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Abstract

We present the results of fully three dimensional, post-Newtonian hydrodynamical

simulations of the dynamical evolution of mergers between compact stellar remnants

(neutron stars and black holes). Although the code is essentially Newtonian, we

simulate gravitational wave emission and the corresponding effect on the fluid flow

via a post-Newtonian correction. Also, we use a modified Newtonian potential which

reproduces certain aspects of the Schwarzschild and Kerr solutions to improve the

physics in the vicinity of the black hole. Changes to the energy by neutrino/anti-

neutrino emission are accounted for by an extensive neutrino leakage scheme. The

hydrodynamical equations are integrated using the piecewise parabolic method (PPM)

and the neutron star matter is described by a tabulated equation of state (EoS).

Since the physics of matter at the extreme densities found in neutron stars is not yet

certain, we compare results computed using two such tables to ascertain whether this

uncertainty in the micro-physics extends to an uncertainty in the energy available to

power a short-period gamma-ray burst.

With an aim to including magnetic field physics to these simulations, we present

a survey of approximate Riemann solvers which may be more easily extended to the

system of equations of magnetohydrodynamics (MHD) than the exact or iterative

Riemann solver used in the PPM scheme. Tests are performed using the linearised

solver of Roe and the approximate Harten, Lax, van Leer and Einfeldt Riemann

solvers (HLLE and HLLEM) with the PPM reconstruction scheme. Finally, we discuss

the effectiveness of these approximate Riemann solvers in the simulation of mergers

between compact stellar remnants.
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“Tús maith, leath na h-oibre (a good start is half

the work). ”— Irish proverb

1
Introduction

1.1 Gamma-ray bursts: a brief history

Gamma-ray bursts (GRBs) are short-lived but extremely energetic transient events

lasting anywhere from a few milliseconds to several minutes. During this time-span

however, they are so luminous that they outshine the rest of the observable universe

in gamma rays. GRBs were first detected serendipitously in 1967 by U.S. military

satellites sent into orbit to ensure that the Soviet Union was complying with a ban

on atmospheric testing of nuclear weapons. Nuclear explosions have a characteristic

gamma-ray signature and so the military satellites were designed to detect short pulses

of gamma-ray emission. The satellites began measuring energetic burst of gamma rays

with energies in the range 0.2-1.5 MeV on average once per day. Understandably, the

work was classified for several years until it was determined that the bursts were of

astronomical origin (not, as the military feared, due to Soviet forces testing nuclear

weapons on the far side of the moon!). The results for 16 short bursts in the previously

mentioned energy range showing “significant time structure” were published in the

public domain by Klebesadel et al. (1973).

Very little was known about these gamma-ray bursts until the launch of the

1
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Compton Gamma Ray Observatory (for a summary of the results, see the paper

by Fishman and Meegan, 1995) in 1991. This satellite recorded over 2,700 bursts

with the Burst And Transient Source Experiment (BATSE). This instrument was an

all-sky survey which showed that the GRBs were isotropically distributed across the

sky with no correlation with the galactic plane implying an extra-galactic origin. The

BATSE results showed the existence of two distinct populations of GRBs referred to

as short-period and long-period GRBs. The former category typically last for less than

a second and the latter for more than a second and, in many instances, they last for

several minutes. The two populations vary spectroscopically too; short bursts tend to

have a harder gamma ray spectrum than the long bursts with typical spectral indices

of approximately 1 at energies Eph ≤ 100 keV, breaking to −2 or −3 at Eph ≥ several

hundred keV (e.g. Band et al., 1993).

Subsequent missions have added to our knowledge of what are often described as

the “biggest bangs in the universe”. The Italian satellite Beppo-SAX, launched in

1997, carried an X-Ray telescope to search for X-Ray afterglow which was expected

from theoretical considerations. By locating the X-ray counterpart of GRB 970228 1,

Costa et al. (1997) were able to identify the corresponding host galaxy and thus obtain

the red-shift. This showed unambiguously that GRBs were of cosmological origin. This

posed a problem, however: at such great distances, the received fluxes imply energies

. 1054 erg if the emission is assumed to be isotropic. Also, the rapid variability in the

light curves with time meant that, because of causality, the emitting region must be

smaller than about 100 km (see Mészáros, 2002, and references therein).

The sensitivity of Beppo-SAX to bursts longer than about 5 to 10 seconds meant

that it was more likely to return data on the long-period GRBs. To rectify this, the

Swift satellite2 was launched in 2004 and, within about half a year, it had identified the

X-ray counterpart to the short-period GRB 050509b (Gehrels et al., 2005; Bloom et al.,

2006). The identification of the host galaxy showed another difference between the

two classes of GRBs; long bursts tended to be associated with star-forming regions in

younger galaxies while GRB 050509b occurred in an old galaxy and was not associated

with an accompanying supernova like many of the long-period bursts. The Swift

mission has also provided some evidence for anisotropic beaming of the gamma-ray

radiation and also the initial opening angle of this radiation (e.g. Soderberg et al.

(2006); Grupe et al. (2006)). This considerably reduces the inferred total energy

1Gamma-ray burst identifiers refer to the date they were detected; the convention is YYMMDD.

If there is more than one GRB detected on the same day, they are further labelled chronologically by

an alphabetical letter, e.g. GRB 080319b.
2For technical details on the swift mission, see http://swift.gsfc.nasa.gov.
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required to power a short-period GRB to about ∼ 1049 erg.

1.2 Theoretical models: GRB progenitors and central

engines

The fundamental differences between the short and long-period GRBs suggest at least

two different power sources. The collapse of super-massive stars (the “hyper-nova” or

“collapsar” model) has been suggested (Woosley, 1993; Paczynski, 1998; MacFadyen

and Woosley, 1999) as a model for the central engine of the long GRBs. In this thesis

however, we concern ourselves with simulations of the gradual in-spiral and eventual

coalescence of binary systems consisting of a neutron star with either another neutron

star or a black hole which have been proposed as a power source for the short-period

GRBs. These systems lose angular momentum due to emission of gravitational waves,

the canonical example being the Hulse-Taylor pulsar system (Hulse and Taylor, 1975)

which earned its discoverers the 1993 Nobel prize in physics.

If the merger of binary systems such as these are responsible for the short class

of GRBs, there must be some way to extract the gravitational energy of the system

and use it to power the gamma-ray event we observe. Some magnetohydrodynamical

processes have been suggested including tapping the rotational energy of the central

object if it collapses to a black hole through magnetic braking using a self-sustaining

field produced by currents in an accretion disk (Blandford and Znajek, 1977; Mészáros

and Rees, 1997). Regardless of the exact mechanism for converting the kinetic energy

of the merging stars, high baryonic densities in excess of 1014 g/cm3 generated during

and immediately after coalescence lead to a medium which is opaque to photons.

High temperatures are also created due to the violence of the event and this means

that radiation of (anti)neutrinos will be the most prevalent mechanism for energy

transport. Some simulations show that the density of neutrinos will be so high in

the first few milliseconds after the merger that neutrino-antineutrino annihilation will

take place with rates & 1052 erg s−1 (Birkl et al., 2007, and references therein). One

scenario for producing a gamma-ray burst involves production of a fireball consisting

of electron and positron pairs created via neutrino processes (e.g. Mészáros and Rees,

1992). This provides a test of a given model for a GRB; it must at least produce the

correct amount of neutrinos and antineutrinos to provide the huge amount of energy

required for a gamma ray burst.
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1.3 Modelling the merger of compact stellar remnants

In this thesis we present simulation results of the merger of neutron stars with

black holes and other neutron stars. Since neutrino processes are thought to be

so important in transporting the massive amounts of energy liberated during the

merger, we require some description of the micro-physics of the neutron star matter.

In modern simulations, the nuclear physics of matter at the extreme densities found

in these merger events is added to the model by including pre-calculated data in a

tabular equation of state. This data is obtained from a theoretical model of nuclear

physics which is then used to compute the relevant values at various conditions of

density, temperature, etc. These data tables are described in more detail in Chap. 3

and in the literature (see for example, Ruffert et al., 1996; Rosswog and Davies, 2002).

Neutrino emission is very sensitive to temperature and, as temperature is

determined in the aforementioned numerical simulations from the equation of state,

changing the description of the neutron star material may impact neutrino emission.

Changing the equation of state may also affect the dynamics which would in turn

lead to different gravitational wave emission patterns as this has already been shown

by Rasio and Shapiro (1994) to depend on the stiffness of the equation of state. To

investigate the effect of the equation of state on the neutrino emission in simulations

of this type, we intend to compare three dimensional simulations of merger events

between binary systems containing either two neutron stars or a neutron star and

black hole calculated with two different realistic state equations. Of the two equations

of state, that proposed by Lattimer and Swesty (1991) has been in use in these

types of simulation for over a decade. The other equation of state used, that of

Shen et al. (1998a,b), has previously been used in mergers between two neutron stars

(e.g. Rosswog and Davies, 2002) but only for smoothed particle hydrodynamics (SPH)

codes. Rosswog and Davies (2002) describe some of the general differences caused by

switching EoS but do not draw direct comparison with models computed with the EoS

of Lattimer and Swesty (1991). Also, to the best of our knowledge, this is the first time

a comparison can be drawn between simulations of neutron star–black hole mergers

computed using the equations of state discussed above since other groups simulating

the coalescence of neutron star - black hole binary systems with a realistic equation

of state have only used one such EoS (e.g. Rosswog, 2005a).

Much more physics than the micro-physics and neutrino emission is required in

modelling the merger of compact stellar remnants. We of course require some form of

fluid dynamics to evolve the bulk motion of matter on the grid and, so that we can

perform the solution on a computer, we must choose a method in which space and

time can be discretized. If the stars are to merge at all we must include at least some
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general relativity into our simulations; we include general relativistic corrections to

Newtonian mechanics so that gravitational wave emission is taken into account.

An alternative mechanism to energy extraction via neutrino emission is extraction

via magnetic fields. Since it has been shown in numerical simulations (see for example,

Casse and Keppens, 2002) that an accretion disk threaded by a magnetic field can

launch a continuous, self-collimating jet of plasma, we hypothesise that magnetic

processes are important in the study of GRBs and may provide a mechanism through

which gamma-ray emission may become highly directional, thus lowering the required

energies to match the received fluxes3. Although some progress has been made using

magnetohydrodynamics (MHD) in simulations of merging binary neutron stars with

a realistic equation of state by Price and Rosswog (2006); Rosswog and Price (2007),

there are still many unanswered questions such as the topology of the magnetic field

outside of the stars and the resulting accretion disk, and the field’s possible role in jet

launching by acting as an energy reservoir and through its interaction with the top

and bottom layers of the disk.

1.4 Organisation of the thesis

The thesis is laid out as follows: In chapter 2 we introduce some important concepts

and background theory related to the numerical solution of the hydrodynamical

equations. We also describe some numerical schemes for hydrodynamics and compare

their performance in some standard one and two dimensional tests. Chapter 3 contains

a full description of the features of the computer code we use to simulate the merging

and coalescence of compact stellar remnants (i.e. neutron stars and black holes). We

present the results of simulations designed to investigate whether the micro-physical

description of matter under the extreme conditions present in a neutron star has

any effect on the neutrino emission rates. Since it is thought that the energy we

associate with the GRB is extracted from the merger event via neutrino-antineutrino

annihilation, any variation in these rates is important as it may strengthen or weaken

the case for mergers between compact objects as a central engine for the short period

class of GRBs. We return to the subject of numerical schemes for hydrodynamics in

chapter 4; we present results from current work on simplifying the numerical solver

used in our compact merger code in preparation for the inclusion of magnetic field

physics in our model. Finally, we conclude with a summary and discussion of results

followed by some thoughts on the future direction of this research project.

3Note that this is speculative as the work by Casse and Keppens (2002) is non-relativistic and can

never, therefore, lead to high Lorentz factor jets.



“We can’t solve problems by using the same kind of

thinking we used when we created them. ”— Albert Einstein

2
Hydrodynamics: Numerical Treatment and

Tests

A long-term goal in our simulations of merger events between compact stellar remnants

is the addition of magnetic field physics to the current computer model (described in

detail in Chap. 3). In this thesis, we take some important first steps towards the

accomplishment of this goal. For example, we must first understand the numerical

solution of the augmented Euler equations in the context of that model and so, in this

chapter, we introduce the basic mathematical theory of hydrodynamics and present

numerical tests to show the development of suitable schemes for implementation in

our astrophysical code.

2.1 Hydrodynamics

Hydrodynamics is the study of the motion of fluids where the fluid is described in

the continuum limit, neglecting their discrete, molecular nature. In astronomy, the

fluid in question is often compressible and so the term is used interchangeably with

gas dynamics, the governing equations of which are the Euler equations which, in

6
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conservation form, are written

∂U
∂t

+∇ · F(U) = S(U), (2.1)

with the vectors

U =



ρ

ρux

ρuy

ρuz

E


, F(U) =



ρux

ρu2
x + p

ρuxuy

ρuxuz

(E + p)ux


. (2.2)

The state vector U contains the conserved quantities of mass density ρ(x, t), the three

components of linear momentum density ρ(x, t)u(x, t) and the total energy density

E(x, t).1 F(U) is the vector of flux densities derived from the conserved quantities

and S(U) is a vector containing source terms for the system.

The total energy E = ρε + 1
2ρ|u|

2 is the sum of the internal and kinetic energy

densities, ρε and 1
2ρ|u|

2, respectively. The quantity ε = ε(p, ρ) which is a function of

the mass density and the pressure, is known as the specific (per unit mass) internal

energy and is determined by the equation of state.2 As an example, consider the

equation of state for an ideal gas (also known as a gamma-law gas) which is used for

all the examples and tests throughout this chapter,

ε =
p

ρ(γ − 1)
, (2.3)

where γ is the ratio of the specific heats.

The Euler equations as shown in Eqs. 2.1-2.2 are a set of non-linear, coupled,

partial differential equations (PDEs) and as such, a general, closed form, analytical

solution has not yet been found. To proceed, we can make approximations to solve

the equations in certain contexts or we can attempt to solve the equations numerically

with the help of a computer. Since this thesis is concerned with the latter, we now

consider the Euler equations, identifying any properties which may be useful in their

numerical solution.

1Unless explicitly stated otherwise, “density” will mean mass density or mass per unit volume and

all other fluid properties will be assumed to be densities.
2The equation of state completely describes the thermodynamical properties of the fluid medium

and although it can be a function of just two variables (such as pressure and mass density as in this

case), other more complicated or exotic types of fluid may require more data to uniquely determine

the pressure for a given internal energy and so on. We will see an example of such an exotic equation

of state in Chap. 3.
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The Euler equations are examples of hyperbolic conservation laws. Hyperbolic in

this context means that the flux Jacobian matrix

A ≡ ∂F(U)
∂U

, (2.4)

is diagonalisable with real eigenvalues λ1 < λ2 < ... < λn where n is equal to the

number of coupled equations or the size of U and F (U,F ∈ Rn). If the eigenvalues

are also distinct, i.e. there are no degeneracies, then the system of equations exhibits

strict hyperbolicity. These properties of the Jacobian matrix A are important and we

shall return to them later in this chapter. For completeness, the eigenvectors of the

Euler equations with the fluid quantities and fluxes given by 2.2 are

r1 =



1

ux − c

uy

uz

H − uxc


, r2 =



0

0

uy

0

u2
y


, r3 =



0

0

0

uz

u2
z


,

r4 =



1

ux

uy

uz

1
2 |u|

2


, r5 =



1

ux + c

uy

uz

H + uxc


,

(2.5)

where c is the speed of sound which is related to the enthalpy H ≡ (E+ p)/ρ through

the formula c2 = (γ−1)(H− 1
2 |u|

2). These eigenvectors have corresponding eigenvalues

λ1 = ux − c, λ2 = ux, λ3 = ux, λ4 = ux, λ5 = ux + c. (2.6)

The Euler equations are examples of conservative equations which means that

any of the special conserved quantities (mass, momentum and energy for the Euler

equations) can only change in time in a given region of space, if we neglect any source

or sink terms, if there is a net flux of that quantity into or out of the region. Any

conservative equation is said to be in conservative form if it is written as Eq. 2.1.

A word on derivatives; the temporal derivative in Eq. 2.1 is an Eulerian derivative

and measures the change in a quantity with respect to time at a fixed point in space

and is thus written as a partial derivative. Another way to measure the evolution of

a variable in time is to move along with the local flow, following a streamline. For

example, consider a chemical tracer or a small concentration of dye added to a fluid

flow. As this chemical flows past a point at which we might evaluate an Eulerian

derivative, the local concentration of that chemical will change. The derivative of the
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concentration evaluated by following the flow however, does not change unless there

are sources or sinks caused by chemical reactions, etc. This derivative is a Lagrangian

derivative and is related to the Eulerian derivative as follows,

D
Dt

=
∂

∂t
+ u · ∇. (2.7)

These two derivatives lead to distinct formulations of fluid dynamics, namely the

Eulerian and Lagrangian formulations. In order to solve the hydrodynamic equations

numerically, we must first decide upon a way to represent the fluid in the computer.

Since computer memory is finite and the fluid is thought of as a continuous medium

in the Euler equations, this means we must choose a method of discretization. We

can choose between the Eulerian and Lagrangian views in discretizing the fluid or

use an “Arbitrary Lagrangian-Eulerian” (ALE) formulation, developed in an attempt

to combine the advantages of the above classical descriptions while minimising their

respective drawbacks as far as possible.

2.2 Numerical treatment

2.2.1 Discretization

One simple method of discretization is to split the fluid into cells which together

form a grid in one, two and three spatial dimensions. In this context, choosing the

Eulerian or Lagrangian formulation of hydrodynamics leads to two different types of

computational grid. In the Eulerian framework the cells of the grid always occupy

a fixed volume and any change in the conserved quantities is therefore due to flow

through the cell, as expected from the definition of the Eulerian derivative. In the

Lagrangian point of view, the grid is flexible and moves to follow “fluid particles”

where a cell defines such a particle and the cell changes size to conserve the amount

of mass within its volume. See Courant and Friedrichs (1948) or Richtmyer and

Morton (1994) for more details. If the Lagrangian grid seems rather ad hoc, there is a

conceptually simpler way of treating the Euler equations in their Lagrangian form; we

can assign the fluid quantities to particles of fixed mass and follow these particles as

they interact through the fluid forces. This point of view is followed in the smoothed

particle hydrodynamics (SPH) approach, We do not use SPH in the present work, but

simply direct the interested reader to some of the seminal papers in this field by Benz

(1990), Monaghan (1992) and references therein.

The choice made in all the codes for which detailed results are presented in this

thesis is to use an Eulerian grid based code. A discretization which is relevant in

this case is to divide time and space into discrete lattice points (x, t) → (xj , tn) with



Chapter 2. Hydrodynamics: Numerical Treatment and Tests 10

j, n ∈ Z as follows,
xj = j∆x,

tn = n∆t,
(2.8)

where ∆x and ∆t are then the distance between the points in space and time

respectively3. Note that this spatial discretization describes a uniform, equidistant

mesh. It is of course possible to consider more complicated types of mesh which

increase resolution in regions of interest or which utilise different coordinate systems

(e.g. spherical) to better suit a particular problem. We do not consider such grids here

since all codes presented in this work use the simple grids described above. Resolution

is increased by nesting grids with decreasing ∆x. See Sect. 3.1.7 for further details.

Using our discretization, any fluid variables can then be described in terms of these

discrete coordinates as U(xj , tn) but it will be beneficial (as we shall see later) if we

further consider the lattice points to be surrounded by cells of finite volume. In that

case we must prescribe some value to the space between lattice points and one way to

do this is to average the quantity over the cell volume,

Un
j ≡

1
∆xj

∫ xj+1/2

xj−1/2

U(x, tn)dx. (2.9)

Note that we still refer to a cell volume even in one dimension. This finite volume

discretization is shown graphically in one spatial dimension in Fig. 2.1.

2.2.2 Finite differences

We now have a discretization, in terms of a grid of finite volume cells, of the fluid

described by the Euler equations, viz. the set of values {Un
j }. Solving the Euler

equations, in the present numerical context, means to find approximations {Un+1
j } to

the fluid quantities at a time tn+1 = tn + ∆t when the values at t = tn are known and

form initial conditions. One obvious way of deriving numerical schemes is to rearrange

the Taylor series approximations to the partial derivatives in the conservation laws.

