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Abstract

We study functions on the class group of a toric variety measuring

the rates of growth of the cohomology groups of multiples of divisors.

We show that these functions are piecewise polynomial with respect to

finite polyhedral chamber decompositions. As applications, we express

the self-intersection number of a T -Cartier divisor as a linear combination

of the volumes of the bounded regions in the corresponding hyperplane

arrangement and prove an asymptotic converse to Serre vanishing.

Suppose D is an ample divisor on an n-dimensional algebraic variety. The
sheaf cohomology of O(D) does not necessarily reflect the positivity of D; O(D)
may have few global sections and its higher cohomology groups may not vanish.
However, for m ≫ 0, O(mD) is globally generated and all of its higher cohomol-
ogy groups vanish. Moreover, the rate of growth of the space of global sections
of O(mD) as m increases carries information on the positivity of D. Indeed,
if we write h0(mD) for the dimension of H0(X,O(mD)), then by asymptotic
Riemann-Roch [La1, Example 1.2.19],

(Dn) = lim
m

h0(mD)

mn/n!
.

In general, when D is not necessarily ample, this limit exists and is called the
volume of D. It is written ĥ0(D) or vol (D). The regularity of the rate of
growth of the cohomology groups of O(mD) for m ≫ 0 contrasts with the
subtlety of the behavior of the cohomology of O(D) itself and motivates the
study of asymptotic cohomological functions of divisors.

Lazarsfeld has shown that the volume of a Cartier divisor depends only on
its numerical equivalence class and that the volume function extends to a con-
tinuous function on N1(X)R [La1, 2.2.C]. The volume function is polynomial on
the ample cone, where it agrees with the top intersection form. In some special
cases, including for toric varieties, smooth projective surfaces, abelian varieties,
and generalized flag varieties, the volume function is piecewise polynomial with
respect to a locally finite polyhedral chamber decomposition of the interior of
the effective cone. The behavior of the volume function outside the ample cone
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is known to be more complicated in general [BKS]. In this paper, we study the
volume function and its generalizations, the higher asymptotic cohomological
functions, in the toric case.

Let X = X(∆) be a complete n-dimensional toric variety. Let D be a T -
Weil1 divisor on X , and PD the associated polytope in MR. Since h0(mD) is the
number of lattice points in PmD, and since PmD = mPD for all positive integers
m, ĥ0(D) is the volume of PD, normalized so that the smallest lattice simplex
in MR has unit volume. Oda and Park describe, in combinatorial language, a
finite polyhedral chamber decomposition of the effective cone in the divisor class
group of a toric variety, which they call the Gelfand-Kapranov-Zelevinsky (or
GKZ) decomposition, such that the combinatorial structure of PD is constant
as D varies within each chamber [OP]. It follows that volPD is polynomial on

each of these chambers [Bar, VIII.5 Problem 10]; in particular, ĥ0 extends to
a continuous, piecewise polynomial function with respect to a finite polyhedral
decomposition of the effective cone in An−1(X)R. The piecewise polynomial

behavior of ĥ0 also follows from [ELMNP, Proposition 5.12], since toric varieties
have “finitely generated linear series.” The GKZ decomposition also arises as
the decomposition of the effective cone into “Mori chambers” and “variation
of GIT chambers,” see [HK]. In an appendix, we give a brief, self-contained
account of GKZ decompositions in the language of toric divisors.

Generalizing the volume function, we define higher asymptotic cohomological
functions of toric divisors by

ĥi(D) = lim
m

hi(mD)

mn/n!
,

where hi(mD) is the dimension of Hi(X,O(mD)). 2 In the toric case, it follows
from local cohomology computations of Eisenbud, Mustaţǎ, and Stillman [EMS]
that there is a decomposition of MR into finitely many polyhedral regions such
that the dimensions of the graded pieces Hi(X,O(D))u are constant for lattice
points u in each region. The regions are indexed by collectins of rays I ⊂ ∆(1),
and for D =

∑
dρDρ, they are given by

PD,I := {u ∈ MR : 〈u, vρ〉 ≥ −dρ if and only if ρ ∈ I}.

