under
complex conjugation, so an odd number of points must contain a fixed point under complex conjugation which
must be real. In higher dimensions, the result follows from the zero-dimensional case by intersecting with a
subspace of complementary dimension that is defined over R.
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and invariant under the involution Q 7→ Q∗. So it contains a Hermitian matrix. In this case,
we recover the first part of the 4M − 4 conjecture from Proposition 5.1 and Proposition 3.3.

Example 5.5 (M = 3, N = 7). As shown in [2], here part (a) of the 4M − 4 Conjecture
holds. The variety of rank ≤ 2 matrices is defined by the 3 × 3 determinant, meaning
d3,2 = 3. Thus for generic U, V ∈ R3×7, the intersection LΦ ∩ H2 contains three complex
matrices. Since this intersection is invariant, at least one of these must be fixed under the
involution Q 7→ Q∗. So in this case, we also recover the first part of the 4M − 4 conjecture
from Proposition 5.1 and Proposition 3.3.

Remark 5.6. Proposition 5.2 is similar to, but does not seem to follow from, previous
results [7, 10]. Heinosaari, Mazzarella and Wolf use embedding results from topology to
show that when N ≤ 4M −2s2(M −1)−4, the map AΦ is never injective [10]. In particular,
ifM = 2k+1 then s2(M−1) = 1, and this bound gives N ≤ 4M−6, rather than N ≤ 4M−5.

We end by rephrasing part (a) of the 4M − 4 Conjecture. The first open case is M = 4.

Conjecture 5.7. Let φ1, . . . , φ4M−5 ∈ CM and consider the linear space LΦ of CM×M
Herm ,

LΦ = {Q : φ∗nQφn = 0 for n = 1, . . . , 4M − 5} = span{φ1φ
∗
1, . . . , φ4M−5φ

∗
4M−5}⊥.

The 4M − 4 Conjecture states that LΦ ⊂ CM×M
Herm always contains a matrix of rank ≤ 2. In

other words, if we take d = (M − 2)2 + 1 Hermitian matrices A1, . . . , Ad spanning LΦ, there
is some linear combination x1A1 + . . .+ xdAd with rank two.
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