Consider for example, the one dimensional continuity equation of mass from the Euler

equations in isolation in the case of a steady flow with constant velocity ux > 0,

∂ρ

∂t
+ ux

∂ρ

∂x
= 0. (2.10)

This is often called the advection equation since any initial density profile is simply

advected through a distance ux∆t each time step. We start by replacing each derivative

3The distance between any two lattice points, ∆x, is trivially defined from the number of cells

in any direction and by the physical length that this grid is meant to represent. The time step, ∆t,

however, requires a little more thought since, if chosen too large, the scheme may be numerically

unstable. We defer the definition of the time step until Sect. 2.4.
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Figure 2.1: Graphical depiction of the discretization and cell averaged quantities in one
spatial dimension.

with a finite difference approximation. There are many choices here, especially for the

spatial derivative. The derivative could be one-sided, centred, first or second order,

etc. and care should be taken since many choices produce inherently unstable schemes

(see LeVeque (1994) for a survey). Since the flow has constant velocity, and hence

always travels in the same direction, we can use a simple one sided representation of

the spatial derivative,
ρn+1

j − ρn
j

∆t
+ ux

ρn
j − ρn

j−1

∆x
= 0, (2.11)

which we can then rearrange to find the density profile at the next time step

ρn+1
j = ρn

j − ux
∆t
∆x

(
ρn

j − ρn
j−1

)
. (2.12)

This is an example of an upwind scheme, so called because to update the value in any

given cell it uses information from the neighbouring cell in the upstream or upwind

direction. There are many more simple finite difference based schemes such as the

upwind scheme. Many are robust but as a class they tend to suffer from high numerical

diffusivity; they are fine when the solution is smooth but any steep gradients, such as

in a hydrodynamical shock, become smeared out. A remedy for this is to construct a

shock capturing scheme which preserves steep gradients in the fluid quantities. Just

such a class of numerical schemes was first proposed by Godunov (1959).

2.2.3 Godunov’s method

The upwind method defined in Sect. 2.2.2 has the interesting property that it

exhibits less numerical diffusion than a scheme which uses a centred, finite difference
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approximation to spatial derivatives (LeVeque, 1994). This makes sense if we consider

that, since quantities in our grid cell can only change due to the flux into and out of

the cell, only the upwind information will affect our chosen cell. Unfortunately for the

Euler equations, we do not have the situation, essentially engineered in Eq. 2.10, that

the velocity of the flow is a constant. However, Godunov (1959) managed to devise a

method which effectively generalises the upwind method to all hyperbolic systems of

PDEs including the Euler equations.

The Godunov scheme is conceptually intuitive and results from considering the

integral form of the conservation law Eq. 2.1 (neglecting any source terms),∫ xj+1/2

xj−1/2

U(x, tn+1)dx−
∫ xj+1/2

xj−1/2

U(x, tn)dx

+
∫ tn+1

tn

F
(
U(xj+1/2, t)

)
dt−

∫ tn+1

tn

F
(
U(xj−1/2, t)

)
dt = 0. (2.13)

The two integrals over x are equivalent to our definition of a cell averaged quantity,

Eq. 2.9. If we also define the flux between cells

Fn+1/2
j+1/2 ≡

1
∆tn

∫ tn+1

tn

F
(
U(xj+1/2, t)

)
dt, (2.14)

then we can rewrite Eq. 2.13 as

Un+1
j = Un

j −
∆t
∆x

(
Fn+1/2

j+1/2 − Fn+1/2
j−1/2

)
. (2.15)

This scheme is clearly in conservative form and shows that if we can evaluate the

inter-cell fluxes numerically, then we can advance the solution of the hyperbolic PDEs

to the next time step. While this may seem difficult at first we note that, over the

time interval t ∈ [tn, tn+1], the integral in Eq. 2.14 is trivial since U is constant at

x = xj+1/2, the interface between the cells j and j+1. One way of computing Fn+1/2
j+1/2

therefore, is to determine the value of U at the interface and then compute the fluxes

based on these values. This is Godunov’s method. At the interface between each cell,

he solved the full non-linear Euler equations via an iterative method to obtain the

values of fluid variables at that interface. By computing the fluxes according to their

definition as in Eq. 2.2, he was then able to close the scheme and evolve the fluid

quantities in time. The computation of the fluid quantities at the cell boundaries is

accomplished by a Riemann solver. Let us now consider Godunov’s iterative Riemann

solver in more depth.

2.3 The Riemann problem and its solution

The general Riemann problem is the solution of a conservation law with piecewise

constant initial data and a single discontinuity (LeVeque, 1994). In the special case
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where the initial velocities on both sides of the discontinuity are zero, the term “shock

tube” is also applied. Figure 2.2(a) shows the spatial profile of a given quantity in a

typical Riemann problem. In general, discontinuities such as this are not stable in the

sense that the dynamics represented by the conservation laws will act to break the

original jump into smaller jumps which are stable and evolve in a self-similar manner.

The solution of the Riemann problem then, can be thought of as the resolution of this

discontinuity into characteristic jumps in the conserved quantities for that system of

equations.

The canonical example of a hyperbolic PDE is the second order scalar wave

equation
∂2a

∂t2
= c2

∂2a

∂x2
, (2.16)

where c is the speed of the waves and a = a(x, t) is some arbitrary quantity such as

the electric or magnetic field in the case of electro-magnetic waves, or gas pressure in

the case of acoustic waves. Wave propagation is a property of all hyperbolic PDEs;

perturbations in state variables spread outwards at characteristic speeds. It is this

mechanism which is responsible for resolving a general Riemann problem; a general

discontinuity may be thought of as a perturbation which excites one or more of the

characteristic waves of the system of equations, each of which propagates outwards

from the initial discontinuity as a stable jump in the fluid quantities. This is illustrated

graphically in Fig. 2.2(b) where we have taken the resultant density profile in the Sod

shock tube problem. This figure includes the three types of characteristic wave which

the Euler equations support. There is a rarefaction fan (the smooth slope to the

left of x = 0), a shock (the step discontinuity furthest on the right), and a contact

discontinuity (between the shock and rarefaction). As these waves move outward from

x = 0, they separate new piecewise constant regions as shown in Fig. 2.3. The “jump”

in a given fluid variable as one of these waves pass satisfies the Rankine-Hugoniot

jump condition

F(U1)− F(U2) = s (U1 −U2) , (2.17)

which is derived directly from the integral form of the conservation law (e.g. LeVeque,

1994, 2002; Toro, 1999). It essentially states that a discontinuity in the fluid variables

will be stable providing that it moves with velocity s. A side note which will be

important later: this means we can have a “rarefaction shock” – a discontinuity which

moves towards an area of high density leaving a rarefied, lower density state in its

wake. This is unphysical however, but we can only see this if we consider the entropy

change across the jump. The rarefaction shock, although a solution of the Rankine-
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Figure 2.2: (a) An example of the piecewise constant initial conditions in a Riemann problem
showing a discontinuity in an arbitrary quantity as a function of x; (b) A possible solution
(actually the mass density profile of the solution to the Sod shock tube Riemann problem) to
the relaxation of the discontinuity in panel (a). From right to left the jumps correspond to a
shock, a contact discontinuity and a rarefaction fan.
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un−shocked gas
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Figure 2.3: A space-time diagram of the self-similar solution of a Riemann problem showing
the four zones which result and the three waves separating them. The waves shown here are,
from left to right, a rarefaction wave, the contact discontinuity and a shock wave.

Hugoniot condition, is entropy violating4 and should be replaced by a rarefaction fan.

A rarefaction wave has a head and a tail which travel with different speeds so that,

over time, it spreads out in space into a self-similar structure called a rarefaction fan.

As its name suggests, it connects regions of higher density and pressure with regions

of lower values of those quantities. A shock is a simple discontinuity which obeys

the Rankine-Hugoniot condition, Eq. 2.17. A shock causes an increase in density and

4The entropy in the unperturbed medium decreases as the wave passes which is in violation of the

second law of thermodynamics. The implication is that the upstream and downstream states cannot

be connected via a rarefaction “shock” without violating causality.



Chapter 2. Hydrodynamics: Numerical Treatment and Tests 15

pressure as it passes. Also a simple discontinuity, a contact discontinuity is similar

to a shock except that there is no jump in pressure as it passes. Since there is no

pressure gradient, there will be no jump in velocity across the interface either and

any discontinuity in density will simply be advected at the bulk flow velocity. When

multi-dimensional flows are considered, shear flows can exist and in these cases the

resolution is not just as simple as described in the preceeding sentence.

2.3.1 The shallow water equations5

To see how an understanding of these characteristic waves can help us solve the

Riemann problem, let us consider a simpler set of hyperbolic conservation laws. We

choose the shallow water equations as they are intuitive to understand and, since they

consist of only two coupled PDEs, they have a two dimensional phase space which we

can more easily visualise than the 3D phase space of the Euler equations. The shallow

water equations, neglecting any bottom topography, can be written

∂h

∂t
+
∂ (hu)
∂x

= 0,

∂(hu)
∂t

+
∂

∂x

(
hu2 +

1
2
gh2

)
= 0,

(2.18)

where h = h(x, t) is the depth of the water, u = u(x, t) is the local velocity of the

water in the x-direction, and g is the acceleration due to gravity. Units in which g = 1

are often chosen when working with these equations and we follow this convention in

the following discussion.

There are only two characteristic waves in the shallow water equations. Let us

examine what effects these waves have on the height and momentum (hu, one of the

conserved quantities in Eq. 2.18) of the water as they pass. We start by applying

the Rankine-Hugoniot jump condition (Eq. 2.17) to the height and momentum to see

which states can be connected to an arbitrary, constant state (ĥ, ĥû) by shocks of

speed s. This gives us the two equations

m− m̂ = s
(
h− ĥ

)
,(

m2

h
+

1
2
gh2

)
−
(
m̂2

ĥ
+

1
2
gĥ2

)
= s (m− m̂) ,

(2.19)

where we have defined momentumm ≡ hu. The shock speed s can easily be eliminated

from these equations to give the momentum as a function of the initial, constant state

5Much of the discussion in this and the following few Sections can be found in many standard

references in the literature, for example the excellent books by LeVeque (1994, 2002) and Toro (1999).
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*

Figure 2.4: The Hugoniot curves associated with three arbitrary states (indicated by plus
symbols) in the phase plane of the shallow water equations. The solution to the particular
Riemann problem with left and right states marked by “L” and “R” respectively is shown by
a circle with the label “?”. The characteristic waves referred to in the text are also highlighted
by labelled arrows.

and the water depth

m(h) =
m̂h

ĥ
±

√
gh

2ĥ

(
h+ ĥ

)(
h− ĥ

)2
. (2.20)

Note the plus or minus sign; this function describes both shock types. We plot m(h)

in the phase space of the shallow water equations for various arbitrary initial points

in Fig. 2.4. The constant states are indicated by plus symbols.

The set of states indicated by m(h) are collectively known as the Hugoniot locus

and represent the possible states to which an arbitrary initial state can be connected

by means of a shock. This does not take into account whether a shock is entropy

violating or not. To find the states which can be connected to the initial state by

means of a rarefaction wave, we need to consider the integral curves for the system.

As is the case for shocks, there may not be a physically viable rarefaction wave

branch leading from the initial state in phase space. In general though, given an

arbitrary state in phase space, we can plot the points which can be connected to that

state by a rarefaction wave. It turns out that these waves are subsets of the integral

curves of the vector fields defined by the right eigenvectors of the Jacobian matrix of

the system of equations (see for example LeVeque et al., 1998; LeVeque, 1994, 2002).

Integral curves are defined such that the tangent to the curve at any point lies

in the direction of the eigenvector at that point. Due to their connection with the
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eigenvectors of the Jacobian matrix, the integral curves are very similar in shape to

the Hugoniot locus described earlier. This is especially true close to our arbitrarily

chosen point in phase space and, it can be shown (Lax, 1973) that the curvature

of both curves is the same. Although the integral curves diverge from the relevant

Hugoniot locus, the overal shape is similar enough that we do not make any distinction

in Fig. 2.4 since it is mainly for illustrative purposes.

An arbitrary point in the phase space of the shallow water equations can therefore

be connected by two Hugoniot loci (one for each type of shock) and two integral

curves (one for each type of rarefaction). Since it is either a shock or a rarefaction

which modifies the piecewise constant states of a Riemann problem, the solution to the

Riemann problem must lie at the intersection of two of these curves. The particular

permutation of curves will be determined on physical grounds by the condition that

entropy increases as the wave passes. To make this clearer, consider a Riemann

problem for the shallow water equations6 with initial conditions UL = (h = 0.7, hu =

0), UR = (h = 0.5, hu = 0). These are the two points side-by-side in the middle of the

plot in Fig. 2.4 (marked “L” and “R”). The solution to this Riemann problem will be

one of the intersection points on the curves through these initial states.

Intuition tells us that water will flow to the right, increasing the height of the water

there at the expense of that on the left. If we look at the curves passing through UL

and UR, we see that they intersect in two locations. Both intersections have an

intermediate water height which is higher than hR and lower than hL as we expected.

In this instance we can choose between the two intersections because we know that

the velocity at the point where the initial discontinuity was will be positive which

makes the solution to this Riemann problem h? ≈ 0.6, m? ≈ 0.75. If we didn’t have

this insight however, we could still choose the correct intersection by considering the

types of wave which are physically allowed. Contact discontinuities are not applicable

in the shallow water equations. This leaves us with the two choices already discussed,

shocks and rarefactions. Consider the right state (h = 0.5, hu = 0.0) of our Riemann

problem and look at the curves for this state (Fig. 2.4). There are four paths of

different states which we could follow from this point in phase space. If we label the

left-most wave propagating from the discontinuity as the 1-wave and the right-most

wave as the 2-wave then, by consulting the first of the jump conditions in Eq. 2.17, we

can surmise that the curve which passes through UR from bottom-left to top-right is

the wave with positive wave speed; the 2-wave. The other branch corresponds to the

6In this context, Riemann problems are often referred to as “dam break problems”.
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1-wave with negative wave speed7. We can eliminate the latter path because, as we

have already stated, a rarefaction shock is an entropy violating, and thus unphysical,

solution. We could perform a similar analysis on the left state but this is unnecessary

as we have already uniquely identified the correct intersection and thus solved the

Riemann problem.

2.3.2 Computing the inter-cell fluxes in Godunov’s method

Returning to the original problem of determining the inter-cell fluxes for Godunov’s

scheme, we can think of the process schematically as in Fig. 2.5. Here we see four

cells which form part of a 1D uniform computational grid. The cell centres are at

positions marked as {xj} and a series of local Riemann problems are defined by the

discontinuities between the different cell averaged values at positions {xj+1/2}. In

the figure, the vertical axis represents increasing time. The oblique lines originating

from each Riemann problem represent some of the possible arrangements of the

characteristics of the Euler equations; a thin solid line indicates a shock, a dashed

line a contact discontinuity and the bundles of tightly packed lines show rarefaction

fans. We have stated in Sect. 2.2.3 that we seek the value of all the fluid quantities

evaluated at the interfaces between cells so that we may compute the fluxes. There

are a few possibilities to consider: all of the characteristics could travel to the left of

the interface, they could all travel to the right of the interface or, the interface could

lie between waves going left and right. The first two scenarios are trivial since the

values of the fluid variables at the interface will be direct copies of either the original

left or right state. An example of this can be seen for the Riemann problem between

the xj+1 and xj+2 cells in Fig. 2.5 where the fastest and slowest waves are both right

travelling shocks. The interface values in the solution of this Riemann problem are

just Uj+1+1/2 = U(xj+1). In the case where the waves travel in opposite directions

we can use the idea developed above for the shallow water equations that the new

state formed between the waves must be accessible from the left state through the

wave which travels toward that state and also from the right state through the right-

running wave. In the Euler equations there is a third wave, the contact wave, but this

is not a problem so long as the solution is evaluated in terms of the primitive variables

(ρ,u, p) since there is no jump in pressure or velocity across such a wave.

In the Euler equations, the phase space is now three dimensional8 but we can still

7It just so happens that, in this case, the 1 and 2-waves are actually left and right-running. This

is not always true in general.
8For simplicity, we assume that velocity only varies in the x-direction and only adds one dimension

to the phase space as opposed to the three that would be added by considering more general flows.
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Figure 2.5: Godunov (1959) type methods advance the flow in time by solving local Riemann
problems at cell interfaces to obtain inter-cell fluxes. This allows the fluid quantities to be
updated in a conservative fashion.

derive an expression for the Hugoniot locus by applying the Rankine-Hugoniot jump

condition to the Euler equations. If we project this three dimensional curve onto the

pressure-velocity plane, then we have curves like those shown schematically in Fig. 2.6.

Although the density varies along these curves, the energy is constant. In the figure

we have assumed that the process of eliminating unphysical paths has already taken

place, leaving the curves of a left travelling rarefaction, which reduces the pressure

of the left state, and a right-going shock which increases the pressure and velocity

of the right state. We label the constant state which forms between the two waves

(u?, p?). We now must address the crucial part of the method which was left out of

our discussion on the shallow water equations; how to compute coordinates of the

intersection point without resorting to graphical means since equating the curves in

phase space leads to a non-linear equation.

The solution is to iterate. This can be done directly from the equations of the

Hugoniot locus but, for the Euler equations, we describe a different method (see

Richtmyer and Morton, 1994). We begin by rewriting the second Euler equation

(describing the conservation of momentum of the fluid) in terms of the fluid variables

on either side of some arbitrary wave

ρ?u
2
? + p? = ρ0u

2
0 + p0, (2.21)

where variables with a “0” subscript refer to material entering the wave (i.e. the

initial left or right state of the Riemann problem) and a ? subscript indicates material

already processed by the wave. The fluid velocities in this equation are in the frame

of the shock and so, to transform back to bulk flow velocities, we must add the speed



Chapter 2. Hydrodynamics: Numerical Treatment and Tests 20

R
p

L
p

Pr
es

su
re

Velocity

(u*, p*)

3−shock

1−integral curve
rarefaction

("u−c")

("u+c")

Figure 2.6: The loci of all possible states in a Riemann problem with a rarefaction moving
to the left and a shock moving to the right in the velocity-pressure plane. The initial states are
at left with zero velocity and the state marked (u∗, p∗) is the constant state formed between
the shock and rarefaction wave.

of the wave.

From the equation of continuity of mass (the first Euler equation), we can define

a mass flux ρ0u0 = ρ?u? ≡ M±, where “+” is used to distinguish a right-running

wave from a left-running one, denoted by “−”. Using this definition of mass flux, the

equation above may be rewritten

M± = ± p? − p0

u? − u0
. (2.22)

The plus and minus signs continue to refer to the right and left characteristics

respectively. If we recall the representation of the Riemann problem in the velocity

plane (Fig. 2.6), then the above equation may be interpreted as the gradients of two

lines in this plane. The lines have gradients of M+ and −M− and, if we use pR and

pL as values for p0, the equations of the lines are

p = M+(u− uR) + pR,

p = −M−(u− uL) + pL.
(2.23)

Assuming that these lines intersect at the point (u?, p?) and eliminating u? from

the equations, we have

p? − pR

M+
+ uR = u? =

p? − pL

−M− + uL, (2.24)

which simplifies to

p? =
M+M−(uL − uR) +M+pL +M−pR

M+ +M− . (2.25)
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To complete this equation for p? we need values forM± which we can find by appealing

to the first two fluxes of the Euler equations (see Eq. 2.2)

ρ0u0 = ρ?u? ≡M±,

p0 + ρ0u
2
0 = p? + ρ?u

2
?,

(2.26)

and combining them to arrive at(
M+,−)2 =

p? − pR,L

VR,L − V?
, (2.27)

where V ≡ 1/ρ and p, V assume values for the right or left states for M+ and M−

respectively.