In particular, the regions for mD are the m-fold dilations of the regions for D.
In Section 2, we deduce from this that the limit in the definition of ĥi exists,
and that each ĥi extends to a continuous, piecewise polynomial function with
respect to a finite polyhedral decomposition of An−1(X)R.

1Asymptotic cohomological functions of Cartier divisors on general (not necessarily toric)
varieties have been studied in [BKS] [Kür] and [La1, 2.2.C]. In this paper, we allow Weil
divisors wherever possible. Our approach is self-contained, and does not rely on results from
the general theory.

2The second author has studied higher asymptotic cohomological functions of line bundles
on general varieties, defined similarly but with a limsup instead of a limit, and has shown that
these extend to continuous functions on N

1(X)R [Kür]. It is not known whether the limits
exist in general.
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We apply our cohomology computations to give a formula for the self-
intersection number of a T -Cartier divisor. For each I ⊂ ∆(1), let ∆I be the
fan consisting of exactly those cones in ∆ spanned by rays in I, and let ∆I(j)
be the set of j-dimensional cones in ∆I . Define

χ(∆I) :=
n∑

j=0

(−1)j · #∆I(j).

In Section 1, we show that

χ(O(D)) = (−1)n
∑

PD,I bounded

χ(∆I) · #PD,I ∩ M.

Using this formula for χ(O(D)) and asymptotic Riemann-Roch, we give a self-
intersection formula for T -Cartier divisors. When PD,I is bounded, we write
volPD,I for the volume of PD,I , normalized so that the smallest lattice simplex
has unit volume.

Theorem 1 (Self-intersection formula) Let X be a complete n-dimensional
toric variety and D a T -Cartier divisor on X. Then

(Dn) = (−1)n ·
∑

PD,I bounded

χ(∆I) · volPD,I .

When X is smooth, Theorem 1 is closely related to a formula of Karshon and
Tolman for the pushforward of the top exterior power of a presymplectic form
under the moment map [KT]. In this case, the coefficient (−1)n·χ(∆I) is equal to
a winding number which gives the density of the Duistermaat-Heckman measure
on PD,I .

We conclude by proving an “asymptotic converse” to Serre vanishing in the
toric case. From Serre vanishing we know that, for D ample, hi(mD) = 0 for all
i > 0 and m ≫ 0. The set of ample divisors is open in Pic(X)R, so the higher
volume functions vanish in a neighborhood of every ample divisor. We prove
the converse for divisors on complete simplicial toric varieties.

Theorem 2 (Asymptotic converse to Serre vanishing) Let D be a divi-

sor on a complete simplicial toric variety. Then D is ample if and only if ĥi

vanishes identically in a neighborhood of D in Pic(X)R for all i > 0.

The asymptotic converse to Serre vanishing does not hold in general if X is
complete but not simplicial. Fulton gives an example of a complete, nonprojec-
tive toric threefold with no nontrivial line bundles [Ful, pp. 25-26, 72]. For such

an X , Pic(X) = 0 and all of the ĥi vanish, but the zero divisor is not ample.
We do not know whether the asymptotic converse to Serre vanishing holds for
nonsimplicial projective toric varieties.

On a toric variety, linear equivalence and numerical equivalence of Cartier
divisors coincide, so Pic(X)R = N1(X)R. Lazarsfeld asks whether, for a smooth
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complex projective variety X , a divisor D is ample if and only if the higher
asymptotic cohomological functions vanish in a neighborhood of the class of D
in N1(X)R.

We thank R. Lazarsfeld, whose questions provided the starting point for this
project, for his support and encouragement.

1 Cohomology of T -Weil divisors

By the cohomology groups of a Weil divisor D on an algebraic variety X , we
always mean the sheaf cohomology groups Hi(X,O(D)), where O(D) is the
sheaf whose sections over U are the rational functions f such that (divf +
D)|U is effective. When X is complete, we write hi(D) for the dimension of
Hi(X,O(D)).

