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Abstract

We give a criterion for the section ring of an ample line bundle to be Koszul in
terms of multigraded regularity. We discuss applications to adjoint bundles on
toric varieties as well as to polytopal semigroup rings.
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1. Introduction

Let A be an ample and globally generated line bundle on a projective variety
X over a field k, and let R (A) =

⊕
!≥0 H0

(
X, A!

)
be the section ring associated

to A. Recall that a graded k algebra R = k⊕R1⊕R2⊕ · · · is called Koszul (or
wonderful) if k admits a linear free resolution over R. It is well known that a
Koszul algebra is generated in degree 1, and that the ideal of relations between
its generators is generated by quadrics.

The purpose of this note is to give criteria for the section ring of an ample
line bundle to be Koszul in terms of the regularity of the line bundle. The
following theorem illustrates the flavour of our main result, Theorem 3.

Theorem 1. Let A be an ample and globally generated line bundle on a projec-
tive variety X over an infinite field k. Assume that Hi(X, Am−i) = 0 for i > 0.
Then the section ring R(Am) =

⊕
!≥0 H0(X, A!m) is Koszul.

It is well known that section rings of high enough powers of ample line
bundles are Koszul (see [1]). Moreover, Eisenbud, Reeves and Totaro [9] give
criteria for Veronese subalgebras of graded k-algebras to be Koszul in terms of
the algebraic Castelnuovo-Mumford regularity. We illustrate the relationship
between our theorem and these criteria in the end of Section 2.

Sufficient criteria for powers of ample line bundles to have Koszul section
rings are known for curves [35, 4, 30, 25, 6], homogeneous spaces [17, 2, 31],
elliptic ruled surfaces [13], abelian varieties [18, 32], and toric varieties [3]. The
Koszul property has also been studied for points in projective spaces, see [7,
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19, 29], and toric varieties admitting additional combinatorial structure, see
[33, 28, 16, 23, 26, 27].

We will prove a more general version of Theorem 1 in terms of multigraded
regularity (compare [21] and [15]), see Theorem 3. It generalizes a result for line
bundles on surfaces by Gallego and Purnaprajna [12, Theorem 5.4] that they
use to give criteria for line bundles on elliptic ruled surfaces to have a Koszul
section ring. The proof is based on a vanishing theorem due to Lazarsfeld and
uses methods very similar to those in [12] and [15]. Generalizing the results in [9],
Conca, Herzog and Trung [5] give criteria for diagonal subalgebras of standard
bigraded algebras to be Koszul in terms of the bigraded Betti numbers, see also
Remark 12.

In vein of Fujita’s conjectures [11], it is a natural question to ask under what
conditions adjoint line bundles of the form A⊗KX for an ample line bundle A
on a Gorenstein projective variety X have a Koszul section ring. This question
was studied by Pareschi [24] for very ample line bundles on smooth varieties. As
an application of our main theorem, we give a criterion for adjoint line bundles
on Gorenstein toric varieties to have Koszul section ring.

Moreover, we show how the criteria for polytopal semigroup rings to be
Koszul due to Bruns, Gubeladze and Trung [3, Theorem 1.3.3.] can be improved
if multiples of the polytope do not contain interior lattice points, see Section 4.
Theorem 3 is part of my thesis [14].
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2. Multigraded regularity and proof of theorem

Let X be a projective variety over a field k. We will assume for the remainder
of the paper that k is infinite. Let B1, . . . ,Br be globally generated line bundles
on X. For u ∈ Zr, we let Bu := Bu1

1 ⊗ · · · ⊗ Bur
r and |u| = u1 + · · · + ur.

Let B = {Bu | u ∈ Nr} ⊂ Pic(X) be the submonoid of Pic(X) generated by
B1, . . . ,Br.

Definition 2. Let L be a line bundle on X. A sheaf F is called L-regular with
respect to B1, . . . ,Br if

Hi
(
X,F ⊗ L⊗ B−u

)
= 0

for all i > 0 and for all u ∈ Nr with |u| = i.