By substituting the equation of state for an ideal gas,

E =
p

γ − 1
+

1
2
ρu2, (2.28)

into the third Euler flux (Eq. 2.2), (E + p)u, and using Eq. 2.27 above, the following

ratio can be derived
ρR,L

ρ?
=
pR,L(γ + 1) + p?(γ − 1)
pR,L(γ − 1) + p?(γ + 1)

. (2.29)

We use this ratio to eliminate V? from Eq. 2.27, to give

M+,− =
√
pR,LρR,L

√
(γ + 1)

2

(
p?

pR,L

)
+

(γ − 1)
2

, (2.30)

for a shock. A similar expression can be derived for a rarefaction. Since a rarefaction

wave is not a discontinuity, we can use the regular, isentropic theory straight from

the Euler equations. We can of course write these equations in terms of the primitive

(i.e. non-conservative) variables, replacing the equation for the conservation of energy

with one for the conservation of entropy. Using these relations along with the relevant

Riemann invariant (u − 2
γ−1c is a constant along the integral curve for rarefaction

waves), we can find the expression for the mass flux for a rarefaction,

M+,− =
√
pR,LρR,L

(γ − 1)
2
√
γ

1− (p?/pR,L)

1− (p?/pR,L)(γ−1)/2γ
. (2.31)

The full derivation can be found in Richtmyer and Morton (1994) for example. These

formulæcan be combined into a single expression for the mass flux

M+,− =
√
pR,LρR,L φ

(
p?

pR,L

)
, (2.32)

if we define the function

φ(x) =



√
γ + 1

2
x+

γ − 1
2

, for x > 1

γ − 1
2
√
γ

1− x

1− x(γ−1)/2γ
, for x ≤ 1.

(2.33)
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Figure 2.7: Graphical illustration of the iterative Riemann solver of Godunov. The true
solution (u?, p?) is the intersection of the black curves and the coloured lines show successive
iterations (u?

(i), p
?
(i)) in search of this solution. Note how the intersection of one set of the

coloured lines determines the gradient of the lines for the next iteration.

Note that φ(x) as written above is only valid for an ideal gas with constant γ. If a

different, more general equation of state is used, this function must be modified.

To calculate the pressure in the region between the left and right characteristics

in a Riemann problem using Eq. 2.25, we require the mass fluxes across both waves.

Since the mass fluxes depend on p?, the solution is obviously iterative. We first make

a guess at the pressure in regions (2) and (3) of Fig. 2.3, a reasonable starting point

being the average value of pL and pR. We use this to calculate the gradients of the

lines in the velocity-pressure plane and their intersection results in an improved value

for p? via Eq. 2.25. We insert this value into the equations to obtain new gradients and

we repeat the process until convergence; that is, until there is no change in successive

iterations to machine accuracy. The process is illustrated graphically in Fig. 2.7. The

coloured lines show the successive approximations to the intersection of the correct,

non-linear curves which are shown in black.

Once p? is known to the desired accuracy, the velocity can be determined by

eliminating p? (instead of u?) from Eq. 2.24

u? =
M+uR +M−uL + pL − pR

M+ +M− . (2.34)

The density can then be calculated in regions (2) and (3) of Fig. 2.3 once it is known

which type of waves are present in the solution. To compute the density in region (2)

or (3) (denoted ρ?
L and ρ?

R respectively) after a shock has passed, we can rearrange
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Eq. 2.29, since it comes from the Rankine-Hugoniot jump conditions, to give

ρ?
L,R = ρL,R


(

γ−1
γ+1

)
+
(

p?

pL,R

)
(

γ−1
γ+1

)(
p?

pL,R

)
+ 1

 . (2.35)

If the wave is a rarefaction, we can again use the isentropic law

p = kργ , (2.36)

where k is a constant evaluated at the initial data state, and the relevant Riemann

invariants to derive the following relation for the density

ρ?
L,R = ρL,R

(
p?

pL,R

) 1
γ

. (2.37)

We now have all the necessary relations to find the fluid values in each region within

the Riemann fan. Solving the Riemann problem is now just a matter of determining

which of the states applies at xj+1/2. Note that when the flow is trans-sonic, the

solution may be found within the rarefaction fan and extra work is required to evaluate

the fluid variables at xj+1/2 in this instance. A further problem can occur in degenerate

cases where the left and right state are connected by a single shock or rarefaction. Since

any solution algorithm is required to select which of the correct mass flux formulæto

apply (i.e. for a shock or a rarefaction) anyway, it can also monitor for these degenerate

cases and perform the appropriate response which is usually to set, say, the right state

equal to the left for a right travelling shock.

2.4 Choosing the time step

Until now we have left the computation of the time step undefined. The reason for

this was to wait until the characteristic wave structure of hyperbolic conservation laws

had been discovered.

The time step must be chosen carefully; too large and the whole numerical scheme

could produce erroneous results which will likely lead to the total failure of the code.

Choosing too small a time step is inefficient and wastes valuable CPU time.

The general rule when calculating a time step is that waves from one cell should

not have time to interfere with the values in another, neighbouring cell. For some of

the finite difference schemes described in Sect. 2.2.2, this means choosing a time step

which is less than the time for a wave to reach the cell boundary. For example, in one

dimension a time interval could be defined by ∆t < ∆x/2(ux + c)max, where c is the

sound speed and (ux + c)max is the fastest wave speed anywhere in the computational
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domain. This definition of stability is known as the Courant-Friedrichs-Lewy (CFL)

condition.

In Godunov’s method, it doesn’t matter if waves from neighbouring cells interact.

All that is important is that the solution is constant at {xj+1/2} over the whole time

step. In other words, the waves from a Riemann problem at xj+1/2 must not be

allowed to reach xj−1/2 or xj+1+1/2. This can be guaranteed as long as the time step

is less than twice the time step defined in the previous paragraph.

In all our codes, we compute a time step which allows the maximum wave speed

to just cover a distance ∆x. This value is then scaled by multiplication by a number

between zero and one. This parameter is referred to as the CFL parameter or Courant

number and can be set anywhere less than 1.0 for Godunov schemes. Finite difference

schemes like those mentioned above can use the same mechanism for computing the

time step, but can only be expected to generate correct results if the time step thus

calculated is scaled by a Courant number < 0.5.

2.5 Approximate Riemann solvers

From Sect. 2.3, we can see that the exact solution of arbitrary Riemann problems

is computationally expensive; square root laden iterations must be performed at

every cell interface on the computational grid, at every time step. Recall that, in

Sect. 2.2.3, we saw how only the inter-cell fluxes are required to complete Godunov’s

numerical scheme. Much of the information acquired from computing the exact

solution at the cell interfaces U?(xj±1/2, tn) is therefore discarded. Also, since the

original Riemann problem was formed from left and right states which were computed

from cell averaged approximations to the original solution anyway, we can increase

computational efficiency without sacrificing accuracy if we can compute the inter-cell

fluxes Fn+1/2
j±1/2 directly through some form of approximation.

2.5.1 Roe’s linearised solver

Linear hyperbolic equations like the advection equation (Eq. 2.10) are easily solved;

the solution of a Riemann problem for such an equation will either be the left or right

input state depending on the direction of the flow. By writing non-linear conservation

laws like Eq. 2.1 in the form
∂U
∂t

+A
∂U
∂x

= 0. (2.38)

A ∈ Rm×m is the flux Jacobian matrix for the system of equations where m is the

number conservative equations. In general, A is still non-linear but if we linearise this

matrix about some constant state which depends on the input states to a Riemann
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problem, UL and UR, then we can decouple the system of equations in Eq. 2.38 into

m linear advection equations which are trivial to solve. We can do this because, as

we mentioned in Sect. 2.1, one of the defining properties of a hyperbolic equation is

having a Jacobian matrix which is diagonalisable with real eigenvalues.

If we write the linearised Jacobian matrix as Â = Â(UL,UR), then this matrix has

right eigenvectors and eigenvalues defined by Âr̂i = λ̂ir̂i where (Â ∈ Rm×m, i = 1,m).

As stated, the diagonalisability of Â is guaranteed by hyperbolicity but Roe (1981)

prescribed some other properties for the linearised Jacobian matrix.
(i) It constitutes a linear mapping from the vector space U to the vector space F.

(ii) Â(UL,UR) → A(Û) smoothly as UL,UR → Û.

(iii) ∆F = Â∆U ∀UL,UR.

(iv) The eigenvectors of Â are linearly independent.
Important for the development of an approximate Riemann solver are condition

(iii) and condition (iv). Condition (iii) when compared to the Rankine-Hugoniot

jump condition (Eq. 2.17) shows that the eigenvalues of Â are the wave speeds of the

(linearised) characteristic waves. Condition (iv) allows us to use the eigenvectors of

the Jacobian matrix as basis vectors in the phase space of the system of equations,

and therefore to decompose the jump ∆U ≡ UR −UL

∆U =
m∑

i=1

αir̂i. (2.39)

The solution of the Riemann problem can be found by starting with either the left or

right input state and only counting those waves which affect that state. That is

U(xj+1/2) =


UL +

∑
λ̂p<0

αpr̂p,

UR −
∑
λ̂p>0

αpr̂p,
(2.40)

This construction allows Roe’s solver to “recognise” shocks. Consider, for example,

that a single shock is propagating to the right in the shallow water equations. In this

case UR lies on the Hugoniot locus of UL and they are both connected by a single

wave, as illustrated in Fig. 2.8(a). The solution at the interface will be the value of

the left state and we show the solution predicted by the Roe solver using Eq. 2.40 as

the box symbol at the end of the solid, thick black line. The line is in the direction of

one of the two linearised eigenvectors of the shallow water equations and is a powerful

illustration of the process of linearisation; the real, non-linear Hugoniot curve has been

replaced by a straight line in phase space.

Figure 2.8(a) shows the importance of choosing the constant average state

Û(UL,UR) around which the Jacobian matrix is linearised. The dashed line and
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(a) (b)

Figure 2.8: Illustration of the Roe linearisation using the two dimensional phase space of the
shallow water equations as an example. Two Riemann problems are shown here. In (a) a single
shock moves with constant speed from left to right. The Roe approximation to the solution
(square box with solid black line) matches the exact solution in this case. The dashed line
and box symbol illustrate the importance of the average used to define the linearisation. The
plot in (b) shows how the Roe solver can fail in the presence of strong rarefactions. Not only
are the approximate and true solutions far apart, but the Roe solver computes an unphysical,
negative depth.

connected box symbol in the plot show the result of computing the solution to the

Riemann problem using the naive arithmetic average Û = (UL +UR)/2. The real art

of constructing Â, the “Roe matrix”, is finding “Roe averages” for each of the fluid

quantities which ensure that the matrix satisfies each of Roe’s properties (i)-(iv). For

the shallow water equations, these averages become:

ĥ =
hL + hR

2
, and û =

uL

√
hL + uR

√
hR√

hL +
√
hR

. (2.41)

We have seen that Roe’s linearisation allows us to solve the Riemann problem.

All that is needed is the eigen-system of the Roe matrix which is already a saving on

the iterative scheme. The real computational speed increase comes however, from the

ability of the Roe method to return the information about the solution in a ready to

use form; the Roe solver can compute the fluxes directly.

If we combine Roe’s condition (iii)

∆F = Â∆U, (2.42)

with the eigenvector decomposition for the jump ∆U, we get

∆F = Â

m∑
p=1

αpr̂p. (2.43)
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Since the r̂p are eigenvectors of Â, we arrive at the final expression for the jump in

the fluxes between the left and right state,

∆F =
m∑

p=1

λ̂pαpr̂p. (2.44)

Copying the form of Eq. 2.40,

Fn+1/2
j+1/2 =


F(UL) +

∑
λ̂p<0

λ̂pαpr̂p,

F(UR)−
∑
λ̂p>0

λ̂pαpr̂p,
(2.45)

Both forms are equivalent but for better stability, they are often combined by taking

their arithmetic average

Fn+1/2
j+1/2 =

1
2

(F(UL) + F(UR))−
m∑

p=1

|λ̂p|αpr̂p. (2.46)

This is the Roe inter-cell flux which can be used to update the conservative variables

using Eq. 2.15.

The Roe solver has the useful property that jumps which are already eigenvectors

of the flux Jacobian matrix are solved exactly, despite the linearisation. Unfortunately

the Roe solver has some shortcomings which we will now discuss.

2.5.2 Shortcomings of the Roe solver

One problem with the Roe solver is the treatment of rarefaction fans. Since the

solution consists entirely of discontinuous jumps, the Rarefaction fan is just treated

like a rarefaction shock. We have seen before (see Sect. 2.3) that rarefaction shocks

are entropy violating and can lead to problems in the solution. For most Riemann

problems it is not a problem since only the flux at xj+1/2 is needed. When the solution

contains a trans-sonic rarefaction fan however, the solution is expected to fall in the

middle of the rarefaction fan which is simply not possible with the Roe solver. In this

instance, the Roe solver can produce non-physical results (see Fig. 2.9 for example).

This problem can be cured however, by the application of an “entropy fix”. Roe (1981)

himself discussed a possible fix as did Harten and Hyman (1983).

A more serious problem with the Roe solver, can be seen in Riemann problems

with strong rarefactions which create a low density state. The phase space of such

a Riemann problem for the shallow water equations is shown in Fig. 2.8(b). The

two initial states for the Riemann problem are shown, labelled UL and UR as usual.

Also indicated is the true solution of this Riemann problem, U?, and the approximate
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(a) (b)

Figure 2.9: The failure of the Roe solver for trans-sonic flows is demonstrated here with
the solution to a modified Sod shock tube problem (Toro test 1). In panel (a) we see the
numerical solution with an iterative Riemann solver and, in (b), the solution as computed
using a linearised Roe solver. The exact solution is shown as a solid line in both plots. The
resolution for both simulations was 500 cells with a Courant number of 0.9.

solution as computed using the Roe solver. The latter is shown as a box at the

end of two thick black lines which show how the solution is found by following the

eigenvector which represents either the left or right-running rarefaction wave, from

either the left or right initial state. The problem is not just the error between the

approximate and the true solution, it is the value of h found by the Roe solver.

Remember that h represents the depth of water in the shallow water equations and a

negative depth is obviously unphysical. More than that, this would actually lead to any

computer code crashing since it would at some point have to evaluate characteristic

speeds which require taking a square root of h. A similar problem exists in the

Euler equations where mass density and pressure take on unphysical negative values

which would also lead to failure of the scheme. Einfeldt et al. (1991) proved that

for certain Riemann problems, e.g. the strong double rarefaction described here, no

linearisation will maintain positivity of the solution. To solve this problem we must

find an approximate Riemann solver which does not fail and which is at least as

accurate as Roe’s solver. If we cannot find a scheme which is as accurate as we desire,

we can also build an adaptive code which detects Riemann problems for which the

Roe solver will fail and, in these circumstances, uses the more robust but less accurate

Riemann solver. Luckily, as well as showing the cases in which the Roe solver is

doomed to failure, Einfeldt (1988) also proposed a more robust scheme which we now

consider.
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Figure 2.10: The three states in the HLL family of approximate Riemann solvers. F and
S are the speeds of the fastest and slowest waves respectively. Between these waves, a region
opens separating the original left and right states of the Riemann problem (UL and UR) with
a new constant state UHLL.

2.5.3 The HLL, HLLE and HLLEM schemes

In the previous section, we saw how the approximate solver of Roe may fail in regions

of low density. We therefore consider another class of approximate Riemann solvers.

Harten et al. (1983) proposed a Riemann solver which used only the fastest left

and right going waves emanating from the interface in a Riemann problem. Their

method is often referred to as a three state solver since the two wave signals divide

space and time into three distinct regions as shown in Fig. 2.10. The states UL and

UR are the undisturbed left and right states of the Riemann problem and as the two

waves propagate outward, the region between x = −St and x = +Ft assumes a new

constant value UHLL. We can write the solution of this Riemann problem thus

U?(x, t) =


UL for x ≤ St,

UHLL for St ≤ x ≤ Ft,

UR for x ≥ Ft.

(2.47)

In a Godunov type numerical scheme, the conserved quantities are evolved in time

through the inter-cell fluxes via

Un+1
i = Un

i −
∆t
∆x

(
fn

i+1/2 − fn
i−1/2

)
, (2.48)

Using Eq. 2.47 in the integral form of the conservation laws (Eq. 2.13), the

corresponding fluxes become

fHLL
i+1/2 =

b+i+1/2f(Ui)− b−i+1/2f(Ui+1) + b+i+1/2b
−
i+1/2(Ui+1 − Ui)

b+i+1/2 − b−i+1/2

. (2.49)

Here the positive and negative wave signals are defined b+ ≡ max{bRi+1/2, 0} and

b− ≡ min{bLi+1/2, 0}. Harten et al. didn’t specify a concrete choice for the wave speed
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bLi+1/2 and bRi+1/2. The first implementation of such a scheme is due to Einfeldt (1988)

who suggested the following choice for the wave speeds

bLi+1/2 =min {ū− c̄, ui − ci} ,

bRi+1/2 =max {ū+ c̄, ui+1 + ci+1} ,
(2.50)

where ui is the longitudinal velocity (that is, the component of the velocity vector

which is orthogonal to the cell boundary) in the ith cell, ci =
√
γpi/ρi is the sound

speed in that cell and the over-bars denote the Roe average from Sect. 2.5.1. Note

that ū− c̄ and ū+ c̄ are the minimum and maximum eigenvalues of the Roe matrix for

the Euler equations and so the so-called HLLE scheme avoids the cavitation problems

experienced with the Roe solver by comparing the linearised characteristic speeds with

their cell-centred values to the left and right of the interface and choosing whichever

moves away from the cell interface fastest. This effectively provides extra diffusion

which makes the HLLE scheme more robust.

Einfeldt et al. (1991) showed that although this choice was robust, it provided more

numerical diffusion than was absolutely necessary. After a more rigorous investigation,

they found that the sharpest possible results which still maintained positivity of the

solution came from the modification

bLi+1/2 =min {ū− c̄, ui − βci} , (2.51)

bRi+1/2 =max {ū+ c̄, ui+1 + βci+1} , (2.52)

where β =
√

(γ − 1)/2γ. In the same paper, Einfeldt et al. also show that the HLLE

scheme does not require an entropy fix as Roe’s linearised scheme does.

The diffusivity of the HLLE scheme makes the scheme more robust but a diffusive

scheme is normally very poor at resolving sharp gradients in the flow. HLLE is actually

quite good at resolving shocks, even in a first order scheme, as can be seen in the tests

at the end of this chapter (Figs. (B.3-B.18)). This is not so surprising since the

scheme often defaults to the eigenvalues of the Roe matrix, bestowing the same shock-

capturing properties as that scheme on HLLE. The problem is with the resolution of

the contact discontinuity, however. In the three state description, this characteristic

wave was omitted completely leading to a smeared representation of contacts. Two

types of fix are proposed in the literature; the introduction of a third wave to represent

the contact discontinuity such as in the HLLC scheme of Toro et al. (1994) (also

described in Toro, 1999, Chap. 10) and Einfeldt’s own modification, HLLEM. We

choose to implement the latter fix since Wesenberg (2003) has shown that this may

be easily extended to magnetohydrodynamics (although we note that MHD versions

of HLLC also exist) with a tabulated equation of state (MHD-HLLEM); an important
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consideration given the impetus of this work was the incorporation of magnetic field

physics into a three-dimensional code for the simulation of mergers between compact

stellar remnants (see Chap. 3 for a full description of this code).

Einfeldt’s HLLEM modification adds anti-diffusion terms to the linear degenerate

fields9 (i.e. any discontinuities which are advected with the local flow) by modifying

the numerical inter-cell fluxes

fHLLEM
i+1/2 ≡ fHLL

i+1/2 −
b+i+1/2b

−
i+1/2

b+i+1/2 − b−i+1/2

∑
p

δ
(p)
i+1/2λ̂

(p)
i+1/2r̂

(p)
i+1/2, (2.53)

where the

δ
(p)
i+1/2 ≡

ĉi+1/2

ĉi+1/2 + |ūi+1/2|
, ∀p, (2.54)

are referred to as anti-diffusion coefficients. They are defined such that excess

dissipation is removed from the linear degenerate fields only (treating shear waves

and the contact discontinuity on an equal footing). In this way, numerical stability of

the scheme is maintained.

2.6 Higher Resolution Methods

2.6.1 Increasing the spatial accuracy of Godunov’s method

Godunov’s method (Sec. 2.2.3) can be thought of as the first order spatially accurate

version of a whole class of reconstruct-solve-average (RSA) schemes. In the Godunov

scheme, the reconstruction is a constant value function over the whole cell, i.e.

U(x) = Uj , (2.55)

where Uj is the cell averaged value of a given quantity and x ∈ [xj−1/2, xj+1/2]. The

value of the interpolated function U(x) at the cell interfaces determines the left and

right states of the Riemann problem which is then solved to update the quantity Uj

at the next time step.