In this section, for each T -Weil divisor D on a toric variety, we give a de-
composition of the weight space MR into finitely many polyhedral regions such
that the dimension of the u-graded piece of the i-th cohomology group of D
is constant for all u in each region. This decomposition can be deduced from
local cohomology computations in [EMS, Theorem 2.7], but we present a proof
using different methods. Our approach is a variation on the standard method
for computing the cohomology groups of T -Cartier divisors [Ful, Section 3.5].

Let X = X(∆) be an n-dimensional toric variety over a field k, and let
∆(1) be the set of rays of ∆. Let D =

∑
dρDρ be a T -Weil divisor. For each

I ⊂ ∆(1), define

PD,I := {u ∈ MR : 〈u, vρ〉 ≥ −dρ if and only if ρ ∈ I},

and let ∆I be the subfan of ∆ consisting of exactly those cones whose rays are
contained in I. Note that PD,∆(1) is the closed polyhedron usually denoted PD,
each PD,I is a polyhedral region defined by an intersection of halfspaces, some
closed and some open, and MR is their disjoint union. With D fixed, for each
u ∈ M set

Iu := {ρ ∈ ∆(1) : 〈u, vρ〉 ≥ −dρ}.

Recall that Hi
|∆I |

(|∆|) denotes the topological local cohomology group of

|∆| with support in |∆I |. Here and throughout, all topological homology and
cohomology groups are taken with coefficients in k, the base field of X .

Proposition 1 Let X = X(∆) be a toric variety, D a T -Weil divisor on X.
Then

Hi(X,O(D)) ∼=
⊕

u∈M

Hi
|∆Iu |(|∆|).

Proof: The Čech complex C• that computes the cohomology of O(D) is M -
graded, and the u-graded piece is a direct sum of u-graded pieces of modules of
sections of O(D) as follows:

Ci
u =

⊕

σ0,...,σi∈∆

H0(Uσ0
∩ · · · ∩ Uσi

,O(D))u.
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Now H0(Uσ0
∩· · · ∩Uσi

,O(D))u is isomorphic to k if σ0 ∩· · · ∩σi is in ∆Iu
, and

is zero otherwise. In particular,

H0(Uσ0
∩ · · · ∩ Uσi

,O(D))u
∼= H0

|∆Iu |∩σ0∩···∩σi
(σ0 ∩ · · · ∩ σi).

A standard argument from topology [Ful, Lemma p.75] shows that the Čech
complex C• also computes Hi

|∆Iu |(|∆|). 2

Corollary 1 Let X = X(∆) be a toric variety, D a T -Weil divisor on X. Then

Hi(X,O(D)) ∼=
⊕

I⊂∆(1)




⊕

u∈PD,I∩M

Hi
|∆I |

(|∆|)


 .

Proof: Since PD,I ∩ M is exactly the set of u such that Iu = I, the corollary
follows from Proposition 1 by regrouping the summands.

Proposition 2 Let X = X(∆) be a complete toric variety. For D a T -Weil
divisor on X,

hi(D) =
∑

PD,I bounded

hi
|∆I |

(NR) · #(PD,I ∩ M).

Proof: When X is complete, the support of ∆ is all of NR, and Hi(X,O(D))
is finite dimensional. By Corollary 1, Hi

|∆I |
(|∆|) must vanish whenever PD,I is

unbounded, and the result follows. 2

If S is the unit sphere for some choice of coordinates on NR, then hi
|∆I |

(NR) ∼=

h̃n−i−1(|∆I | ∩ S) [Ful, Exercise p.88]. Therefore, Proposition 2 implies that
computations of cohomology groups of toric divisors can be reduced to com-
putations of reduced homology groups of finite polyhedral cell complexes and
counting lattice points in polytopes. We will use the following lemma to show
that the reduced homology computations are not necessary if one is only inter-
ested in the Euler characteristic χ(O(D)). For any fan Σ, let Σ(j) denote the
set of j-dimensional cones in Σ, and define

χ(Σ) :=

n∑

j=0

(−1)j · #Σ(j).