Obeserve that for r = 1, this is the usual definition for Castelnuovo-Mumford
regularity, compare [20, 1.8.4.].

Now we are ready to state the main theorem.
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Theorem 3. Let B1, . . . ,Br be a set of globally generated line bundles on X
generating a semigroup B. Let A ∈ B be an ample line bundle and assume that
A⊗B−1

i ∈ B for all i = 1, . . . , r. If A is OX-regular with respect to B1, . . . ,Br,
then the section ring R(A) =

⊕
!≥0 H0(X, A!) is Koszul.

Theorem 1 is the special case when r = 1. The proof is based on a vanishing
theorem of Lazarsfeld (Lemma 4 below) and a multigraded version of Mumford’s
theorem, see [15, Theorem 2.1.]. Note that the proof of Mumford’s theorem only
requires k to be infinite.

To a globally generated vector bundle E is associated a vector bundle ME ,
the kernel of the evaluation map

0 → ME → H0 (X, E)⊗OX → E → 0. (1)

For h ∈ N and A globally generated, we define vector bundles M (h) in-
ductively, by letting M (0) = A and M (h) = MM(h−1) ⊗ A, provided M (h−1) is
globally generated.

Lemma 4 (Lazarsfeld, see [24, Lemma 1]). Let X be a projective variety, let A
be an ample line bundle on X, and let R(A) =

⊕
!≥0 H0

(
X, A!

)
be the section

ring associated to A. Assume that the vector bundles M (h) are globally generated
for all h ≥ 0. If H1

(
X, M (h) ⊗A!

)
= 0 for all ! ≥ 0 and all h ≥ 0 then R(A)

is Koszul. Moreover, if H1
(
X, A!

)
= 0 for all ! ≥ 1, the converse also holds.

Observe that the proof of this lemma is valid for projective varieties over
any field.

Proof of Theorem 3. We say that a sheaf F is L-regular if it is L-regular with
respect to B1, . . . , Br. We will use induction on h to show that M (h) is OX -
regular. It then follows from Mumfords theorem [15, Theorem 2.1., (3)] that
M (h) is globally generated, and M (h+1) is defined.

Note that M (0) = A is OX -regular by assumption. For the induction step we
apply [15, Lemma 2.2.] to the short exact sequence (1) with E = M (h) twisted
by A. Since by assumption A ⊗ B−ej ∈ B, it follows that A ⊗ B−ej ∼= Bu′

for u′ ∈ Nr. By the induction hypothesis and Mumfords theorem [15, Theorem
2.1.,(1)], M (h−1) is A⊗B−ej -regular for all j, and so M (h−1)⊗A is B−ej -regular
for all j. Similarly, by Mumfords theorem [15, Theorem 2.1., (2)], the natu-
ral map H0

(
X, M (h−1)

)
⊗H0 (X, A⊗B−ej )→ H0

(
X, M (h−1) ⊗A⊗B−ej

)
is

surjective for all 1 ≤ j ≤ r.
Mumfords theorem [15, Theorem 2.1., (1)] implies M (h) is also Bu-regular

for all u ∈ Nr. Hence H1
(
X, M (h) ⊗A!

)
= 0 for all h ≥ 0 and ! ≥ 0, and

Lemma 4 implies that R (A) is Koszul.

Example 5. The fact that the section ring of high enough powers of ample
line bundles is Koszul follows easily from this result: By Serre vanishing, Ld is
OX -regular with respect to L for d large enough, hence the associated section
ring is Koszul.
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Remark 6. Let R ∼= k[x0, . . . , xN ]/I, where I ⊂ k[x0, . . . , xN ] is a homoge-
neous ideal. If I admits a quadratic Gröbner basis with respect to some mono-
mial ordering, then R is Koszul. However, a Koszul algebra need not admit a
presentation whose ideal admits a quadratic Gröbner basis, see [9].