The next logical extension of this scheme is to use a piecewise linear interpolation

for the reconstruction step such as

U(x) = Uj + (x− xj)
Uj+1 − Uj

xj+1 − xj
. (2.56)

A constraint on our interpolation is that it must still give the same cell average and

this is implicitly achieved in Eq. 2.56 since the line passes directly through the point

9Characteristic waves, like the contact discontinuity, which are not genuinely non-linear are referred

to as being “linear degenerate fields”.
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Figure 2.11: Graphical depiction of the linear reconstruction described in Eq. 2.56. The
discontinuous, thick, black lines through the points (xj , Uj) show the piecewise linear nature of
the interpolant U(x). The slope in the jth cell is determined by the slope of the line connecting
Uj with Uj+1 as indicated by the dashed lines through each cell. The cell interface values are
simply the values of U(x) at the boundaries of each cell.

(xj , Uj).10 There is a problem with this simple reconstruction however; if the left and

right interface values for input to the Riemann problem are computed from U(x) as

depicted graphically in Fig. 2.11, then spurious oscillations may arise in the solution

near sharp discontinuities. Consider the slope at xj+1 from which the interface value

UR,j+1/2 is calculated; clearly the slope computed by Eq. 2.56 is too great leading to an

interface value which is too large. It is not just because this point is an extremum of the

original data either; the same slope would be generated regardless of the data on the

left. Evolution of the conservation laws based on these interface values may generate

a new value which is outside the range [Uj , Uj+1]. Therefore we have introduced a

new extremum in the form of an overshoot which grows with time into an unphysical

oscillation.

The oscillation in cell xj+1 develops because the slope is too large. We need

therefore, to find a way of limiting the slope, at least in the region of discontinuities

and extrema. We describe any scheme which does not introduce any new extrema as

being monotonicity preserving. The first numerical method to make use of piecewise

10While a centred construction may seem more obvious to obtain the slope of U(x) it turns out that

the choice in Eq. 2.56 gives the same 2nd-order accuracy (see for example LeVeque, 2002, §6.5) and

so we are free to choose any of the three choices of upwind, centred or downwind. The choice made

here, incidentally, is that of the Lax-Wendroff scheme.
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linear interpolation and to address the issue of monotonicity in the solution is called

MUSCL11 and is described in detail in van Leer (1979) and references therein (the

paper is the final in a series of five where van Leer develops the ideas required to

make a stable scheme). MUSCL is an example of a total variation diminishing (TVD)

scheme; if we define a quantity called the total variation

TV =
∑

j

|uj+1 − uj |, (2.57)

then a TVD scheme is one in which the total variation does not grow from one time

step to the next:

TV (un+1) ≤ TV (un). (2.58)

Since we do not make use of a piecewise linear scheme in the present work, we shall

end our discussion at this point with the nota bene that any algorithm which modifies

the slope in cell j based on Uj in relation to its neighbouring cells will thus lead to a

nonlinear scheme by construction.

2.6.2 PPM - the piecewise parabolic method

We can continue to increase the order of the reconstruction polynomial U(x) (see for

example, the recent PQM method of White and Adcroft, 2008). In the astrophysically

relevant, three dimensional code described in Chap. 3, we use the piecewise parabolic

method (PPM) of Colella and Woodward (1984) which we will summarise here. It will

be seen that, already with a parabolic reconstruction, the scheme is quite complicated

and requires much more work to obtain the input values for each local Riemann

problem than simply reading off the values of U(x) at each cell interface.

As usual for an RSA scheme, our starting point is the discretized values of a given

quantity {Uj}. We seek to construct a piecewise parabolic function U(x) such that

Uj =
1

∆xj

∫ xj+1/2

xj−1/2

U(x)dx, (2.59)

i.e. the interpolation should preserve the cell averaged value Uj . The interpolant

should not introduce any new extrema than are already present in {Uj}. The quadratic

interpolant U(x) = αx2 + βx+ γ, may be written (see App. A)

U(x) = UL,j + ξ(∆Uj + U6,j [1− ξ]), (2.60)

where

ξ ≡
x− xj−1/2

∆xj
, x ∈ [xj−1/2, xj+1/2], ∆Uj ≡ UR,j − UL,j , (2.61)

11Monotonic Upwind-centred Scheme for Conservation Laws
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Figure 2.12: A piecewise parabolic interpolation function U(x) is shown with the three
constraints on its shape: Uj , the cell averaged value which fixes the area under the interpolant;
UL,j and UR,j the values of the reconstruction at the interfaces with the neighbouring two cells
which are approximated from a higher order polynomial and modified to help prevent spurious
oscillations in the solution.

and

U6,j ≡ 6
(
Uj −

1
2

[UL,j + UR,j ]
)
. (2.62)

As illustrated in Fig. 2.12, the quadratic in Eq. 2.60 requires three constraints to fix its

shape and position. One of these is provided by Eq. 2.59, but we still need to find values

for UL,j and UR,j , the values of U(x) at the edges of cell j. To fix these values, Colella

and Woodward use a higher order polynomial to obtain approximations to Uj±1/2

which are then modified by monotonization and discontinuity detection algorithms

which we will describe in due course. In the PPM algorithm, a quartic polynomial is

interpolated through the points (xj+k±1/2, Vj+k±1/2), k = 0,±1,±2, where Vj±1/2 are

the values of the indefinite integral

V (x) =
∫
U(x′)dx′, (2.63)

at the edges of cell j. This quartic function is then differentiated to provide a cubic

approximation to Uj±1/2 = dV/dx|xj±1/2
. In regions far from extrema where the

quantity U has a smooth profile, UL,j+1 = UR,j = Uj+1/2, and the interpolation is

continuous at Uj+1/2. The monotonization algorithm may change these initial guesses

and it is at this point that the discontinuities are introduced between cells. In regions

of smooth flow and using a computational grid with uniform cells, the interpolation

scheme implemented in PPM leads to a scheme which is fourth order accurate.
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Figure 2.13: After a piecewise parabolic reconstruction is achieved, the left and right input
values to the Riemann problem at each cell interface (UL,j+1/2 and UR,j+1/2) are computed
as shown. In a time interval ∆t, corresponding to the current time step, only the shaded
areas are causally connected to the interface at xj+1/2 by waves travelling at cj and cj+1. The
inputs to the Riemann solver are found by averaging the interpolant over these regions.

In order to better capture shocks and contact discontinuities in the flow, PPM

makes use of a detection algorithm which steepens the interpolated profile in a cell

which is deemed to be within a discontinuity. Since the gradient of the interpolant in

such a cell is determined from piecewise linear distributions in the neighbouring cells,

the scheme does not drop below second-order accuracy in cases where a discontinuity

was falsely detected.

Once the interpolation is completed such that we have a piecewise parabolic

reconstruction of the data in each cell which fulfils the criteria for monotonicity etc.,

the left and right states for each local Riemann problem can be computed. Figure 2.13

graphically illustrates the procedure. There are two main choices to construct the

input values for the Riemann problem; we can take the value of the interpolant on

left and right sides of each cell boundary or we can average the interpolant over some

region. Obviously choosing the cell average would be pointless since this has been

conserved throughout the interpolation procedure and would leave us with Godunov’s

scheme. The values of U(x) at each cell interface could be used but, in the PPM

scheme, we choose the averaging route for which we must find a suitable region over

which to integrate the interpolant such that we obtain a high resolution scheme.

The solution to a Riemann problem (see Sect. 2.3) depends on the number and type

of characteristic waves crossing the interface during a single time step ∆t. If we denote
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the velocity of the fastest wave in the jth cell which will influence the Riemann problem

at xj+1/2 by cj , then we can express the domain of dependence for that Riemann

problem by [xj+1/2 − cj∆t, xj+1/2 + cj+1∆t]. These are the shaded areas in Fig. 2.13.

The left and right states for this Riemann problem are thus computed by averaging

the interpolated profile of each quantity over the ranges [xj+1/2 − cj∆t, xj+1/2] and

[xj+1/2, xj+1/2 + cj+1∆t] respectively. In practise, for the Eulerian formulation of

PPM which we utilise, this step requires solving the characteristic form of the Euler

equations. See Colella and Woodward (1984) for the details.

The left and right states having been calculated for all the local Riemann problems

between each cell on the grid, the Riemann solver of choice computes a solution and

the inter-cell fluxes are thus found. These fluxes allow the conservative quantities to

be advanced to the next time step. Source terms etc. are applied and the process

then begins again with the reconstruction of a new piecewise parabolic profile for each

quantity.

A final note before we conclude our summary of the PPM scheme: Even though the

PPM scheme is intended to be monotonicity preserving, there are certain conditions,

under which, small amplitude, post-shock oscillations are observed. This is especially

the case for shocks whose speed is small relative to the post-shock characteristic speed.

Colella and Woodward proposed the application of extra dissipation (an artificial

viscosity) and flattening of the interpolated profiles in cells around steep gradients in

the data, essentially lowering the order of the scheme in such regions. We merely note

here that we make use of the simplest scheme described in Colella and Woodward

(1984) but that we normally do not add any extra numerical diffusion.

2.7 Numerical Tests

Before a numerical scheme can be used to solve any real problem, we must first

be confident that it will produce valid results. Equally, even for tried and tested

numerical schemes it is useful to know if we have implemented that scheme correctly.

To eliminate the possibility of programming error and to evaluate the suitability of a

numerical scheme for a particular task, we can compare results computed with that

scheme to an analytic solution if one is available. In the case of non-linear equations

such as the Euler equations this could be problematic but, since we have seen that an

iterative Riemann solver can return results which are accurate to machine precision,

we can at the very least find a reference solution by computing the problem with such

an iterative Riemann solver at high resolution.

This is the approach taken here. In this section we present the results of some
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standard tests for numerical hydrodynamics schemes and quantitatively evaluate their

performance by comparing to a reference solution. After showing the actual solutions

for some one and two dimensional problems, we compare them to the reference solution

by means of a normalised error. We take the L1 norm of the error in the computed

mass density which is quite common in the field. This “L1-error” is defined

εL1 ≡
∑
i,j

|ρref
ij − ρij |∆xi∆yj . (2.64)

Obviously in one dimension it is only necessary to scale the sum by ∆x.

We stated at the beginning of this chapter that we are interested in the inclusion of

magnetic field physics in our astrophysically specialised computer code (see Chap. 3 for

a full description of this code: Charybdis). We are interested therefore, in numerical

schemes which are as simple to code and as computationally efficient as possible so

that they may be extended to solve the equations of magnetohydrodynamics. Our

astrophysical code uses PPM (see Sect. 2.6.2) for its excellent treatment of contact

discontinuities since for various reasons we are required to track chemical species which

are advected in the same manner as contact discontinuities. The full astrophysical

code came about as a considerable extension of the Prometheus code which is an

implementation of the PPM scheme – including advection of an arbitrary number

of scalar quantities – by Fryxell et al. (1989). We have used the PPM skeleton of

Prometheus to compute all the tests in this section in conjunction with the various

Riemann solvers discussed in preceding sections.

2.7.1 1D shock tube tests

In his excellent book on the subject of Riemann solvers, Toro (1999) lists five simple

one dimensional shock tube problems.12 A shock tube problem is the name given to

what is essentially a real world Riemann problem. Imagine a length of tube which

is thin enough to have negligible variation in the fluid variables in the directions

perpendicular to the tube. If a diaphragm is placed in this tube so as to separate

two regions of different but piecewise constant fluid states, then we have a Riemann

problem; when the diaphragm is removed, various waves will propagate outwards, thus

creating a distinct profile in each quantity which can be compared. The initial states

for these five problems are listed in Table 2.1.

We computed solutions to the five Toro tests with Prometheus using an iterative

Riemann solver and the approximate Roe, HLLE and HLLEM solvers. For reference,

we include the exact solution computed using code supplied by Toro (1999) which

12Strictly speaking, problem two is not a “shock tube” since the initial velocities are non-zero.



Chapter 2. Hydrodynamics: Numerical Treatment and Tests 38

Test ρL ρR uL uR pL pR x0 tmax

1 1.0 0.125 0.0 0.0 1.0 0.1 0.3 0.2

2 1.0 1.0 -2.0 2.0 0.4 0.4 0.5 0.15

3 1.0 1.0 0.0 0.0 1000.0 0.01 0.5 0.012

4 1.0 1.0 0.0 0.0 0.01 100.0 0.4 0.035

5 5.99924 5.99242 19.5975 -6.19633 460.894 46.0950 0.8 0.012

Table 2.1: The initial conditions for the 1D Toro (1999) tests. The left and right states of
the primitive variables are given for each Riemann problem along with the initial position of
the discontinuity x0 and the time at which the results are to be evaluated. In all cases, the
ratio of the specific heats γ = 1.4.

uses the Riemann invariants and an iterative solver to deduce the structure of the

entire self-similar Riemann fan. This reference solution is included in Figs. (2.14-

2.18) as a solid line for comparison with the numerical solutions which are shown as

unconnected symbols. Each solution was computed with 100 uniform cells over the

domain x ∈ [0, 1] ⊂ R. The Courant number was 0.4 for all these tests as in Toro

(1999).

Figure 2.14 shows the solution of test 1 computed with the iterative Riemann

solver. The other schemes produced results which are visually indistinguishable and

so we omit them here. The full results for each test with each of the four solvers

are presented in App. B, however. This first test is the least severe of the five and

all the schemes pass with little problem. There is a noticeable oscillation behind the

contact discontinuity (visible in the density and internal energy at x ∼ 0.5) which is

a known problem with PPM which could be further damped with artificial viscosity

but, since we want to resolve the contact discontinuity as sharply as possible, we do

not apply any extra viscosity. Note that this is exactly the same test used to show

the entropy violating solution of the Roe solver in Sect. 2.5.1 but with PPM there

is no such problem; we do not apply any entropy fix to the Roe solver here. For a

more quantitative comparison of the four solvers for this test, see the L1-error plots

in Fig. 2.19.

The second Toro test is perhaps the toughest for any solver. It consists of two

strong rarefaction waves which move apart from the initial discontinuity position,

leaving a region of very low density. The Roe solver may not need an entropy fix

when used with PPM, but it still fails this test because, as mentioned in Sect. 2.5.1,

there are some Riemann problems for which it is impossible for linearised solvers to

maintain positivity of all the fluid variables. In the present case, cavitation occurs for
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Figure 2.14: Toro test 1: PPM reconstruction with iterative Riemann solver. Initial
discontinuity position was x0 = 0.3. The numerical solution (symbols) and the exact solution
(line) are shown at time t = 0.2.

the Roe solver and the code crashes when it tries to compute a sound speed based on

the square root of a negative density. In Fig. 2.15 we show the density and internal

energy for the iterative scheme at the end of the simulation. There is reasonable

variance in the solution for the internal energy across the different solvers and so we

also plot this quantity for the HLLE and HLLEM solvers. Part of the reason for these

differences, and the reason why even the exact solver produces a spurious maximum

which is not in the reference solution, is that the internal energy is computed from

the ratio of mass density and pressure. As both of these quantities are small, the

error in the computation of the internal energy is large.13 This does not pose any

13Although not shown, a similar spurious maximum is observed in the entropy for this test. Entropy

should be constant across rarefaction waves (it isn’t because we compute it from the density and

pressure) and so this could be used as a marker for related problems in a real simulation.
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Figure 2.15: Toro test 2: PPM reconstruction with iterative Riemann solver. Initial
discontinuity position was x0 = 0.5. The numerical solution (symbols) and the exact solution
(line) are shown at time t = 0.15.

danger for the astrophysical code, however; due to the difficulties associated with

representing the huge density contrasts present in our simulations, we are forced to

introduce a numerical “vacuum” state at finite density ρbackground > 108 g cm−3. It

is not possible, therefore, that the density should become too small. For the same

reason, we do not rule out the use of the Roe solver in the astrophysical code.

Test three, having an initially stationary fluid with no density gradient but a

high pressure difference, is much like an explosion. A high Mach number blast wave

propagates away from the initial pressure discontinuity in the positive x-direction. We

find little difference between the four Riemann solvers in this test and this is reflected

in the inclusion of the solution for density and internal energy only for the Roe solver

in Fig. 2.16. Once again, the results for the other schemes are so similar as to be

virtually indistinguishable.

This is also the case for test four, results of which are shown in Fig. 2.17. This
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Figure 2.16: Toro test 3: PPM reconstruction with iterative Riemann solver. Initial
discontinuity position was x0 = 0.5. The numerical solution (symbols) and the exact solution
(line) are shown at time t = 0.012.

Figure 2.17: Toro test 4: PPM reconstruction with iterative Riemann solver. Initial
discontinuity position was x0 = 0.4. The numerical solution (symbols) and the exact solution
(line) are shown at time t = 0.035.

time we present the density and internal energy for the HLLE solver for variety.

This test produces a shock which moves very slowly relative to the grid. High

resolution schemes are known to generate spurious oscillations behind such shocks

(see for example LeVeque, 2002; Colella and Woodward, 1984), but we find that all

the Riemann solvers with PPM cope well with this problem.

The final one dimensional test is very similar to test three. The only real difference

is that the blast wave which develops moves very slowly relative to the grid (just like

the situation in test four). This is devised to make for quite a stringent test of the

accuracy of any numerical scheme. In that regard, this test works well because it
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generates the biggest differences between the different Riemann solvers. In Fig. 2.18

we plot the density and internal energy for the iterative, Roe and HLLE solvers (the

result for HLLEM is visually indistinguishable from that of Roe). HLLE has the

worst performance in this test but, since the Roe and HLLEM solvers produce almost

identical results, we note that the modification suggested by Einfeldt (1988) leads

to an approximate Riemann solver which is as accurate as the Roe solver while also

being more robust. Finally for the one dimensional tests, we plot the L1-error in mass

density as defined by Eq. 2.64 in Fig. 2.19. Panels (a) through (e) correspond to the

five Toro tests in order. The reference solution shown in Figs. (2.14-2.18) was used

in the computation of the error. From the plots we can clearly see that convergence

is achieved as we increase the grid resolution. We can also see that all four of the

Riemann solvers perform almost equally well for the first four problems. As we might

expect, the divergence between the schemes is greatest for test five which is shown in

panel (e). In this case we can see the poor performance of the HLLE scheme against

the other two approximate solvers. The performance of HLLEM and Roe with respect

to the iterative scheme is also quite clear in this plot, however. Although the total

normalised error is still small, we should be wary of this result when we consider using

approximate Riemann solvers in the astrophysical model.

Note that we must be careful in drawing direct comparisons between the relative

performance of the schemes on the different tests; the L1-error for test four

(Fig. 2.19(d)), for example, is an order of magnitude higher than for any of the other

four tests. This is not so surprising though when we consider that the maximum

density in this problem is also an order of magnitude greater than in any of the other

tests. In general, it would not be desirable for error comparison to depend on the actual

density range of the problem. Since we are only interested in showing convergence and

the order of accuracy of the schemes though, the absolute L1-normed error is sufficient.

There is scope here for further work in this study; the comparison of the schemes

through Toro’s set of test problems could be extended with tests specifically designed

to bring out the superior accuracy of PPM, for example.

2.7.2 Tests in two spatial dimensions

Any of the discrete, one-dimensional schemes described until now can be extended

to multidimensional functionality by applying them alternately in the x, y and, if

present, z-directions. This is known as dimensional splitting and a common second

order accurate variant is known as Strang splitting (Strang, 1968).

The double Mach reflection of a strong shock is a standard two dimensional problem

now used for code verification (see, amongst others, Mignone et al., 2007; Tóth and
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Figure 2.18: Toro test 5: PPM reconstruction with iterative Riemann solver. Initial
discontinuity position was x0 = 0.8. The numerical solution (symbols) and the exact solution
(line) are shown at time t = 0.012.
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(a) (b)

(c) (d)

(e)

Figure 2.19: L1 normalised error in mass density for each of the 1D Toro (1999) tests. The
Courant number in each simulation was 0.4. The average slope in each plot is about unity
which indicates 1st order accuracy.
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(a) (b)

Figure 2.20: (a) L1 normalised error in mass density for the 2D double Mach reflection test
(Woodward and Colella, 1984). The Courant number in each simulation was 0.8. (b) CPU
times as a function of grid size for the double Mach reflection problem. The CPU times have
been normalised to the fastest computation (HLLE).