Lemma 1 Let Σ be a fan in NR. Then

n∑

i=0

(−1)i · hi
|Σ|(NR) = (−1)n · χ(Σ).

Proof: Let S be the unit sphere for some choice of coordinates on NR. Then

n∑

i=0

(−1)i · hi
|Σ|(NR) =

n∑

i=0

(−1)i · h̃n−i−1(|Σ| ∩ S).

= (−1)n +
n∑

i=0

(−1)i · hn−i−1(|Σ| ∩ S).
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Setting j = n − i, and then using the correspondence between the j − 1-
dimensional cells in |Σ| ∩ S and the j-dimensional cones in Σ, we have

(−1)n +

n∑

i=0

(−1)i · hn−i−1(|Σ| ∩ S) = (−1)n +

n∑

j=0

(−1)n−j · hj−1(|Σ| ∩ S).

= (−1)n ·

n∑

j=0

(−1)j · #Σ(j).
2

Proposition 3 Let D be a T -Weil divisor on a complete n-dimensional toric
variety. Then

χ(O(D)) = (−1)n ·
∑

PD,I bounded

χ(∆I) · #(PD,I ∩ M).

Proof: The proposition follows immediately from Proposition 2 and Lemma 1. 2

2 Asymptotic cohomological functions and the

self-intersection formula

Definition 1 Let X be a complete n-dimensional toric variety. The i-th asymp-
totic cohomological function ĥi : An−1(X) → R is defined by

ĥi(D) = lim
m

hi(mD)

mn/n!
.

For a bounded polyhedral region P ⊂ MR, let volP denote the volume of
P , normalized so that the smallest lattice simplex has unit volume. Note that

volP = lim
m

#mP ∩ M

mn/n!
.

Proposition 4 Let D be a T -Weil divisor on a complete toric variety X =
X(∆). Then

ĥi(D) =
∑

PD,I bounded

hi
|∆I |

(NR) · volPD,I ,

Proof: For all I ⊂ ∆(1), and for all positive integers m, PmD,I = mPD,I .

The proposition therefore follows immediately from the definition of ĥi and
Proposition 2. 2

Corollary 2 Let X be a complete n-dimensional toric variety. Then ĥi extends
to a continuous, piecewise polynomial function with respect to a finite polyhedral
decomposition of An−1(X)R.

6



Proof: The set of I such that PD,I is bounded does not depend on D. Indeed,
PD,I is bounded if and only if there is no hyperplane in NR separating the rays
in I from the rays in ∆(1)rI. The result then follows from Proposition 4 since,
for each such I, volPD,I extends to a continuous, piecewise polynomial function
with respect to a finite polyhedral decomposition of An−1(X)R. 2

Theorem 1 (Self-intersection formula) Let X be a complete n-dimensional
toric variety and D a T -Cartier divisor on X. Then

(Dn) = (−1)n ·
∑

PD,I bounded

χ(∆I) · volPD,I .

Proof: By asymptotic Riemann-Roch [Kol, VI.2], when D is Cartier,

(Dn) = lim
m

χ(O(mD))

mn/n!
.

The theorem then follows from Proposition 3. 2

3 Asymptotic converse to Serre vanishing

We begin by briefly recalling the Gelfand-Kapranov-Zelevinsky (GKZ) decom-
position introduced by Oda and Park [OP] and a few of its basic properties.
Assume that X is complete. The GKZ decomposition is a fan whose support
is the effective cone in An−1(X)R and whose maximal cones are in 1-1 corre-
spondence with the simplicial fans Σ in NR such that Σ(1) ⊂ ∆(1) and X(Σ) is
projective. We call the interior of a maximal GKZ cone a GKZ chamber, and
write γΣ for the GKZ chamber corresponding to Σ. If D is a T -Weil divisor
whose class [D] lies in γΣ, then Σ is the normal fan to PD. This property fully
characterizes the GKZ decomposition. We will need the following basic prop-
erty relating divisors in γΣ to divisors on X(Σ): if f denotes the birational map
from X to X(Σ) induced by the identity on N , then the birational transform
f∗(D) is ample on X(Σ), and Pf∗(D) = PD. See the appendix for proofs and for
a more detailed discussion of the GKZ decomposition in the language of toric
divisors.