Remark 7. It is well known that if the section ring of a line bundle L is
Koszul, then L satisfies Green’s property N1 (see [20, 1.8.C] for an introduction
to property Np). On the other hand, Sturmfels [34, Theorem 3.1] exhibited
an example of a smooth projectively normal curve whose coordinate ring is
presented by quadrics but is not Koszul. However, in many cases, criteria for
line bundles to satisfy Np imply that their section ring is Koszul and even that its
ideal admits a quadratic Gröbner basis when p ≥ 1. For example, the conditions
for Theorem 3 agree with those of [15] for a line bundle to satisfy N1.

Eisenbud, Reeves and Totaro [9] give criteria for Veronese subrings of finitely
generated graded k-algebras to be Koszul in terms of algebraic regularity. Trans-
lating their result into the language of ample line bundles, we obtain a better
bound than Theorem 1 for normally generated line bundles.

Definition 8. An ample line bundle is called normally generated, if the natural
map

H0(X, L)⊗ · · ·⊗H0(X, L)︸ ︷︷ ︸
m

→ H0(X, Lm)

is surjective for all m.

Corollary 9. Let A be a normally generated line bundle. Suppose Am is OX-
regular with respect to A. Then if d ≥ m

2 , the ideal of the section ring associated
to Ad admits a quadratic Gröbner basis; in particular, the section ring of Ad is
Koszul.

To see how this follows from the criteria in [9], we first review the notion of
algebraic regularity.

Definition 10. Let S = k[x0, . . . , xN ] be a polynomial ring over k. A finitely
generated graded S-module M is m-regular if TorS

i (M,k)j = 0 for j > i + m
and i ≥ 0.

Let I ⊂ S be a homogeneous ideal, and let R = S/I. We denote with
R(d) =

⊕
m∈N Rmd the d’th Veronese subalgebra of R. Keeping in mind that

S/I is m-regular if and only if I is (m + 1)-regular, the following theorem is an
easy consequence of the results proved in Eisenbud, Reeves and Totaro [9].

Theorem 11 ([9]). If R is (m − 1)-regular and d ≥ m
2 , then the ideal of R(d)

admits a quadratic Gröbner basis.

Proof of Corollary 9. Since A is normally generated, it is very ample. Moreover,
the section ring R associated to A is generated in degree 1, and it agrees with
the homogeneous coordinate ring of the embedding ι : X ↪→ P := P

(
H0 (X, A)

)

induced by A. In particular, R is of the form S/I for S = Sym• H0(X, A)
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and I a homogeneous ideal in S. Now Am is OX -regular with respect to itself
if and only if ι∗A is OP(m − 1)-regular with respect to OP(1) if and only if
R(P, ι∗A) = R(X, A) is (m − 1)-regular as a S-module, (see for example [8,
Exercise 20.20.] or [20, 1.8.26.]). Since the section ring associated to Ad agrees
with R(X, A)(d), the corollary follows from Theorem 11.

Remark 12. Conca, Herzog and Trung generalize the results of [9] to the bi-
graded case, and their methods generalize to the multigraded case. In [5, Theo-
rem 6.2] they give criteria for diagonal subalgebras of a standard bigraded alge-
bra R to be Koszul in terms of the bigraded Betti numbers of the resolution of
R. Given two ample line bundles L and M , we associate a bigraded algebra R =
⊕(a,b)∈Z2

≥0
H0(X, La⊗M b) over Sym• H0(X, L)⊗Sym• H0(X, M). Note that R

is standard if and only if the natural map Syma H0(X, L)⊗ Symb H0(X, M)→
H0(X, La ⊗M b) is surjective for all (a, b) ∈ Z2

≥0. The section ring of La ⊗M b

agrees with the diagonal subalgebra ⊕s∈Z≥0R(as,bs). However, the relationship
between the multigraded regularity of the sheaves L,M and the Betti numbers
of the bigraded resolution of R is subtle and and it is not obvious how to apply
[5, Theorem 6.2] in this case.