Odstrčil, 1996). The test, which consists of a planar Mach 10 shock striking a reflecting

wedge obliquely, can not only be compared with other numerical schemes, but also

with direct experiment (Woodward and Colella, 1984). The problem is computed on

a uniform, rectangular grid with x ∈ [0, 4], y ∈ [0, 1]. The initial conditions for the

problem are as follows:

U(x, 0) =

{
ρ = 1.4, ux = 0, uy = 0, p = 1, if x > 1

6 + y
tan 60◦ ,

ρ = 8, ux = 8.25 sin 60◦, uy = −8.25 cos 60◦, p = 116.5, otherwise.
(2.65)

The boundary conditions for this problem are quite involved. The left boundary is

always set to the post-shock values (the bottom line of variables in Eq. 2.65) and

the right boundary cells are copied from the edge of the active grid (an “out-flow”

boundary condition). The top and bottom boundaries are split. To simulate the

wedge upon which the shock impinges, the bottom boundary is reflecting for x > 1/6

and set to the post-shock values to the left of this. The top boundary is set to post-

shock values for x < xs(t), where xs(t) is the current position of the shock at y = 1.

For x ≥ xs(t) the top boundary is continuous. The position of the shock at the top

boundary as a function of time is xs(t) = 10t/ sin 60◦ + 1/6 + 1/ tan 60◦. The ratio of

specific heats γ = 1.4 and the calculation is evaluated at t = 0.2.

We compute solutions to this double Mach reflection problem using implementation

of PPM in Prometheus with the same four Riemann solvers as in the previous

section, viz. the exact or iterative solver and the approximate Riemann solvers of

Roe, HLLE and HLLEM. So that we may evaluate the performance of each scheme,
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we once again compute the L1-error as Eq. 2.64. For this problem, we do not have

the luxury of an exact solution with which to compare and so, we compute a reference

solution with a resolution of (x, y) ∈ [3, 840 × 960] using the iterative solver. Both

the reference solution run and the lower resolution test runs were performed with a

Courant number of 0.8.

The structure which forms in this problem is self-similar in that it maintains its

proportions as it grows in time. This structure can be seen in Fig. 2.21 in which

we plot the density as computed at t = 0.2 for each of the various Riemann solvers

with a resolution of 960 × 240. Qualitatively, there is little difference between the

four solutions, which of course is good news for our plan of setting these approximate

schemes to work in a real, astrophysical problem. The easiest differences to spot are in

the distinct “eye” structure which forms just behind the shock, close to the y = 0 axis.

As we might expect, this fine structure is smeared out by HLLE but well represented

with the other schemes.

To quantitatively compare the performance of each of the four Riemann solvers

we once again plot the L1-error in the mass density in Fig. 2.20(a). As with the

1D tests, we find that convergence is achieved as we increase grid resolution. We

also find that the only scheme which deviates significantly is HLLE, which we might

have expected already since it is overly diffusive by design. This boosts confidence

that an approximate Riemann solver can be used without degradation of the results.

Figure. 2.20(b) shows the results of an experiment in measuring the execution time

of each of the runs at various resolutions. Here we find that all of the approximate

solvers took about the same time to run, and that they were all consistently about 1.3

times faster than the iterative Riemann solver at each resolution. We are confident

that this speed-up can be improved upon though, as the iterative solver is heavily

optimised while the approximate solvers, having been programmed quickly as mere

“proofs of concept”, are not.
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(a) Iterative.

(b) Roe.

(c) HLLE.

(d) HLLEM.

Figure 2.21: Density plots for the double Mach reflection problem computed with a
resolution of 960×240 and Courant number 0.8 using the PPM scheme with various Riemann
solvers. The faint (dark blue) line which starts at the top of the main shock front and cuts
back into the red triangular region is a small underdense wave which is caused by “start up
error” from the initial oblique shock and is also found by Woodward and Colella (1984).



“The other of the two rocks is lower, as you,

Odysseus, will see, and the distance between them

is no more than a bow-shot. A great fig-tree with

luxuriant foliage grows upon the crag, and it is

below this that dread Charybdis sucks the dark

waters down. Three times a day she spews them

up, and three times she swallows them down once

more in her horrible way. Heaven keep you from the

spot when she is at work, for not even the Earth

shaker could save you from disaster. No; you must

hug Scyllas’s rock and with all speed drive your ship

through, since it is far better that you should have

to mourn the loss of six of your company than that

of your whole crew. ”— The Odyssey, Book XII, Homer. “A new

translation” by E. V. Rieu. 3
EoS: Numerical Treatment and Effects on

GRB Simulations

In this chapter we present results from simulations of mergers between compact

stellar remnants (neutron stars and black holes). The simulations are performed by a

dedicated hydrodynamics code which we refer to as Charybdis.1 Before presenting

the results, we describe this code in detail and include a summary of relevant physics.

We seek to compare simulations using two different descriptions of matter (equations

of state, this is explained further in Sect. 3.1.1).

We mentioned in Chap. 1 that the coalescence of compact objects has been

proposed as a central engine for the class of short-period gamma-ray bursts (GRBs).

A possible mechanism for the conversion of the energy liberated during the merger

event into the (huge) electromagnetic energy we observe during a GRB event, is the

generation of a gamma-ray emitting fireball of electron and positron pairs through

annihilation of neutrinos with their antimatter counterparts. We concentrate our

analysis therefore, on the neutrino emission (since this can inform us on the magnitude

1Code for Hydrodynamic binARY star orBital Decay In Spirals.

48
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of the energy available for a subsequent GRB) and investigate how it is affected by

the change of equation of state.

3.1 Description of CHARYBDIS

3.1.1 Equation of state of nuclear material

At its most basic, an equation of state (EoS) relates pressure to the internal energy

of a material. This minimum functionality is required, as we saw in Sect. 2.1, to close

the system of partial differential equations (PDEs) which govern the hydrodynamics.

In our astrophysical simulations, we require an EoS which will provide us with not

only the basic thermodynamic properties such as temperature and pressure, but also

the thermodynamic quantities required by our neutrino treatment (see Sect. 3.1.6).

The description of matter at the high densities found in neutron stars (& 1014 g cm−3)

requires sophisticated nuclear physics. Real-time calculation of the required quantities

would be impractical and so, in Charybdis, we incorporate the necessary physics by

using pre-calculated look-up tables for the EoS.2 The value of a given quantity can

be determined in the EoS data table from three input values: the mass density ρ, the

electron fraction Ye and the temperature kBT .3 In those instances during a simulation

where the internal energy density ρε is known and the temperature is required, the EoS

subroutine performs a bisection iteration and interpolation to find the temperature

index which would return the relevant internal energy density within the table.

We compare results computed with two different equations of state, viz. those of

Lattimer and Swesty (1991) and Shen et al. (1998a,b). Throughout, we shall refer to

these by the abbreviations LS-EoS and Shen-EoS respectively. Previous work with

Charybdis (starting with Ruffert et al., 1996)) has used the LS-EoS in simulations

of both neutron star-neutron star mergers (which we refer to as NSNS models) and in

mergers between a single neutron star and a black hole (NSBH models). The present

work is the first time the Shen-EoS has been used with Charybdis.

The EoS tables contain data on the pressure P , the internal energy density ρε,

the adiabatic index Γ ≡ (∂ lnP/∂ ln ρ)|s and the degeneracy parameters of protons

and neutrons (without rest masses). The tables span the ranges given in Tab. 3.1.

The LS-EoS table has a resolution of 130 data points in density, 155 in temperature

2It is possible that discontinuities may be introduced in this way and our solution here is to smooth

them out as described in Ruffert et al. (1996).
3Temperature can be measured in units of MeV by expressing it in the form of a thermal energy

kBT where kB is Boltzmann’s constant.
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EoS ρmin
[g/cm3] ρmax

[g/cm3] Y min
e Y max

e kBT
min

[MeV] kBT
max

[MeV]

LS-EoS 5.18× 107 2.90× 1015 0.006 0.49 0.014 95.77

Shen-EoS 5.01× 107 1.12× 1015 0.015 0.56 0.1 97.72

Table 3.1: The range of density ρ, electron fraction Ye and temperature kBT contained
in our EoS tables for the equations of state of Lattimer and Swesty (1991) and Shen et al.
(1998a,b).

and 25 in electron fraction. The Shen-EoS table has 180 data points in density, 120 in

temperature and 50 in electron fraction. Further details on the specific implementation

of the EoS tables can be found in Ruffert et al. (1996) for LS-EoS and in Oechslin and

Janka (2006) for Shen-EoS.

Figure 3.1 shows the relationship between density and pressure for the two

equations of state. Note that they match quite well at the lower end of the density

range as we would expect but that there is a substantial difference in the high density

regime above about ρ ∼ 1014 g/cm3.4 Above this critical value, the gradient is steeper

for the Shen-EoS. This EoS is thus said to be “stiffer” than the LS-EoS; consider two

fluid elements of equal mass and volume with an initial density above this critical

value, one for each equation of state. If we compress each lump of matter by the

same amount, Fig. 3.1 tells us the pressure will be higher in the Shen-EoS case. The

Shen-EoS fluid element is therefore “stiffer” than the LS-EoS fluid element because

this higher pressure provides a larger restoring force which makes the element more

resistant to compression.

The EoS tables also contain information about the chemical potentials (or they

can be deduced from other quantities in the case of the LS-EoS) for protons µp,

neutrons µn, electrons µe and neutrinos µν . To help understand the use of the chemical

potentials, consider the β-process

n+ νe � e− + p. (3.1)

This reversible reaction is in equilibrium when

µn + µν = µe + µp. (3.2)

Consider the special case of neutrino-less β-equilibrium in which any neutrinos

produced via a β-process are immediately absorbed by the inverse process. In this

4This value indicates the density at which nuclei dissolve into free protons and neutrons known as

the “nuclear density” ρnuc = 2.8× 1014 g cm−3 (Shapiro and Teukolsky, 1983).
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Figure 3.1: The dependence of pressure with mass density for the two equations of state
used in our simulations plotted with kBT = 0.13 MeV and Ye = 0.15. A logarithmic scale is
used to allow the differences to be seen for the chosen quantities. Note the different gradients
of the curves for ρ & 1014 g/cm3 which indicates the different “stiffnesses” of the two state
equations.

equilibrium situation the chemical potential of the neutrinos

µν = µe + µp − µn, (3.3)

equals zero because we are stating that the rates of production/destruction of neutrinos

is the same. In Fig. 3.2 we display some contour plots of the chemical potential of

neutrinos from the two equations of state. In the top two panels of that figure we

show the dependence of µν on density and temperature for a given electron fraction

and draw special attention to the curve where µν = 0. In the region contained by

this curve the chemical potential is positive which, in a simplistic view, means that

equilibrium will be restored by absorbing more neutrinos. Conversely, if equilibrium

material is heated (through a hydrodynamic shock, for example) such that the chemical

potential becomes negative then equilibrium will be established through the emission

of neutrinos. From panels (a) and (b) of Fig. 3.2 we might therefore expect more

neutrino emission in the high density regime with the Shen-EoS. We shall see whether

or not this hypothesis is true in Sect. 3.2.

In panels (c) and (d) of Fig. 3.2 the variation in the equilibrium curves (the curves

along which µν = 0) with changes in the electron fraction of the matter is shown
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(a) (b)

(c) (d)

Figure 3.2: Panels (a) and (b) show contours of the neutrino chemical potential µν

(measured in MeV) in the temperature-density plane for fixed electron fraction Ye. In each
case the contours are spaced with increments of 10 and are labelled with their respective values.
The presence of contour lines at the top-left of Panel (b) which is absent in Panel (a) is due
to extrapolation of the LS-EoS to this range which was not required for the Shen-EoS. Panels
(c) and (d) show a series of curves in the temperature-density plane at which the µν is zero
for different values of Ye as indicated by the line labels.

for the two EoS tables. The region within which the neutrino chemical potential is

positive shrinks as electron fraction increases. The difference between LS-EoS and

Shen-EoS becomes more pronounced at lower values of Ye.

3.1.2 Hydrodynamics

The form of the hydrodynamical equations solved in Charybdis is modified slightly

from the basic Euler equations presented in Sect. 2.1. We use the piecewise parabolic
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method (PPM) as described in Sect. 2.6.2 to solve the following equations:

∂ρ

∂t
+
∂ρvj

∂xj
= 0, (3.4)

∂ρwi

∂t
+
∂
(
ρwivj + Pδij

)
∂xj

= −ρ ∂ψ
∂xi

− ρ
∂φ

∂xi
, (3.5)

∂E

∂t
+
∂ (E + P ) vj

∂xj
= −ρvj ∂ψ

∂xj
+W + SE , (3.6)

where ρ denotes mass density, t time, vi and wi are the components of the kinematic

and dynamic velocity5 (see Blanchet et al., 1990) respectively, xi the components of

the position vector, P pressure, ψ the Newtonian gravitational potential, φ the back-

reaction potential due to gravitational waves, E is the total energy (i.e. the sum of

the internal energy ρε and the kinetic energy 1
2ρw

iwi), G is the universal gravitational

constant and c is the speed of light (not to be confused with the sound speed in

chapter 2). The quantities W and SE are the source or loss terms for gravitational

wave and neutrino emission respectively. The energy source term due to gravitational

waves

W = −ρvj ∂φ

∂xj
+

4
5
G

c5
...
Dijv

i

(
ρ
∂ψ

∂xj
+
∂P

∂xj

)
, (3.7)

in which Dij is the quadrupole moment tensor of the mass distribution and the dots

represent the third time derivative, is also discussed in Sect. 3.1.5. The neutrino source

term SE is the total energy loss rate in all flavours of neutrinos for the stellar gas,

calculated by summing up their effective emission rates as described in full detail in

the appendices of Ruffert et al. (1996). We perform full three dimensional simulations

by computing one dimensional strips in first the x, y and z directions for half of the

time step and then by reversing this order for the remaing half time step.

We can define all necessary quantities from the conserved quantities (ρ, ρwi, E)

by the following relations

E = ρε+
1
2
ρwiwi, (3.8)

vi = wi +
4
5
G

c5
...
Dijw

j , (3.9)

φ =
2
5
G

c5

(
R−

...
Dijx

j ∂ψ

∂xi

)
. (3.10)

5The dynamic velocity is the “normal” velocity while the kinematic velocity is a transformed

velocity which allows the emission of gravitational waves and their back-reaction on the fluid flow to

be taken into account in a Newtonian setting. The transformation between the two velocities is given

in Eq. 3.9.
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As might be expected, the quadrupole moment tensorDij features in the back-reaction

potential φ and in the transformation from dynamic to kinematic velocity. A full

explanation of this post-Newtonian approximation is beyond the scope of this work

but it is described in full in Blanchet et al. (1990). The computation of the third time

derivative of Dij is discussed in Sect. 3.1.5.

To compute the self-gravity of the gas we need to evaluate the Newtonian

gravitational potential ψ everywhere on the grid. To do this, we solve the relevant

Poisson equation. For the gravitational wave back-reaction, we also require the first

time derivative of ψ and the quantity R in Eq. 3.10 to be defined. We therefore solve

the following three Poisson equations

∇2ψ = 4πGρ, (3.11)

∇2ψ̇ = −4πG
∂ρvi

∂xi
, (3.12)

∇2R = 4πG
...
Dij x

j ∂ρ

∂xi
. (3.13)

We treat the integral form of the Poisson equations as convolution and compute

the solution by Fast Fourier Transform (FFT) routines. The non-periodic boundary

conditions, which are required to treat the merging system in isolation, are enforced by

zero-padding (see for example, Press et al., 1992). The potentials are used to compute

accelerations in each computational cell and added as source terms to Eqs. 3.4-3.6.

Other than the included source terms, the main difference between the hydro-

dynamical equations solved by Charybdis and the basic Euler equations of gas

dynamics presented in Sec. 2.1 is the post-Newtonian approximation implemented to

include general relativistic effects up to the order at which gravitational waves become

important. In some instances in Eqs. 3.4-3.6, the ordinary velocity of the matter is

replaced by a relativistic velocity via the transformation in Eq. 3.9. At present, since

Charybdis uses an iterative Riemann solver which computes the complete solution to

each Riemann problem, this transformation is easily performed on the velocities. As

the approximate Riemann solvers described in chapter 2 only return the inter-cell flux

of each conserved quantity, the relativistic switch poses a problem for these solvers.

The equations of hydrodynamics are supplemented by advection equations for the

electron number density ne and for entropy. The equation for the evolution of the

electron number density
∂ne

∂t
+
∂nev

j

∂xj
= SL, (3.14)

is necessary for the neutrino treatment which we describe in Sect. 3.1.6. The lepton

sink term SL is described in Ruffert et al. (1996, App. B) and quantifies the total

electron-lepton number loss rate of the stellar gas through neutrino emission. It is
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found by summing the effective emission rates of neutrino number for the electron

neutrino and electron anti-neutrino. The electron number density ne is related to the

electron fraction Ye = neu/ρ where u is the atomic mass unit.

We follow a separate equation for entropy as another means of calculating the

temperature, rather than from the internal energy. As noted in Ruffert and Janka

(2001), when temperature is computed from the internal energy of the gas (via the

equation of state), large errors can result when the both the kinetic energy of the gas

and the total energy are large. This is because internal energy is computed as the

difference of these two quantities. Normally this does not pose a problem but, in the

case of extremely degenerate matter, the noise in the temperature can be large as the

heat capacity of degenerate matter is very small. We therefore track the entropy per

nucleon of the matter s via a separate continuity equation for the entropy,

∂(snb)
∂t

+
∑

j

∂(snbv
j)

∂xj
= Sν + Ssh + Svis, (3.15)

where nb = ρ/u is the baryon number density (u is the atomic mass unit). The source

terms account for change in the entropy density due to neutrino production, shock

dissipation and shear and bulk viscosity effects. These terms are defined in Ruffert

and Janka (2001). The temperature is computed from this equation in a predictor-

corrector step which is second order accurate in time. Since the source terms depend

on the temperature, the old temperature is first used to evaluate these terms. Solving

Eq. 3.15 provides an estimate of the new entropy and thus for the new temperature.

This estimate is then used to solve the entropy equation a second time with the source

terms calculated using an average of the old and estimated new temperature. This

procedure is not fully consistent but we are still free to evaluate the temperature from

the internal energy in those cases where the kinetic and total energies are not both

large.

3.1.3 Neutron star model

The widely accepted view today, that neutron stars represent the high density

remnants of supernovæ, was first proposed at a meeting of the American Physical

Society in Stanford by Baade and Zwicky (1934). When a massive star has fused every

element up to iron in its core, the formation of elements with higher atomic numbers

suddenly requires energy input rather than release. With no nuclear reactions in the

core to release heat and therefore increase the gas pressure, the careful hydrostatic

equilibrium between pressure and gravity fails and the outer envelope of the star enters

free-fall. As the star contracts, the squeeze is so intense that electron clouds are pushed
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into their parent nuclei. Protons and electrons bind to form neutrons in the reversible

reaction

p+ e− 
 n+ νe. (3.16)

The pressure gets so high that electrons become degenerate and so the decay

of neutrons, which is normally the favoured direction for the above equation, is

suppressed as there is no available quantum state for the electrons to exist. The

contraction continues until a significant fraction of the stellar matter has been

“neutronised” in this manner. At this point, the collapse is arrested when the pressure

suddenly jumps up again as a result of the tremendous repulsive force exerted due

to neutron degeneracy. The star’s envelope is collapsing so rapidly though, that

the equilibrium is overshot and most of the star’s mass rebounds to be ejected in

a tremendous explosion (a supernova) while about 1.4 M� (found empirically from

observations) remains as an extremely dense remnant, the neutron star. There are

many books which describe neutron stars and their formation in much more detail.

See for example Ostlie and Carroll (1996), and Shapiro and Teukolsky (1983).

To model the hydrodynamic evolution of neutron stars with Charybdis, we need

to know how thermodynamic quantities like pressure, mass density, electron fraction,

etc. vary within a neutron star. We therefore seek radial profiles for each quantity

and use these profiles to place spherical neutron stars in hydrostatic equilibrium on

the computational grid. To obtain these radial profiles, we must solve the equations

of hydrostatic equilibrium in a Newtonian gravitational potential

dm(r)
dr

= 4πr2ρ(r), (3.17)

and
dP (r)
dr

= −Gm(r)ρ(r)
r2

, (3.18)

where r is the radial distance, ρ(r) the mass density at distance r, m(r) is the mass

contained within the volume 4
3πr

3 and G is the universal gravitational constant.