Lemma 2 Let γΣ be a GKZ chamber, and let f be the birational map from X =
X(∆) to X(Σ) induced by the identity on N . Let D1, . . . , Dr be distinct prime
T -invariant divisors on X corresponding to rays ρ1, . . . , ρr ∈ ∆, respectively.
For D a T -Weil divisor with [D] ∈ γΣ,

∂rĥ0

∂D1 · · · ∂Dr
(D) =

n!

(n − r)!
·
(
f∗(D)n−r · f∗(D1) · . . . · f∗(Dr)

)
.

In particular, ∂rĥ0

∂D1···∂Dr
is strictly positive on γΣ if ρ1, . . . , ρr span a cone in Σ

and vanishes identically on γΣ otherwise.
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Proof: Suppose r = 1. Since f∗(D) is ample and Pf∗(D) = PD for D in γΣ, ĥ0

is given on γΣ by D 7→ f∗(D)n. Therefore,

∂ĥ0

∂D1
= lim

ǫ→0

(f∗(D + ǫD1)
n) − (f∗(D)n)

ǫ
.

= n
(
f∗(D)n−1 · f∗(D1)

)
.

The general case follows by a similar computation and induction on r. The last
statement follows from the formula, since f∗(D) is ample and f∗(D1)·. . .·f∗(Dr)
is an effective cycle if ρ1, . . . , ρr span a cone in Σ and is zero otherwise [Ful,
Chapter 5]. 2

Theorem 2 (Asymptotic converse to Serre vanishing) Let D be a divisor

on a complete simplicial toric variety. Then D is ample if and only if ĥi vanishes
identically in a neighborhood of D in Pic(X)R for all i > 0.

Proof: Since the limits in the definition of the ĥi exist, by asymptotic Riemann-
Roch, for D a Q-Cartier divisor, Dn =

∑n
i=0(−1)i · ĥi(D). Therefore, if ĥi

vanishes in a neighborhood of D for all i > 0, then ĥ0 agrees with the top
intersection form in a neighborhood of D. To prove Theorem 2, we will prove the
stronger fact that if ĥ0 agrees with the top intersection form in a neighborhood
of D, then D is ample. It will suffice to show that if γΣ is a GKZ chamber and
ĥ0(D) = (Dn) for [D] ∈ γΣ, then Σ = ∆.

Suppose γΣ is a GKZ chamber and ĥ0(D) = (Dn) for [D] ∈ γΣ. Let
ρ1, . . . , ρn be rays spanning a maximal cone σ ∈ ∆. It will suffice to show that
ρ1, . . . , ρn span a cone in Σ. On γΣ, since ĥ0 agrees with the top intersection
form,

∂nĥ0

∂D1 · · ·∂Dn
= n! · (D1 · . . . · Dn) .

= n! · mult(σ).

In particular, ∂nĥ0

∂D1···∂Dn
does not vanish identically on γΣ. By Lemma 2, ρ1,

. . . , ρn span a cone in Σ, as required. 2

4 Appendix: Gelfand-Kapranov-Zelevinsky De-

compositions

In this appendix we give a self-contained account of the GKZ decompositions
of Oda and Park [OP], in the language of toric divisors.

A possibly degenerate fan in N is a finite collection Σ of convex (not neces-
sarily strongly convex) rational polyhedral cones in NR such that every face of
a cone in Σ is in Σ, and the intersection of any two cones in Σ is a face of each.
The intersection of all of the cones in Σ is the unique linear subspace LΣ ⊂ NR

that is a face of every cone in Σ; we say that Σ is degenerate if LΣ is not zero.
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Associated to Σ is a toric variety XΣ of dimension dimNR − dimLΣ, whose
torus is TN/LΣ∩N , and the T -Cartier divisors on XΣ correspond naturally and
bijectively to the piecewise linear functions on |Σ| whose restriction to LΣ is
identically zero.