3. Applications to adjoint line bundles on toric varieties

In [24], Pareschi proved that if A is a very ample line bundle on a smooth
projective variety X of dimension n, then for d ≥ n + 1, the section ring of
Ad ⊗KX is Koszul, unless X ∼= Pn and A ∼= OPn(1).

On a smooth toric variety every ample line bundle is very ample, so Pareschi’s
theorem applies to ample line bundles on smooth toric varieties. Using Theorem
3, we obtain a similar criterion for Gorenstein toric varieties. Note that the
semigroup of integral nef divisors on a toric variety is finitely generated, and
that every nef divisor on a toric variety is globally generated.

Theorem 13. Let X be a Gorenstein toric variety of dimension n, and let
{B1, . . . , Br} be a set of nef divisors generating the nef cone of X. Let A be an
ample line bundle such that A⊗B−1

i is nef for all 1 ≤ i ≤ r. Then R(X, An+1⊗
KX) is Koszul unless X ∼= Pn and A = OPn(1).

Proof. (Compare proof of Corollary 1.6 in [15].) It follows from [22, Theorem
3.4] that An+1⊗KX is OX -regular with respect to {B1, . . . , Br}. Moreover, by
[10, Corollary 0.2], An ⊗ KX is nef, hence An+1 ⊗ KX ⊗ B−1

i is nef for all i.
The claim now follows from Theorem 3.

4. Applications to polytopal semigroup rings

The question which powers of ample line bundles on toric varieties have
Koszul section ring was studied by Bruns, Gubeladze and Trung in [3]. They
show under a mild assumption that for an ample line bundle A on a toric variety
of dimension n that the section ring R(Ak) is Koszul for k ≥ n. Observe that
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the Koszul property also follows easily from Theorem 1. In fact, since the
higher cohomology of an ample line bundle on a toric variety vanishes, An is
OX -regular.

A more careful study of the regularity of a line bundle on a toric variety
shows that if r is the number of integer roots of the Hilbert polynomial of A,
then An−r is OX -regular (see [15, Lemma 4.1]), and we obtain the following
Corollary.

Corollary 14. Let A be an ample line bundle on a toric variety X, and let r
be the number of integer roots of the Hilbert polynomial of A. Then R(Ak) is
Koszul for k ≥ n− r.

In terms of lattice polytopes and polytopal semigroup rings this can be
rephrased as follows. Let M ∼= Zn be a lattice, and P ⊂ M ⊗ R := MR be
a lattice polytope. P determines a semigroup SP ⊂ M × Z, the semigroup
generated by {(p, 1) ∈M ×Z | p ∈ P ∩M}. Let k[SP ] be the semigroup algebra
associated to SP .

Corollary 15. Let P be a lattice polytope of dimension n, and let r be the
largest positive integer such that rP does not contain any interior lattice points.
Then the polytopal semigroup ring k[SkP ] is Koszul for k ≥ n− r.

This follows from the fact that the largest positive integer r such that rP
does not contain any interior lattice points is equal to the number of integer
roots of the Hilbert polynomial of the ample line bundle associated to P (see
for example [15, Section 4]) and that (n− r)P is normal, see [15, Corollary 1.3].

Remark 16. In fact, in [3] the authors prove that for a lattice polytope P of di-
mension n such that the group generated by SP is the full lattice, the semigroup
algebra k[SkP ] admits a presentation such that the corresponding ideal admits a
quadratic Gröbner basis for k ≥ n. It follows similarly from [3, Theorem 1.4.1.]
that in the situation of Corollary 15 the semigroup algebra k[SkP ] admits a pre-
sentation such that the corresponding ideal admits a quadratic Gröbner basis
for k ≥ n− r.
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[5] Aldo Conca, Jürgen Herzog, Ngô Viêt Trung, and Giuseppe Valla. Diagonal
subalgebras of bigraded algebras and embeddings of blow-ups of projective
spaces. Amer. J. Math., 119(4):859–901, 1997. 2, 5

[6] Aldo Conca, Maria Evelina Rossi, and Giuseppe Valla. Gröbner flags and
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