The pressure at r, P (r), will be dependent on the particular equation of state (see

Sect. 3.1.1). Note that Eq. 3.18 becomes

dP (r)
dr

= −G
r2

(
m(r) +

4πP (r)r3

c2

)(
ρ(r) +

P (r)
c2

)(
1− 2Gm(r)

rc2

)−1

, (3.19)

when special relativity (needed because the particles move at speeds approaching

the speed of light) and general relativity (needed because of the steep gravitational

potential) are included. This is known as the Oppenheimer-Volkoff equation

(Oppenheimer and Volkoff, 1939).
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We solve the equations above using a fourth order Runge-Kutta scheme and some

sample results in the Newtonian case are shown in Fig. 3.3 for two neutron stars

of equal mass (M = 1.6 M�) computed with the LS-EoS and the Shen-EoS. Here

we can see the effect of a “stiffer” EoS on the neutron star’s internal structure; the

Shen-EoS star is more extended and as a result has less extreme conditions at its

centre. In both cases, the neutron star can be divided into three main regions: a

degenerate interior composed mainly of a neutron fluid within which mass density

varies little (ρ & 1014 g cm−3), an inner crust (4.3 × 1011 g cm−3 . ρ . 1014 g cm−3)

and an outer crust (ρ . 4.3 × 1011 g cm−3). The transition between the core and

the inner crust is evidenced from the sharp turn or “knee” in the logarithmic mass

density shown in Fig. 3.3(b). This transition occurs at 13-14 km for the LS-EoS and

at about 15-16 km for the Shen-EoS and indicates the onset of neutron drip which

occurs at ρdrip ≈ 4.3× 1011 g cm−3 (Shapiro and Teukolsky, 1983). At mass densities

above this critical value, neutrons begin to “drip” out of nuclei and are able to survive

as free neutrons. The ratio of free neutrons to nuclei increases with density until

ρnuc ≈ 2.8×1014 g cm−3 at which point nuclei dissolve completely and merge together

(Shapiro and Teukolsky, 1983). This corresponds to the density within the core.

The transition between the inner and outer crusts can be seen as a change of

gradient in Fig. 3.3(b) and as a similar feature in Fig. 3.3(c) for the electron fraction.

The electron fraction in the crust jumps up appreciably from its much lower (less

than 10%) values in the interior of the star to values which are indicative of “normal”

matter. This is non-degenerate matter in which electrons make up about half of the

matter by number. Both phase transitions pointed out here are described in much

more detail in, for example, the book by Shapiro and Teukolsky (1983).

In Fig. 3.4 we plot curves showing the allowed combinations of stellar mass, central

mass density and radius for neutron stars with the LS-EoS and Shen-EoS. In the left

panels we show the possible stars computed with a Newtonian gravitational potential

and, on the right, we show the same relationships for a relativistic potential. Notice

that in panel (b) (although it occurs above the maximum density in our EoS tables)

we see the indication of a maximum allowed mass for a neutron star when we account

for relativistic effects. This maximum mass depends strongly on the equation of state.

We must be mindful of this result when choosing a mass for the neutron stars in our

simulations. There is also a minimum mass at which a neutron star will be stable

because neutrons at low density become susceptible to β-decay. A determination of

this minimum mass requires a full stability analysis however, which we do not perform

here.
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Figure 3.3: Radial profiles of (clockwise from top-left) pressure, mass density, mass, and
electron fraction for two neutron stars of equal mass (1.6 M�) but with different state
equations. The neutron star constructed with the equation of state of Lattimer and Swesty
(1991) and Shen et al. (1998a,b) is plotted in each panel by solid and dashed curve, respectively.

3.1.4 Implementation of black holes

First popularised by John Archibald Wheeler in an article in the popular-science

publication Scientific American (Wheeler, 1968), the term black hole describes an

object with a gravitational field so strong that it prevents light escaping. Although

such objects were considered centuries ago in the framework of Newton’s gravity and

the corpuscular description of light, it has been through Einstein’s general theory of

relativity that we have come to be able to probe the strangeness of black holes.

Perhaps the most obvious feature of a black hole is the existence of an event

horizon—a closed region of space within which nothing, not even light, is permitted

to escape. This will naturally have a profound effect on the dynamics of material

close to this region; some orbits, which would be parabolic or hyperbolic in Newton’s
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Figure 3.4: Plots relating neutron star mass to density and the stellar radius. The left panels
show results computed with the Newtonian equation of hydrostatic equilibrium while those
on the right result from the solution of the Oppenheimer-Volkoff equations which include a
relativistic gravitational potential. In all panels the thick black curves and the dashed curves
represents the stars described by the Lattimer and Swesty (1991) EoS and the Shen et al.
(1998a,b) EoS respectively.

theory, will result in the disappearance of the matter into the black hole. Other effects,

not present in Newtonian gravity, include a minimum radius for stable, circular orbits

(outside the event horizon) and the lack of an angular momentum barrier to prevent

particles from reaching r = 0. We can see the latter two effects in Fig. 3.5 which is

a plot of effective potential in the Schwarzschild metric6. Stable orbits occur where

the effective potential is concave and a stable circular orbit occurs at local minima of

the potential. In the Newtonian case, there is only one circular orbit possible for a

6The solution to Einstein’s field equations for a point mass in vacuum. It was found by

Schwarzschild in 1916, only one month after the publication of Einstein’s paper on GR.
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Figure 3.5: Effective potentials for various values of the specific angular momentum h

in geometric units in which G = M = c = 1. For each angular momentum value the
corresponding effective potential is plotted for the Newtonian case (dotted curves) and the
Schwarzschild case (solid curves). Note the maxima in the relativistic curves which signify an
unstable circular orbit since a small perturbation will cause a particle to either fall without
resistance to the singularity at r = 0 or escape to infinity. The lack of either a local maximum
or minimum for the critical value of angular momentum h = 2

√
3 shows that a particle can

have a non-zero angular momentum and still reach the singularity in the general relativistic
case. These effects are in stark contrast to the Newtonian curves.

given angular momentum and this orbit is stable to small perturbations. This stable

circular orbit has a direct analogue in general relativity, but note that there is another

point in this case where ṙ = 0 (the hump on the left-hand-side of the plot). This

also corresponds to a circular orbit, but one which is unstable to perturbations; a

small change in the angular momentum or radial distance will lead to a trajectory

which falls into the black hole. There is no analogue for this behaviour in Newton’s

description of gravity where there is no way of reaching the centre of gravity with

non-zero angular momentum; here an object with too much angular momentum can

plunge into the black hole. One can see from the tracks for various values of specific

angular momentum that there is a limiting value of h for which even the stable circular

orbit disappears. In the geometric units used here this value is h = 2
√

3 and the radius

of this innermost stable circular orbit is

rISCO =
6GM
c2

= 3rS, (3.20)

where we have used the definition of the Schwarzschild radius (rS = 2GM/c2) to obtain

the final relation. Although the discussion so far has used the Schwarzschild metric
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for illustration, the presence of angular momentum in nearly all astrophysical systems

suggests that the formation of a black hole in a perfectly spherically symmetric fashion

is unlikely. Luckily, we have a solution to the field equations which takes into account

the rotation of a central gravitating mass – the Kerr metric. Since we do not employ

a full general relativistic treatment in the simulations presented in this work, we shall

just note that we still find the features described in the Schwarzschild metric, but now

the event horizon is a function of the rotation which we will characterise by the Kerr

parameter a = J (in geometric units where G = M = c = 1)

rH = 1 +
√

1− a2. (3.21)

Due to frame-dragging, where space-time is essentially twisted around by the motion

of the gravitating mass, the radius of the innermost stable circular orbit in the Kerr

solution also depends on the rotation of the central mass but, unlike the event horizon,

it also depends on the “sense” of rotation; if a particle is in a pro-grade orbit (i.e. in

the same direction as the black hole is rotating), then rISCO decreases and increases

for a retrograde orbit. For a Kerr black hole, we have

rISCO = 3 + Z2 ∓
√

(3− Z1)(3 + Z1 + 2Z2),

Z1 ≡ 1 +
(
1− a2

) 1
3

[
(1 + a)

1
3 + (1− a)

1
3

]
,

Z2 ≡
√

3a2 + Z2
1 . (3.22)

Note that both Eq. 3.21 and Eq. 3.22 coincide with the Schwarzschild solution when

a = 0. Figure 3.6 shows plots of the various radii discussed as functions of the specific

angular momentum a or Kerr parameter.

The innermost stable circular orbit can be important dynamically as this is where

the inner edge of any accretion disk which forms around the black hole will be

(although the disk could also be truncated dynamically by magnetic fields as in

the vicinity of some young stellar objects). It is important to include the general

relativistic effects mentioned above in any simulation which involves an accreting black

hole, such as the present work. Since the computer model we use is a Newtonian one,

any general relativistic effects must be added as corrections or source terms (see also

Sect. 3.1.5) to our code.

For simulations of a neutron star merging with a black hole, we model the black

hole by a vacuum sphere, within which matter and angular momentum is removed from

the grid and added to the black hole. The radius of this vacuum sphere (our “numerical

event horizon”) is taken to be the arithmetic mean of the true event horizon and the

innermost stable circular orbit as computed from Eq. 3.21 and Eq. 3.22 respectively.

While matching the radius of the vacuum sphere to the black hole’s event horizon might
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Figure 3.6: The effect of the rotational parameter a on the event horizon (rH), the radius of
the innermost stable circular orbit (rISCO) and β ≡ rISCO/rH − 1, a dimensionless parameter
which defines the gravitational potential used. The thick curve rbhkerr is the arithmetic mean of
the last stable orbit and the event horizon and this is the effective radius of the vacuum-sphere
we use to simulate a black hole. The radii are in units of GM/c2 or half the Schwarzschild
radius and the dotted horizontal line thus corresponds to the Schwarzschild radius. This figure
is adapted from Setiawan et al. (2006).

seem a more realistic choice, it is numerically problematic: the potential diverges at

the event horizon. Since matter within rISCO is doomed to fall into the black hole

anyway, the exact position of the numerical horizon should not influence the large-

scale dynamics.

At every time step in the simulation, we compute the velocity of a point mass which

represents the current position of the black hole taking into account the matter flowing

into the black hole and the back-reaction from gravitational waves (see Sect. 3.1.5).

The position of the point mass is then updated using a time-centred algorithm.

Although we use a point mass to keep track of the mass, position and velocity of

the black hole, we do attribute a temporary mass distribution to the vacuum sphere

when computing the potential for self-gravity of the gas in the simulation. This is to

take advantage of the available nested-grid procedures which automatically generate

a self-consistent potential. The alternative would be to add a point-mass potential as

appropriate on each of the different grid levels. The distribution used is

ρ(r) = max
{(
e−4(r/rbhkerr)

2

− 0.05
)
, 1× 10−20

}
, (3.23)

where r is the radial distance from the point mass and rbhkerr refers to the

hydrodynamical size (which is the numerical event horizon in our simulations) of
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the vacuum sphere; rbhkerr = (rH + rISCO)/2. Figure 3.6 shows rbhkerr along with the

true event horizon and the radius of the last stable orbit as calculated from the Kerr

solution to Einstein’s field equations.

The calculation of rbhkerr is one way to incorporate the general relativistic effects

encountered close to a black hole, but this only affects matter once it crosses into the

vacuum sphere. It is clear from Fig. 3.5 that the gravitational potential near the black

hole differs from the Newtonian case. Since the gravitational force can be thought of

in terms of the gradient of this potential, we can apply the necessary corrections by

changing the momentum of the gas once we have an approximation for the general

relativistic potential. In the case of a non-rotating black hole, Paczyńsky and Wiita

(1980) present a potential which reproduces the event horizon and last stable orbit

from the Schwarzschild metric. Since we wish to investigate the effect of black hole spin

on the post-merger dynamics we use the potential derived by Artemova et al. (1996)

following Paczyńsky and Wiita (1980) but modified to include the correct dependence

on the Kerr parameter. The gravitational potential for the black hole φBH(r) takes

the form
dφBH

dr
= − GMBH

r2−β(r − rH)β
. (3.24)

The dependence on the black hole spin is provided through the dimensionless

parameter β (see Fig. 3.6) defined

β ≡ rISCO

rH
− 1. (3.25)

3.1.5 Gravitational waves in Newtonian setting

The crowning achievement of Einstein’s General Theory of Relativity (GR) are the

field equations (e.g. Shapiro and Teukolsky, 1983; Hobson et al., 2006)

Rµν −
1
2
gµνR = −8πG

c4
Tµν . (3.26)

These equations describe how the distribution of mass-energy prescribes the geometry

of space-time. Tµν is the stress-energy tensor which contains information about the

distribution of mass, Rµν is the Ricci tensor which is itself a contraction of the

curvature tensor Rµν ≡ Rσ
µνσ, R is the Ricci (or curvature) scalar which is the trace

of the Ricci tensor, and gµν is the metric tensor. The curvature tensor and its various

contractions contain all the information necessary to describe the intrinsic curvature

of the space-time manifold and the metric tensor allows us to measure distances and

angles on the manifold. Together, these three terms describing the curvature and

geometry of space-time define the Einstein tensor Gµν as the left hand side of Eq. 3.26
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which simplifies the field equations to

Gµν = −8πG
c4

Tµν , (3.27)

which is perhaps their most familiar form. In the Newtonian or weak field limit,

Eq. 3.26 reduces to the Poisson equation for gravity (see Sect. 3.1.2).

The field equations in either of the forms above are intricate and difficult to solve.

A particular simplification though, comes from solving the empty space equations

Rµν = 0, for a particular metric gµν . Apart from this type of simplification and

exploitation of symmetric situations, the field equations are generally intractable and

so many researchers considered their general behaviour by linearising them. Much of

the detail here can be followed in Hobson et al. (2006) amongst others.

We first make the physical assumption that the gravitational field is weak and can

thus be considered as a perturbation against the background of a flat metric, i.e.

gµν = ηµν + hµν (3.28)

where |hµν | � 1 and the first and higher partial derivatives of hµν are also small. After

making suitable gauge transforms and linearising the curvature terms in Eq. 3.26, we

arrive at the linearised field equations

�2h̄µν = −16πG
c4

Tµν . (3.29)

Here the h̄µν is defined as the “trace reverse” of hµν

h̄µν ≡ hµν −
1
2
ηµνh, (3.30)

and we assume that the h̄µν are chosen to satisfy the gauge condition ∂µh̄µν = 0. If we

now enforce the condition Rµν = 0, we obtain the linearised field equations for empty

space

�2h̄µν = 0. (3.31)

Eq. 3.31 is a wave equation with plane-wave solutions of the form

h̄µν = Aµν exp{ikρxρ}, (3.32)

where the amplitude coefficients Aµν ∈ C are constant components of a symmetric

tensor and the kµ ∈ R are the constant components of a wave-vector. In the

Lorentz gauge, the relationship Aµνk
µ = 0 must be satisfied. Further analysis which

we omit here (see Hobson et al., 2006, Chapter 18 for the details) shows that the

amplitude coefficients Aµν when transformed to a “transverse-traceless gauge” can
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be decomposed into two independent polarisation tensors h+
µν and h×µν (note we have

dispensed with the over-bar for simplicity).

We now turn our attention to the numerical treatment of the gravitational waves

in Charybdis. Gravitational waves are generated when a rotating object or mass

distribution does not exhibit symmetry about the axis of rotation. The quadrupole

moment tensorDij of the mass distribution allows us to quantify such axial asymmetry

and the derivatives of this tensor with respect to time describe the gravitational wave

emission. For example, we can compute the amplitudes of each of the so-called “plus”

and “cross” polarised gravitational waves observed at a distance r perpendicular to

the orbital plane by

h+ =
G

c4
1
r

(
D̈xx − D̈yy

)
, (3.33)

and

h× =
G

c4
2
r
D̈xy. (3.34)

At arbitrary positions we can compute the wave amplitudes from the two above (Rasio

and Shapiro, 1994).

To incorporate the effects of gravitational wave emission on the hydrodynamics in

our simulations, we need to define the energy source term due to gravitational waves

W which was given without explanation in Sect. 3.1.2. This term is computed by

W = −ρvj ∂φ

∂xj
+

4
5
G

c5
...
Dijv

i

(
ρ
∂ψ

∂xj
+
∂P

∂xj

)
, (3.35)

where ψ and φ are the Newtonian and gravitational wave back-reaction potentials

respectively (the other symbols are as defined in Sect. 3.1.2). We can also evaluate

the gravitational wave luminosity L either by summing up W over the whole emitting

volume or via the classical quadrupole formula

L =
1
5
G

c5
...
Dij

...
Dij . (3.36)

Summing up W yields the gravitational wave luminosity without averaging over

time. When the orbit decays and therefore is not perfectly circular, the non-averaged

luminosity is in general not identical with the value obtained by averaging over one

orbital period.

Since only the 2nd and 3rd time derivatives of Dij occur in the equations above,

we do not need to calculate the quadrupole moment tensor explicitly. This allows us

to skip computation of the numerical derivatives which would be less accurate and

instead, we compute the derivatives directly from

D̈ij = STF
[
2
∫
ρ

(
vivj − xi

∂ψ

∂xj

)
dV
]
, (3.37)
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and

...
Dij = STF

[
2
∫ (

2P
∂vi

∂xj
+
∂ψ

∂xj

{
xi
∂ρvk

∂xk
− 2ρvi

}
− ρxi

∂ψ̇

∂xj

)
dV

]
, (3.38)

where STF stands for symmetric and trace free and is equivalent to gauge transforming

a tensor to the transverse-traceless gauge (again, the details are to be found in Hobson

et al. (2006)). The transformation is

STF [Xij ] ≡
1
2
Xij +

1
2
Xji −

1
3
δijXkk. (3.39)

3.1.6 Neutrino emission

Charybdis contains an “elaborate neutrino leakage scheme” which is described in

detail in the appendices of Ruffert et al. (1996). We summarise the treatment of

neutrinos in the code here.

Emission and absorption of the electron-type neutrinos νe and ν̄e are tracked

separately. The heavier neutrino species, the τ and µ neutrinos and their anti-particles

are considered together and denoted as νx. The reason for this seeming disinterest in

the heavy neutrinos is due to the emission and absorption processes for the various

species as we shall now see.

Any of the three types of neutrino (and their corresponding antineutrinos) can be

produced in so-called thermal processes like the annihilation of an electron-positron

pair,

e− + e+ −→ νi + ν̄i, (3.40)

where the subscript i refers to all three species of neutrino, and by the decay of

photons,

γ̃ −→ νi + ν̄i. (3.41)

The latter process dominates in regions of high density and high electron degeneracy.

Electron-type neutrinos however, are special in that they interact with “normal”

matter, i.e. matter made up of protons and neutrons, through the charged-current

β-processes

e− + p � n+ νe, (3.42)

e+ + n � p+ ν̄e. (3.43)

Reactions involving the right arrows in Eq. 3.42 and Eq. 3.43 correspond to emission

of neutrinos while the reverse reactions describe absorption of neutrinos by matter.

Absorption in general is dominated by these inverse β-processes but with an important
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contribution from neutral-current scattering of the neutrinos by nucleons,

νi +

{
n

p

}
−→ νi +

{
n

p

}
. (3.44)

The nucleonic equation above indicates that the only change in the particles involved

is the distribution of energy between them. The latter is the dominant source of

opacity for the heavy-lepton neutrinos. Note: for the reason that we wish to keep the

memory usage of the equation of state look-up table as low as possible, we do not

track nuclei but instead assume that they fully dissociate into a gas of protons and

neutrons. The error from this simplification is estimated to be on the order of a few

10% (Ruffert et al., 1996). This may seem to be quite a large error but the accuracy is

in keeping with the other parts of the model like the treatment of gravitational waves

in a Newtonian framework, for example. The philosophy has been that it is better to

simulate as many different physical elements of the model and to gradually improve

the treatment than to study only a few phenomena exactly.

Since the electron and anti-electron neutrinos interact with matter, the ratio of

νe to ν̄e may change as conditions within the gas change. It is for this reason that

we must track the electron and anti-electron neutrinos independently. Since we do

not have any reason to suspect that the heavy lepton neutrinos or their respective

antineutrinos might occur in different abundances, we can treat them all as being

equivalent.

At low optical depths, the production and emission of neutrinos is computed

directly from the rates of the above processes (Eq. 3.40-3.43). At high optical depths,

equilibration happens much faster than the timescale of diffusion and hydrodynamic

changes. In this case we assume chemical equilibrium abundances for the neutrinos

and emission rates on the timescale of diffusion (see appendix B of Ruffert et al.,

1996). A smooth transition between these two regimes is achieved by interpolation.

The neutrino leakage scheme has been tested by comparison to a one dimensional

(spherically symmetric) calculation for the neutrino diffusion from proto-neutron stars

and found to be in agreement on the order of a few 10% (Ruffert et al., 1996).