Let X = X(∆) be an n-dimensional toric variety and assume, for simplicity,
that |∆| is convex and n-dimensional. Let D =

∑
dρDρ be an effective T -Q-Weil

divisor and let PD = {u ∈ M : 〈u, vρ〉 ≥ −dρ} be the polyhedron associated
to D. From PD one constructs the possibly degenerate normal fan ΣD, whose
support is |∆| and whose cones are in one to one order reversing correspondence
with the faces of PD; the cone corresponding to a face Q is

σQ = {v ∈ |∆| : 〈u, v〉 ≥ 〈u′, v〉 for all u ∈ PD and u′ ∈ Q}.

Note that σQ is positively spanned by those rays ρ ∈ ∆(1) such that the affine
hyperplane 〈u, vρ〉 = −dρ contains Q.

We define a convex piecewise linear function ΞD on |∆| by

ΞD(v) = min{〈u, v〉 : u ∈ PD}.

The maximal cones of ΣD are the maximal domains of linearity of ΞD. When D
is Q-Cartier and ample, ΣD = ∆ and ΞD = ΨD is the piecewise linear function
usually associated to D [Ful, Section 3.3]. It follows from the definition of ΞD

that
ΞD(vρ) ≥ −dρ, (1)

with equality for those ρ such that the affine hyperplane 〈u, vρ〉 = −dρ contains
a face of PD. Let ID ⊂ ∆(1) be the set of rays for which equality does not hold
in (1).

Definition 2 (GKZ cones) Let Σ be a possibly degenerate fan whose support
is |∆|, such that XΣ is quasiprojective, and such that there is a set of rays
I ⊂ ∆(1) such that every cone in Σ is positively spanned by rays in ∆(1) r I.
The GKZ cone γΣ,I is defined to be

γΣ,I := {[D] ∈ An−1(X)Q : Σ refines ΣD and ID ⊆ I}.

The GKZ cone γΣ,I is well-defined since ΣD and ID depend only on the linear
equivalence class of D.

GKZ Decomposition Theorem [OP, Theorem 3.5] The GKZ cone γΣ,I is
a rational polyhedral cone of dimension dimPic(XΣ)Q + #I. The set of GKZ
cones is a fan whose support is the effective cone in An−1(X)R, and the faces
of γΣ,I are exactly those γΣ′,I′ such that Σ refines Σ′ and I ′ ⊂ I.

It follows from the theorem that the maximal GKZ cones are in 1-1 corre-
spondence with the nondegenerate simplicial fans Σ in NR such that Σ(1) ⊂
∆(1), |Σ| = |∆|, and X(Σ) is quasiprojective. Indeed, if [D] is in γΣ,I then
dimPD = n − dimLΣ. In particular, if Σ is degenerate then γΣ,I is in the
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boundary of the effective cone and ĥ0|γΣ,I
is identically zero. If Σ is nondegen-

erate, then
dim γΣ,I ≤ #Σ(1) − n + #I ≤ #∆(1) − n,

with equalities if and only if Σ is simplicial and I = ∆(1) r Σ(1). The interiors
of the maximal cones of the GKZ decomposition are called GKZ chambers, and
we write γΣ for the GKZ chamber corresponding to Σ.

In order to prove the GKZ Decomposition Theorem, we need a few basic
tools relating divisors on X to divisors on XΣ, where Σ is a possibly degenerate
fan in NR whose support is |∆|. Let φΣ be the map taking a T -Q-Cartier divisor
D on XΣ to the T -Q-Weil divisor φΣ(D) on X , where

φΣ(D) =
∑

ρ∈∆(1)

−ΨD(vρ)Dρ.

Note that φΣ respects linear equivalence and induces an injection of Pic(XΣ)

into An−1(X). The map φΣ may be realized geometrically as follows. Let X̃
be the toric variety corresponding to the smallest common refinement of ∆ and
Σ. The identity on N induces morphisms p1 and p2 from X̃ to X and to XΣ,
respectively. Then φΣ = p1∗

◦ p∗2.
The following lemma will be used to prove the GKZ Decomposition Theorem.

It also shows that γΣ,I is equal to the cone cpl(Σ, ∆(1) r I) defined in [OP,
Section 3].

Lemma 3 Let D =
∑

dρDρ be a T -Q-Weil divisor. The following are equiva-
lent:

i. The GKZ cone γΣ,I contains [D].

ii. There is a convex function Ξ that is linear on each maximal cone of Σ
such that Ξ(vρ) ≥ −dρ for all ρ ∈ ∆(1), with equality when ρ /∈ I.

iii. There is a divisor D̃ linearly equivalent to D and a decomposition D̃ =
φΣ(D′) + E such that D′ is a nef T -Q-Cartier divisor on XΣ, PD̃ = PD′ ,
and E is an effective divisor whose support is contained in

⋃
ρ∈I Dρ.

Proof: If [D] is in γΣ,I , then (ii) holds for Ξ = ΞD. If (ii) holds, then choose

u ∈ MQ such that Ξ|LΣ
= u|LΣ

. Let D̃ = D +
∑

ρ〈u, vρ〉Dρ, and let D′ be the
Q-Cartier divisor on XΣ corresponding to Ξ − u. Since Ξ is convex, D′ is nef,
and (iii) holds with E =

∑
ρ (Ξ(vρ) + dρ)Dρ. Also, since ΨD′ = ΞD − u = ΞD̃,

we have PD′ = PD̃.

It remains to show that (iii) implies (i). Replacing D by D̃ if necessary, we
may assume D = φΣ(D′) + E, where D′ is a nef Q-Cartier divisor on XΣ and
E is an effective divisor whose support is contained in

⋃
ρ∈I Dρ. We must show

that Σ refines ΣD and ΞD(vρ) = −dρ for ρ 6∈ I. Since PD = PD′ , and since D′

is nef, ΞD = ΨD′ , which is linear on each cone of Σ. Hence ΣD is refined by Σ.
Since the support of E is contained in

⋃
ρ∈I Dρ, we also have ΞD(vρ) = −dρ for

ρ 6∈ I, as required. 2
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Corollary 3 Let D be a T -Weil divisor on X. Then [D] is in the relative
interior of γΣ,I if and only if ΣD = Σ and ID = I.

Proof: The decomposition in Lemma 3 part (iii) is essentially unique; if D̃ is

replaced by D̃+
∑

〈u, vρ〉Dρ, where u|LΣ
= 0, then D′ is replaced by the divisor

corresponding to ΨD′ − u and E =
∑

ρ∈I eρDρ remains fixed. It follows that
the map [D] 7→ (D′, (eρ)ρ∈I) gives an isomorphism

γΣ,I
∼
−→ Nef(XΣ) × RI

≥0.

Taking relative interiors gives γ◦
Σ,I

∼
−→ Ample(XΣ) × RI

>0. Therefore [D] is in
the relative interior of γΣ,I if and only if ΞD is strictly convex with respect to
Σ and the inequality in (1) is strict exactly when ρ ∈ I. 2

Corollary 4 Suppose X is complete, and let γΣ,I be a GKZ cone, with Σ non-
degenerate. Let f be the birational map from X to XΣ induced by the identity
on N . If [D] ∈ γΣ,I (resp. [D] ∈ γ◦

Σ,I), then Pf∗(D) = PD and f∗(D) is nef

(resp. f∗(D) is ample). In particular, ĥ0|γΣ,I
is given by [D] 7→ (f∗(D)n).