This order of error is introduced by assumptions made to simplify what is already

a computationally expensive treatment. For example, transport effects by neutrino

diffusion and momentum transfer by neutrinos are both assumed to be negligible.

3.1.7 Nested, refined grid structure

To simulate a problem with length scales which vary from the order of tens of

kilometres for the orbits of the neutron stars, down to the typical lengths which
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characterise turbulence (metres, centimetres, and smaller), some form of hierarchical

grid structure is essential if the computation is to be completed in a reasonable

time.7 There are two main approaches here: adaptive mesh refinement (AMR) and

nested refined grids. Both methods are structured, hierarchical collections of grids

where a larger, coarser (i.e. larger discretized volume per computational cell) grid

contains one or more smaller, finer (higher resolution) grids. AMR is more general

but consequently more complicated to implement, especially in an existing code. With

AMR, resolution is increased where it is needed by testing each cell for the violation

of a specified criterion. This criterion for re-gridding can range from local measures of

compressibility, rotationality, current density, etc. (Powell et al., 1999) to the spatial

gradient of quantities like the speed of sound (Ziegler, 1999). The problem of choosing

a successful indicator for applying refinement in AMR aside, there are other difficulties

such as maintaining global conservation of the numerical scheme during the creation,

evolution and destruction of the refined grids. For a discussion of the latter problem

see, for example, Keppens et al. (2003) and for a detailed description of the AMR

method see Berger and Colella (1989), Bell et al. (1994), Friedel (1997), etc.

In the simulations presented in this work, we are fortunate that the regions of the

computational volume which require the highest resolutions are localised to the centre

of the grid. This allows for a more specialised type of grid refinement which we refer

to as a nested, refined grid Ruffert (1992). The number of grids is fixed throughout

(we use four in all simulations here) and, although the code we use permits the grids

to move relative to one-another, they are also fixed in space. Figure 3.7 shows the

configuration of the grids. Each grid has a simple relation to the other grids of different

resolution; all grids are Cartesian with the same logical size, i.e. they share the same

number of equidistant computational cells. The physical size of each grid however,

varies in length by a factor of two between the next coarsest or finest grid (so in the

2D case depicted in Fig. 3.7, each finer grid level covers a physical area of space which

is half as large as that covered by its host grid). In the simulations presented in this

thesis, we only use one grid at each level of refinement.

The hydrodynamic equations are evolved on each grid, independently of all others,

neglecting any overlap of grids. It is important however, that each grid (except the

coarsest grid) is nested in such a way that it is surrounded by a grid which differs

in refinement by only one level. This requirement makes the calculation of inter-grid

7This assumes that we are using a grid based code, of course. Another approach would be to

dispense with the grid entirely and use smooth particle hydrodynamics (SPH). We do not consider

SPH here, but simply direct the interested reader to Benz (1990), Monaghan (1992) and references

therein.
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Figure 3.7: Schematic depiction of the multiple, nested, refined grids and their relative
positions. Also shown is the outline of two neutron stars of equal mass; note how the finest
grid covers the region where the “action” will occur during their coalescence.

Level Time step 1 2 3 4 5 6 7

1, coarse 4∆t ?

2, medium 2∆t ? ? ↑
3, fine ∆t ? ? ↑ ? ? ↑

Table 3.2: An example of the “w-cycle” of the time step schedule for three levels of nested,
refined grids. A star represents computation on that grid level and an up arrow indicates a fine
grid being copied onto the next coarsest grid. A full cycle is shown for this level of refinement
(from Ruffert, 1992).

fluxes on the boundary of each fine grid consistent for any level of refinement.

Even though the grids are evolved independently, we are required to follow a

certain sequence in their computation due to the Courant-Friedrichs-Lewy stability

criterion (see Sect. 2.4). Grids which are a factor of two finer must be calculated twice

as often as their parent grid. In Ruffert (1992), a time step schedule is implemented

which we refer to as the “W-cycle” and which is also used in the present simulations;

the reason for the name becomes apparent when the schedule is represented as in

Tab. 3.2. Computation starts on the coarsest grid (the root grid) using a time step

which is appropriate for the hydrodynamic conditions on that grid. Computation

cannot resume on this grid now until the next finest grid has been evolved twice with

a time step equal to half the time step on the root grid. The recursive nature of the

scheme should now be apparent, for the second grid cannot be evolved for the second

time until any grid finer than itself undergoes two cycles of computation. When the

finest grid is reached, it may be computed twice in succession for there are no child
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grids to evolve. After this finest grid has been dealt with, its immediate parent is

allowed to advance by another step. Information must be communicated between the

grids at some point, otherwise there would be no point in the whole operation. We

treat the quantities computed on finer grids to be more important than the quantities

on the coarse grid which they overlap. So any time we complete calculations on a finer

grid and return to computing its parent, we average the values from the fine grid to

the coarse grid. This is indicated by an arrow in Tab. 3.2. The procedure described

here continues in this recursive fashion until we are ready to evolve the hydrodynamic

quantities on the root grid again, at which point the cycle restarts.

From Tab. 3.2 it can be seen that finer grids are computed twice as often as their

coarser parent grid. We have already stated that each grid is the same logical size and

therefore it should take the same time to complete computation on each grid. Since

a finer grid is required to be computed more often than all levels coarser than itself,

the largest amount of computer time is spent evolving the finest grids.

A note on inter-grid communication: copying from a fine grid to a coarse grid

as discussed above is accomplished here by multi-dimensional arithmetic averaging of

the hydrodynamic quantities. The situation is complicated somewhat by the fluxes on

the boundary between coarse grid and fine grid not being equal; an adjustment must

be made to the simple average to maintain global conservation which is obviously

desirable. In some instances we require information computed on a coarse grid to

be “promoted” to that on a finer grid. This is accomplished by a monotonic, multi-

dimensional interpolation scheme. We use the procedure of van Leer (1977) which is

described in detail, along with the rest of the refined grid treatment outlined here,

in Ruffert (1992). Ruffert and Janka (2001) also describes the utilisation of the fixed

nested grid structure for the problem of mergers between compact objects as studied

here.

3.2 Numerical simulations

3.2.1 Initial conditions

To quantify the effect of the equation of state on the mergers of neutron stars and

black holes, we run several computer simulations in which we vary the initial positions

of the objects and, in the case of models containing a black hole, the initial mass and

spin of the black hole. For any given set of initial conditions we ran a simulation with

both equations of state so that we could make direct comparisons. Table. 3.3 shows

the initial conditions for each of the models presented in this chapter.

Each model has a unique identification code. The first two letters of this code
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Model ID EoS MNS MBH Separation aKerr Grid length nx

NBLA L&S 1.6 M� 10 M� 90 km 0.99 1 600 km 128

NBSA Shen 1.6 M� 10 M� 90 km 0.99 1 600 km 128

NBLB L&S 1.6 M� 2.5 M� 55 km 0.90 800 km 64

NBSB Shen 1.6 M� 2.5 M� 55 km 0.90 800 km 64

NBLC L&S 1.6 M� 2.5 M� 57 km 0.00 800 km 64

NBSC Shen 1.6 M� 2.5 M� 57 km 0.00 800 km 64

NNLA L&S 1.6 M� – 65 km – 800 km 64

NNSA Shen 1.6 M� – 65 km – 800 km 64

Table 3.3: Initial conditions for simulations aimed at investigating the importance of the
equation of state (EoS) for the short class of gamma-ray bursts. Separation refers to the initial
centre to centre distance of the two objects, aKerr is the rotational parameter for the black
hole (see Sect. 3.1.4), and grid length is the size of the coarsest grid in the x or y directions.
nx is the number of cells in the x-direction on each computational grid.

specify the types of compact stellar object simulated; a model with a code starting

“NB” simulates the merger of a neutron star and a black hole while “NN” indicates

that the merging objects are both neutron stars. The third letter dictates the equation

of state used; “L” for the LS-EoS and “S” for the Shen-EoS. The final letter in the

code identifies the particular set of initial conditions as described in Tab. 3.3.

In Tab. 3.3, the resolution of a particular simulation is quoted in terms of the

number of cells in the x-direction of each grid. We will often use the shorthand

n3
x to describe a particular resolution even though the total number of cells in the

computational volume is not as large as n3
x. The number of cells in the y-direction

ny = nx but this is not true in the z-direction where nz = nx/4. The number of cells

in the z-direction, being perpendicular to the orbital plane of the merging system, is

halved because we assume the gas evolution above and below the orbital plane to be

symmetric. The reduction of nz by a further factor of two is possible since, as reported

by Ruffert et al. (1996), test calculations showed that hardly any matter moves out

to more than one neutron star radius away from the orbital plane.

Due to the restriction of computing time, only models NBLA and NBSA are

computed at a resolution of 1283. The other simulations were computed with half

the amount of cells in each dimension. At 643, we can obtain the solution over about

30 ms (or for about 5, 000 time steps) on a dual-processor, desktop machine (using

OpenMP parallelisation) in a few days. The same calculation at 1283 resolution, on the

same hardware is on the order of a month. The two high-resolution models for which

we do have data were run on eight processor, shared-memory nodes at the Edinburgh
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Compute and Data Facility (ECDF). In each simulation we used four refine, nested

grids with an equal number of cells in each. Figure 3.11 shows a comparison between

the high resolution NBLA and NBSA models with 643 counterparts. While for the

LS-EoS the general trends in the data are the same, the Shen-EoS simulations seem

to be much more sensitive to the change in resolution.

Before we allow the compact objects to freely orbit each other losing angular

momentum via gravitational waves, we “tidally relax” all neutron stars on the

grid. If we omit this step, the stars oscillate violently and are found to transfer

matter spuriously as a result. The oscillations result from the neutron star having

been constructed in hydrostatic equilibrium in a spherically symmetric gravitational

potential. When it is placed next to either another neutron star or a black hole, this

equilibrium no longer applies and the star “rings” as it tries to settle down into the

tear-drop equilibrium shape of this new potential. By performing tidal relaxation

we speed up this process of readjustment and ensure that no spurious mass transfer

occurs due to the star’s oscillation. The relaxation procedure involves transforming all

velocities to a co-rotating frame of reference in which we can easily detect and nullify

the radial velocity of the star(s). Even if we do nothing else the star would eventually

settle down into equilibrium since numerical viscosity will damp the oscillations. To

speed up the equilibration, we remove the excess kinetic energy of the star each time

step and also, since we do not want the diffusion to cause spurious heating of the star,

we cool the star to maintain the temperature profile set in the initialisation subroutine.

We will now present the results obtained from these numerical simulations divided

into two sections. In the first section we analyse the data from the models in which a

single neutron star merges with a black hole, and in the section after that we present

the results for the single neutron star binary system.

3.2.2 NSBH results and discussion

Although the details of each model vary, Figures 3.8 and 3.9 show the dynamical

evolution of a typical merger between a neutron star and a black hole. Plotted in

the figures are the logarithmic mass density (selected contours as well as shaded

colour) and the velocity field where the density is greater than a critical value around

108 g cm−3. We omit material of lower density since it is a numerical background

value intended to represent a vacuum surrounding our merging system.

The first panel shows the initial conditions for the simulation after the neutron

star has been tidally relaxed; the neutron star and black hole are given velocities for

an approximately circular orbit for their separation distance (which in this simulation

is 90 km) about the centre of mass which is at the origin. Within an orbit or so, the
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neutron star begins to transfer matter to the black hole through the inner Lagrange

point (panel (b) in Fig. 3.8). Material is also lost through the 2nd Lagrange point,

most of which forms extended spiral arms which may escape the system. The neutron

star will, within a few orbits, venture close enough to the black hole that tidal forces

will elongate the star which cause some of the more dense material to be transferred

directly across the event horizon as in Fig. 3.8(d) and Fig. 3.9(a). We find that the

bulk of the neutron star may survive this elongation and matter transfer for a few

approaches before finally being tidally disrupted to form a thick accretion disk around

the black hole (panels (b)-(d) of Fig. 3.9). Some material which was ejected into the

spiral structures around the merger rains down onto the accretion disk further bulking

it up as can be seen just entering the bottom right of the last panel in Fig. 3.9.

Before presenting the detailed results for each model, we make a few remarks about

the data processing. In the case of each direct comparison between a simulation with

the LS-EoS and the Shen-EoS, the objects start with the same separation distance at

time zero. Since the neutron star with the Shen-EoS is more extended however, the

dynamical evolution may be markedly different leading to, for example, the two models

undergoing similar events at very different simulated times. Clearly if there are more

interesting events that we wish to compare directly, we can just shift the time scale to

synchronise one of these events. In all the following plots we have redefined the time

axis such that t = 0 corresponds to the peak accretion rate of the first substantial

mass transfer between neutron star and black hole. In other words, we choose the

first tidal shredding of the neutron star by the black hole to be the origin of our time

coordinate. This can be seen in Fig. 3.12, for example.

Figure 3.10(a) shows the separation distance between the black hole and neutron

star measured from centre to centre for the three models in which a neutron star

and a black hole merge (we shall abbreviate such systems as NSBH). In this plot

we see the first major difference between the LS-EoS and Shen-EoS models. After

the first substantial transfer of mass or shredding event at t = 0, both stars (much

reduced in mass as evidenced from panels (b) and (c) of Fig. 3.12) are flung out on

an elliptical orbit. For the LS-EoS, the neutron star is likely to become completely

destroyed through tidal shredding on its next approach to the black hole and what

is left of it forms an accretion disk. In the Shen-EoS models though, the neutron

star tends to survive for several complete orbits more intact before its destruction by

tidal forces. During the closest approaches (the orbits are elliptical) the neutron star

transfers mass as can be seen in all three panels of Fig. 3.12. Note that in Fig. 3.12(c)

the peak accretion rate of the black hole is higher for the Shen-EoS in only this model.

We are somewhat sceptical of this result however, since in model NBSC the neutron
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(a) (b)

(c) (d)

Figure 3.8: Dynamical evolution of the coalescence of a neutron star and a black hole (the
grey filled circle) shown as logarithmic density in the orbital plane for numerical model NBLA.
The neutron star has a mass of 1.6 M� and the black hole is 10 M� and maximally rotating.
The equation of state used in this simulation is from Lattimer and Swesty (1991). The velocity
field of matter with density greater than 108 g cm−3 is shown by white arrows with the longest
arrow corresponding to a velocity of about 0.3c.
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(a) (b)

(c) (d)

Figure 3.9: Continuation of the dynamical evolution of a merger event between a 1.6M�

neutron star and a maximally rotating 10M� black hole. See Fig. 3.8 for more details.
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(a) (b)

(c) (d)

Figure 3.10: (a) The separation distance between the neutron star and the black hole in
all NSBH models as a function of time. (b) The mass of the neutron star defined as the mass
within a 30 km volume around the neutron star’s position. Panels (c) and (d) show the growth
of the black hole during the course of the simulations. In all four panels the time has been
normalised as described in the main text.

star transfers a large amount of material directly across the black hole’s event horizon

within a single orbit. This probably indicates that the initial conditions are poorly

chosen and that both this model and its partner NBLC should start with a greater

initial separation between neutron star and black hole.

In previous work with Charybdis it has been noted (Ruffert et al., 1996, 1997;

Ruffert and Janka, 2001) that when two neutron stars merge, the neutrino luminosity is

powerful but too short in duration to be the sole cause of a gamma-ray burst (GRB).

It is thought, since the merger event will likely lead to the birth of a black hole,

that the gamma-ray burst could be powered by cumulative neutrino emission from

an accretion disk of hot neutron star debris which persists around this black hole for
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(a) (b)

(c) (d)

Figure 3.11: The effects of changing the resolution from 643 to 1283 is shown for models
NBLA and NBSA. Panel (a) shows the separation distance between the black hole and the
neutron star. We stop plotting once the neutron star becomes tidally disrupted as spurious
separations result from our determination of the position of the star by following the density
maximum. The total neutrino luminosity over all neutrino flavours is shown in panel (b)
and in panels (c) and (d) the effects of resolution on the cumulative energy in neutrinos and
gravitational waves can be seen. As before, the time range has been normalised as described
in the main text.

several hundred milliseconds. For this reason, Setiawan et al. (2004, 2006) and Janka

et al. (1999) concentrate their neutrino analysis on the thick, quasi-steady accretion

disk which forms around the black hole in their NSBH simulations. We follow this

approach and, with the exception of Figs. 3.21-C.4 in which we plot two dimensional

slices of various quantities through the centre of the computational domain at several

different stages of the simulations, we focus our comparisons on the late stages of each
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(a) (b)

(c)

Figure 3.12: The mass accretion rates of the black hole in each of the NSBH models
is plotted against time. Each panel compares LS-EoS results with Shen-EoS results for a
particular model.

simulation where an accretion disk has formed.8

Figure 3.10(b) shows the mass of the neutron star in NSBH simulations as a

function of time. The mass is measured by considering the gas within a sphere of

diameter 30km centred on the density maximum. By evaluating the total gas mass

on the grid at the end of the simulation, we can obtain an estimate of the mass

of the accretion disk which forms after the neutron star has been shredded. It is

interesting that, despite the differences in time-scale and the shape of each profile

in general, all the simulations generate an accretion disk with roughly similar mass

2.87 × 10−1 M� . Mdisk . 5.35 × 10−1 M�. This seems to be independent of the

8For completeness, we also include these cross sectional plots but, since they take up several pages,

they can be found in Appendix C.
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equation of state. The corresponding growth in the black hole mass can be seen in

panels (c) and (d) in Fig. 3.10.

Before considering the results for neutrino emission, let us briefly consider some

global properties of the simulations. The huge energy scales involved in NSBH merger

events are presented for models NBLA, NBSA, NBLB and NBSB in Fig. 3.13. The

results for models NBLC and NBSC are similar to models NBLB and NBSC. The

EoS has the greatest effect on internal energy of the gas as might be expected and on

the gravitational potential energy of the system. The latter effect is likely due to the

varying orbital paths taken by stars as computed with the different equations of state.

In Fig. 3.14 the effects of gravitational wave emission on the angular momentum of

the merging systems can plainly be seen. The effect of the accretion process on the

black hole is evident in panel (d) in which the Kerr parameter (see Sect. 3.1.4) is

plotted against time. Note how the accretion disk can brake a rapidly rotating black

hole (the top four curves) or spin up a black hole with zero initial spin (the bottom

two curves). The changes are consistent between the two equations of state except in

models NBLC and NBSC. As mentioned before though, we should be careful about

drawing any radical conclusions from this model due to a possible error in the initial

conditions.

Neutrino emission depends on the hydrodynamic and thermodynamic state of the

neutron star material, especially the temperature and electron fraction (see Ruffert

et al., 1997, for a detailed discussion). We plot the global maximum temperature in

Fig. 3.15(b) for model A. We only plot this model since the others show the same trend;

the Shen-EoS leads to lower temperatures (and less extreme conditions) in general.

This is the first indication that our hypothesis from Sect. 3.1.1, that the Shen-EoS

might lead to higher neutrino emission in general, might be wrong. Further work is

required to properly investigate why this is the case. The global maximum of mass

density as a function of time is shown in Fig. 3.16. Once again we find slightly less

extreme conditions produced when the Shen-EoS is used in the simulation. Small scale,

damped oscillations can be seen in this figure (a magnified portion of the original plot

is shown in panel (b)) despite the tidal relaxation of the neutron star. The oscillations

decay within a few milliseconds however, and do not appear to affect the evolution of

the density in any of the models.

We now turn our attention to the neutrino emission, starting with the global

luminosity. Figures 3.18-3.20 show the total luminosity from the entire computational

domain evaluated at each time step. In each of these three plots, with the exception

of Fig. 3.20, the neutrino luminosity is higher for the LS-EoS than with the Shen-EoS.

The difference between the two equations of state is not large, though; in each model
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(a) (b)

(c) (d)

Figure 3.13: Comparison of various energies as functions of time for models NBLA, NBSA
(left panels), NBLB and NBSB (right panels). The “L” and “S” tags in each plot refer to
the equation of state. The total energy refers to the energy in all forms on the grid. This
is obviously not conserved since neutrinos, gravitational waves and mass loss all carry energy
out of the computational domain. It should be possible to quantify this loss by accumulating
the fluxes at the edge of the grid.

the emission is within the same order of magnitude as can be seen in Tab. 3.4. The

largest difference for the peak luminosity rate is between models NBLB and NBLC

and even then the LS-EoS results is only about 2.3 times greater than the Shen-EoS

result. This is good news since it means that uncertainties in the nuclear physics

which go into describing the dense material of neutron stars do not seem to affect the

generation of neutrinos.