Proof: Since Σ is nondegenerate, we can take D̃ = D and let D = φΣ(D′) + E

be the decomposition in Lemma 3 part (iii). Then, since PD = PD′ , ĥ0(D) =

ĥ0(D′). Furthermore, since D′ is nef on XΣ (and is ample if [D] ∈ γ◦
Σ,I),

ĥ0(D′) = ((D′)n). We claim that D′ = f∗(D). Indeed,

D′ =
∑

ρ∈Σ(1)

−ΞD(vρ)f∗(Dρ) = f∗(D),

and the result follows. 2

Corollary 5 The volume function of a complete toric variety is given by dis-
tinct polynomials on distinct GKZ chambers.

Proof: Let γΣ, γΣ′ be distinct GKZ chambers. Let ρ1, . . . , ρn be rays spanning a

maximal cone in Σ that is not in Σ′. By Lemma 2, ∂nĥ0

∂D1···∂Dn
vanishes identically

on γΣ′ , but not on γΣ.

Proof of GKZ Decomposition Theorem: First, we claim that [D] is in γΣ,I if and
only if for each maximal cone σ ∈ Σ, for each collection of linearly independent
rays ρ1, . . . , ρn in ∆(1) r I that are contained in σ, and for each ρ ∈ ∆(1) with
vρ = a1vρ1

+ · · · + anvρn
, we have

−a1dρ1
− · · · − andρn

{
= −dρ if ρ ⊂ σ and ρ 6∈ I.
≥ −dρ otherwise.

(2)

There are only finitely many such conditions, and all of the coefficients are
rational, so the claim implies that each γΣ,I is a convex rational polyhedral
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cone. Suppose (2) holds. Let uσ ∈ MQ be such that 〈uσ, vρi
〉 = −dρi

for
1 ≤ i ≤ n. The equalities in (2) ensure that the uσ glue together to give
a continuous piecewise linear function Ξ on |Σ|, where Ξ|σ = uσ, such that
Ξ(vρ) = −dρ for ρ 6∈ I. The inequalities in (2) guarantee that Ξ is convex. By
part (ii) of Lemma 3, it follows that [D] is in γΣ,I . Conversely, if [D] is in γΣ,I ,
then we have a Ξ as in part (ii) of Lemma 3. Say Ξ|σ = uσ. Then the left hand
side of (2) is equal to 〈uσ, vρ〉 and the desired equalities and inequalities follow
from the choice of Ξ.

It follows from Corollary 3 that the effective cone in An−1(X)R is the dis-
joint union of the relative interiors of the GKZ cones, and that dim γΣ,I =
dimPic(XΣ)Q +#I. Any finite collection of rational polyhedral cones such that
every face of a cone in the collection is in the collection, and such that the
relative interiors of the cones are disjoint, is a fan. The faces of a cone in such a
collection are precisely the cones in the collection that it contains. Therefore, to
prove the theorem, it remains only to show that every face of a GKZ cone is a
GKZ cone. Let γΣ,I be a GKZ cone, let ρ1, . . . , ρn be linearly independent rays
contained in a maximal cone σ ∈ Σ, let ρ ∈ ∆(1) with vρ = a1vρ1

+ · · ·+ anvρn
,

and let τ � γΣ,I be the face where equality holds in (2). If ρ ⊂ σ, then
τ = γΣ,Ir{ρ}. If ρ 6⊂ σ then consider the set of convex cones σ′ in NR which are
unions of maximal cones in Σ, which contain σ and ρ, and are such that X(Σ′)
is quasiprojective, where Σ′ is the fan whose maximal cones are σ′ and all of the
maximal cones of Σ that are not contained in σ′. This set is nonempty since it
contains |Σ|, and since it is closed under intersections it must contain a minimal
element σ. Let Σ be the corresponding fan. Then τ = γΣ,I . 2
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[Kür] A. Küronya, Asymptotic cohomological functions on projective vari-
eties. Thesis, University of Michigan, (2004).

[La1] R. Lazarsfeld, Positivity in Algebraic Geometry I, Ergebnisse der
Mathematik 48, Springer-Verlag 2004.

[OP] T. Oda and H. S. Park, Linear Gale transforms and Gelfand-
Kapranov-Zelevinskij decompositions, Tôhoku Math. J. 43 (1991),
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