The main features of the neutrino luminosity can be explained by considering the

conditions throughout the computational volume. Consider Fig. 3.18, for example.

The striking features in this plot are the round plateau feature which develops as
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(a) (b)

(c) (d)

Figure 3.14: The evolution of the distribution of angular momentum on the grid as a
function of time. Panels (a) and (b) show the total angular momentum on the grid and the
loss of angular momentum due to gravitational wave emission for models NBLA, NBSA, NBLB
and NBSB. Panel (c) shows the cumulative angular momentum which has left the grid and
panel (d) shows the change in specific angular momentum of the black hole through interaction
with the gas. Note that we do not expect the total angular momentum to be constant due to
losses via gravitational wave emission and material leaving the computational domain.

soon as the simulation starts and the subsequent peaks and troughs, one of which in

particular is very pronounced in the NBLA model and appears absent in the NBSA

case. We have chosen six points in time (t = −3, 2, 8, 15, 18) at which we plot detailed

two dimensional slices through the computational domain for the electron fraction

Ye (Figs. 3.21-3.22) and the temperature (Figs. 3.23-3.24). From these plots we can

explain the aforementioned features of Fig. 3.18.

The rounded plateau at the start of each simulation occurs because of a shock wave

heating the leading edge of the neutron star to temperatures in excess of 10 MeV. This
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(a) (b)

Figure 3.15: (a)Gravitationally unbound mass (mass which has a positive total energy) as
a function of time for all NSBH models. (b) Maximum temperature in MeV shown for models
NBLA and NBSA.

(a) (b)

Figure 3.16: Maximum density on the grids as a function of time. The panel on the left
exhibits damped oscillations for the first few milliseconds which are due to the tidal relaxation
of the neutron stars. The panel on the right gives a magnified view of these oscillations. Time
normalisation is as described in Sect. 3.2.2.

shock develops due to friction between the star and the “low-density” ambient matter

which must be present in our code for numerical reasons. It is unlikely that such

heating would occur in reality as the ambient density in the NSBH system would

be many orders of magnitude lower than the 108 g/cm3 required in our simulations.

This heating is short-lived however, and eventually the neutrino emission settles down

again before the large spike seen at t ≈ 8 ms in the NBLA model. Although this

feature appears absent from the NBSA plot, it actually just occurs later in time at
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Figure 3.17: Cumulative energy radiated in all species of neutrino as a function of time for
the NSBH models.

Model ID Mdisk Tmax Lmax
νe

Lmax
ν̄e

Lmax
νx

Lmax
ν

[10−1 M�] [MeV] [1053 erg/s] [1053 erg/s] [1053 erg/s] [1053 erg/s]

NBLA 4.86 52.36 2.25 7.50 2.78 11.95

NBSA 5.35 41.78 1.06 3.33 1.72 5.27

NBLB 3.39 39.45 3.20 11.96 2.36 17.60

NBSB 3.85 36.06 1.87 4.96 1.95 7.65

NBLC 2.87 44.87 1.75 8.04 2.37 11.52

NBSC 4.06 30.69 1.34 3.70 0.25 5.31

Table 3.4: A summary of results from the NSBH simulations. Mdisk is the estimated mass of
the accretion disk around the black hole as measured at the end of the simulation. Tmax is the
maximum gas temperature during the simulation in energy units, Lmax

νi
denotes the maximum

luminosity in neutrino species i. The notation Lνx is shorthand for the combined luminosity
of the heavy neutrinos and their antineutrinos (ντ , ν̄τ , νµ and ν̄µ).

t ≈ 18 ms. These peaks are due to the final tidal disruption of the neutron star into

the accretion disk which decreases the opacity of the medium to neutrinos but also

causes viscous heating as can be seen in the temperature plots. A similar analysis can

be performed on the other models but for brevity we only include detailed 2D slices

for these simulations once the matter has settled into an accretion disk. These plots

are to be found in Figs. C.9-3.29.

We complete our discussion of the NSBH models by considering the total

cumulative energy emitted in neutrinos of all species over time (see Fig. 3.17). The

difference between the two equations of state is most marked here; the different slopes

of the plots indicate that perhaps, over the lifetime of the accretion disk, the equation
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of state may prove more important than we have suspected until now. Further study,

extending the simulation time of the accretion disk may increase our understanding

of this process.
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Figure 3.18: Neutrino luminosities as functions of time for the models NBLA (top) and
NBSA (bottom) in each of the species tracked; electron νe, electron antineutrino ν̄e, and the
tau and mu neutrinos and their respective antineutrinos ντ,µ. We also plot the total luminosity
in all species of neutrino, Σνi.

Figure 3.19: Neutrino luminosities as functions of time for the models NBLB (top) and
NBSB (bottom). For further details see Fig. 3.18.

Figure 3.20: Neutrino luminosities as functions of time for the models NBLC (top) and
NBSC (bottom). For further details see Fig. 3.18.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.21: Electron fraction in the orbital plane. Only the inner part of the computational
domain is plotted. All of these cross-sections (and many more of the plots in this thesis) were
made with the Interactive Data Language (IDL).
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(a) (b)

(c) (d)

Figure 3.22: Electron fraction in the orbital plane (part2).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.23: Temperature in the orbital plane.
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(a) (b)

(c) (d)

Figure 3.24: Temperature in the orbital plane (part2).
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Figure 3.25: Neutrino luminosities as functions of time for the models NNLA (top) and
NNSA (bottom) in each of the species tracked; electron νe, electron antineutrino ν̄e, and the
tau and mu neutrinos and their respective antineutrinos ντ,µ. We also plot the total luminosity
in all species of neutrino, Σνi.

Model ID Tmax Lmax
νe

Lmax
ν̄e

Lmax
νx

Lmax
ν

[MeV] [1053 erg/s] [1053 erg/s] [1053 erg/s] [1053 erg/s]

NNLA 53.21 2.29 6.85 1.56 10.40

NNSA 62.37 3.88 9.24 3.26 15.96

Table 3.5: A summary of results from the NSNS simulations. Tmax is the maximum gas
temperature during the simulation in energy units, Lmax

νi
denotes the maximum luminosity in

neutrino species i. The notation Lνx is shorthand for the combined luminosity of the heavy
neutrinos and their antineutrinos (ντ , ν̄τ , νµ and ν̄µ).

3.2.3 NSNS results and discussion

The dynamics of the merger of a neutron star binary system is similar to the NSBH

system we have just discussed. The two stars orbit each other until matter escapes into

long spiral arms. The main difference here is that there is no chance for either of the

two stars to be given a stay of execution by being flung out into an elliptic orbit; drag

caused by turbulence at the point of contact between the stellar surfaces accelerates

the merging process and the two stars coalesce into a hot, rapidly oscillating blob.

This new high mass neutron star will likely be unstable and should therefore collapse

to form a black hole. Since we do not have a full general relativistic treatment yet,

we do not speculate on how long it would take before the collapse happened and how

much of the matter would form the initial black hole. The in-spiral and eventual

merger of the two stars is depicted in Figs. 3.26 and 3.27.
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We skip immediately to the neutrino emission, the results for which are surprising

in comparison to the results for the NSBH models. The luminosity of neutrinos is

plotted in Fig. 3.25 for models NNLA and NNSA and peak luminosities for each

flavour is shown in Tab. 3.5. Here we find the Shen-EoS produces more neutrinos. In

fact, even after the luminosity has dropped to a quasi-steady state in model NNLA,

the emission remains high in the Shen-EoS case. If we look at the temperature sections

in Fig. 3.28 we find that the temperatures are highest for the LS-EoS. It seems that

in this case, quantity is better since, although the peak temperature is lower in model

NNSA, a greater volume of the thick (proto-)accretion disk is at a temperature of

around 6 MeV. Perhaps this is due to the difference in stiffness of the two equations

of state leading to more extreme conditions (i.e. the higher temperature) in what is

in effect a new, larger mass neutron star.
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(a) (b)

(c) (d)

Figure 3.26: Dynamical evolution of the coalescence of two neutron stars shown as
logarithmic density in the orbital plane. The neutron stars each have a mass of 1.6 M�.
The equation of state used in this simulation is from Lattimer and Swesty (1991). The white
arrows show the velocity field with the longest arrow relating to a velocity of about 0.3c.
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(a) (b)

Figure 3.27: Continuation of the dynamical evolution of a merger event between two 1.6M�

neutron stars. See Fig. 3.26 for more details. The high density central object (red with a sharp
density drop near the yellow “crust”) is a likely proto-black hole candidate but, as explained
in the text, we cannot tell for certain without a full general relativistic treatment.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.28: Temperature in the disk, NNLA and NNSA.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.29: Electron fraction in the disk, NNLA and NNSA.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.30: Two dimensional slices through the centre of the grid showing mass density
in the disk for models NNLA and NNSA plotted as colour filled contours. The velocity field
is shown as white arrows, the longest arrow corresponding to a velocity of about 0.3c.



“The best laid schemes o’ Mice an’ Men,

Gang aft agley,

An’ lea’e us nought but grief an’ pain,

For promis’d joy!

(The best laid schemes of Mice and Men

oft go awry,

And leave us nothing but grief and pain,

For promised joy!) ”— Robert Burns, excerpt from “To a Mouse”

4
Application of Approximate Riemann

Solvers in CHARYBDIS

In chapter 3 we have introduced our astrophysical code for the simulation of mergers

of compact stellar remnants, Charybdis. In this chapter we continue with our

investigations on the suitability of the approximate Riemann solvers presented in

chapter 2 for solving astrophysically relevant gas-dynamic problems.

Our ultimate goal will be to employ one of these more computationally efficient

Riemann solvers (or possibly to incorporate more than one in a hybrid scheme) in

the solution of the equations of magnetohydrodynamics (MHD), modified to account

for the back-reaction of gravitational wave emission and augmented by the advection

equations for entropy and chemical species (see Sect. 3.1.2).

We now present a brief summary of the MHD system to motivate the use of

a conceptually simpler Riemann solver than the exact or iterative solver currently

used in Charybdis. Although such an exact MHD Riemann solver has already been

developed for the piecewise parabolic scheme (PPM) (Dai and Woodward, 1994),

we argue that the computational expense of this solver is prohibitive and that its

complexity would make the inclusion of the gravitational back-reaction and advection

97
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terms more challenging than necessary.

4.1 The challenge of magnetohydrodynamics

The equations of MHD can be derived by supplementing the Euler equations (see Sect.

3.1.2) by Maxwell’s equations of electrodynamics. Choosing a set of units in which the

magnetic permeability of free space µ0 is taken to be unity, the system of equations

in the conservative form of Eq. 2.1 is as follows (Goedbloed and Poedts, 2004)

∂U
∂t

+∇ · F(U) = S(U), (4.1)

with the vectors

U =


ρ

ρu

E

B

 , F(U) =


ρu

ρuu +
(
p+ B2

2

)
I−BB(

1
2ρu

2 + ρe+ p
)
u + (B× u + ηj)×B

uB−Bu

 ,

and S(U) =


0

0

0

−∇× (η∇×B) ≡ η∇2B + j×∇η

 ,

(4.2)

along with the solenoidal constraint on the magnetic field: ∇ · B = 0. The relevant

variables are the mass density ρ, the momentum density ρu, the total energy density

(made up of kinetic, internal and magnetic contributions)

E ≡ 1
2
ρu2 + ρe+

B2

2
, (4.3)

the magnetic field B and the current density j.

The respective elements of the flux vector are the momentum density, the Maxwell

stress tensor (in which I is the unit tensor), the energy flux and a term composed of

the anti-symmetric tensor product of the fluid velocity and the magnetic field B, and

a term which allows for the possibility of change to the magnetic topology. This last

equation is called the induction equation.

The parameter η is often referred to as either the magnetic resistivity or diffusivity.

The first name refers to the effect of the parameter on the behaviour of electrical

currents. With η = 0, currents can flow but they do so with no dissipation of

energy, the up-shot of which is that there can be no spontaneous changes in the

magnetic topology (i.e. no reconnection). The other name is much more obvious

when the induction equation is written in the following form. If we suppose that we
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are interested in a structure which consists of stationary plasma which is threaded by

a magnetic field (e.g. a solar prominence), the induction equation simplifies to

∂B
∂t

= η∇2B. (4.4)

This equation is of the form of a diffusion equation for the magnetic field. Clearly η

is the diffusion constant in this equation and when it is set to zero, the magnetic field

will never decay independently of the motion of the plasma.

An additional constraint on the evolution of the magnetic field, which can cause

problems for numerical solutions, is

∇ ·B = 0. (4.5)

This implies that there are no sources or sinks of magnetic field within a closed system.

The formulation of both the Euler equations and MHD leads to a system of non-

linear, hyperbolic equations as we have already discussed in some detail in chapter 2.

The addition of the magnetic field in the MHD equations leads to a much richer

mathematical model. For example, by linearising the Euler equations, one can derive

a wave equation which corresponds to ordinary acoustic waves. In MHD by contrast,

the forces introduced by the Maxwell stress tensor 1
2(B · B)I − BB mean that the

magnetic field effectively provides a pressure force orthogonal to the field lines and

a tension force along bent field lines. These contributions to the dynamics mean

that linearisation of the MHD equations yields three types of wave. The fast and

slow magneto-sonic waves are pressure waves which we would expect from ordinary

gas dynamics. They propagate with different speeds because they correspond to the

situations where the gas pressure and the pressure exerted by the magnetic field work

together or against each other, respectively. There is also a third wave in MHD though,

which has no analogue in pure gas dynamics, the Alfvén wave. Whereas the magneto-

sonic waves are longitudinal compression waves, the Alfvén wave is a transverse wave

along the magnetic field lines, like waves on a guitar string.

4.2 Implementation of the approximate schemes

Since Charybdis evolved from the Prometheus code we described in chapter 2, we

can easily incorporate the Roe and HLLE schemes into Charybdis without much

programming effort since the same subroutines and variable names are still present

in the inner workings of the hydrodynamic solver. There are some fundamental

differences in the equations solved by Prometheus and Charybdis, however. In the

latter, as described in chapter 3, there are extra equations to be solved for advected
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quantities such as entropy and the electron number density. Since the conservation

equation for a passively advected scalar quantity is equivalent to the equation of mass

conservation, we simply treat these extra equations in exactly the same manner as

the mass density in our calculations. At present, we do not use the HLLEM scheme

since the modification which is intended to improve the accuracy of contact waves

(see Sect. 2.5.3) requires anti-diffusion terms to be added to the linearly degenerate

fields (Einfeldt, 1988; Einfeldt et al., 1991). Further work is required to determine

the correct course of action for the advected quantities which, of course, travel as

linearly degenerate contact waves. We expect the electron fraction and temperature

distributions to be much more diffuse when compared with the iterative solver.

A final unresolved problem at this time is the treatment of gravitational wave

emission and the back-reaction of these waves on the gas dynamics. At present, the

Riemann solver in Charybdis returns the cell interface values of each individual fluid

quantity. In the system of equations defined in Sect. 3.1.2 two velocities occur; the

“kinematic” and “dynamic” velocities (recall these are used as part of a relativistic

correction to allow us to study gravitational wave emission and feedback). The

Riemann solver is entirely non-relativistic and uses the transformation in Eq. 3.9 to

complete the solution of the hydrodynamical equations. It is much more difficult to

apply the required transformations in the case of an approximate scheme which returns

the cell interface flux values directly. Without recourse to the interface values of the

conservative/primitive variables it is not straightforward to apply the transformation

in the form of Eq. 3.9 to the fluxes computed by the approximate schemes. The

solution to this problem may involve changing the way gravitational wave emission

is handled in Charybdis. As a temporary solution, so that we may actually have

some results to compare, we simply turn off the gravitational wave effects in all the

simulations in this chapter. We will still see some orbital decay though because angular

momentum conservation is not guaranteed numerically.

4.3 Numerical results

In this section we compare the results of hydrodynamical simulations of the coalescence

(due to numerical dissipation!) of two neutron stars computed with Charybdis.

We choose the same initial conditions for the tests as model NNLA in the previous

chapter (see Sect. 3.2.1), i.e. two 1.6 M� neutron stars are placed 57 km apart in

an approximately circular orbit. All the tests in this chapter are computed using the

tabulated equation of state of Lattimer and Swesty (1991). The initial conditions are

summarised in Tab. 4.1.
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Model ID EoS NS Masses Separation Grid length Resolution

ITER L&S 1.6 M� 57 km 800 km 643

ROE L&S 1.6 M� 57 km 800 km 643

HLLE L&S 1.6 M� 57 km 800 km 643

Table 4.1: Initial conditions for simulations run to test the performance of the approximate
Riemann solvers (ROE and HLLE) against the exact, iterative solver (ITER). Separation refers
to the initial centre to centre distance of the two neutron stars, and grid length is the size of
the coarsest grid in the x or y directions.

We have already described the basic dynamics of the merger and coalescence of

a neutron star binary system in Sect. 3.2.3 and so in Figs. 4.1-4.3 we only plot the

mass density and velocity fields for two snapshots in time; one near the beginning

of the simulation and one at the very end. Note that, in contrast to the results for

NSBH simulations in Sect. 3.2.2, there is no renormalisation of time and t = 0 merely

refers to the beginning of the simulation. Figures. 4.1-4.3 show that the dynamics of

the simulation are similar for the three different numerical schemes. The approximate

solvers do not show such pronounced mass loss as is seen in Fig. 4.1(a) for the iterative

solver. The Roe solver is worst in this respect with no appreciable mass loss despite

the fact that Fig. 4.2(a) shows a later physical time than the equivalent plots for the

iterative and HLLE solvers. This is not to say that the HLLE solver performs better

than the Roe’s scheme as can be seen in the later snapshot in Figs. 4.1-4.3. Here the

general qualitative shape of the spiral arms and the coalescing stars is very similar for

the iterative and Roe solvers despite the difference in the amount of material in these

structures. The rather poor performance of the HLLE solver is seen in Fig. 4.3(b); the

neutron stars have completely merged by the end of the simulation time (t = 25 ms).

This is to be expected since we knew that this scheme would be much more diffusive

than the other two.

Despite the differences mentioned above, these results are encouraging since we

at least find similar dynamical behaviour for the approximate Riemann solver based

schemes. This is further confirmed in Fig. 4.4 in which we directly compare the orbital

paths for the two neutron stars computed with each of the approximate Riemann solver

to the result computed with the iterative solver. To avoid confusion from the overlap

of the initial few orbits we only plot the last “20%” or so of the data.

The more rapid orbital decay exhibited in the simulation computed with the HLLE

solver is largely due to the large numerical viscosity inherent in this scheme. Other

discrepancies of the merger dynamics may be caused by our assumption to treat the
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(a) (b)

Figure 4.1: Mass density in the orbital plane for the simulation of a neutron star merger
with the LS-EoS and the iterative Riemann solver. Panel (a) shows an early snapshot after the
neutron stars have begun shedding mass and (b) shows the distribution of mass at the end of
the simulation. The arrows show the velocity field of the gas. The largest arrows correspond
to velocities on the order of 0.3c.

advected quantities just as we treat the mass density. Our reason for suspecting this

treatment to be insufficient comes from comparing the neutrino luminosities (both

total radiation in neutrinos and the individual luminosities) (Fig. 4.5). Since neutrino

emission depends strongly on the local temperature and electron fraction (themselves

derived from the advected quantities), the large differences between the neutrino

emission as computed by the approximate schemes and by the iterative scheme imply

that the problem may lie in the advected quantities. This is a problem we are currently

working to resolve and shows the direction of our future work in this area.

For completeness and, for consistency with chapter 3, we plot two dimensional

slices of the temperature and electron fraction through the centre of the computational

domain for each of the three solvers. See Figs. 4.6-4.11. A summary of some

global quantities from each simulation is presented in Tab. 4.2. Note that the HLLE

simulation exceeds the maximum tabulated value for temperature with the LS-EoS

(which is 95.77 MeV. See Tab. 3.1). The difference in the neutrino luminosity between

the iterative and approximate solvers is an order or magnitude in some species. The

difference is not as pronounced between models ROE and HLLE, however.



Chapter 4. Application of Approximate Riemann Solvers in Charybdis 103

(a) (b)

Figure 4.2: Mass density in the orbital plane computed with the linearised Riemann solver
of Roe (1981). All other details are the same as in Fig. 4.1.

(a) (b)

Figure 4.3: Mass density in the orbital plane computed with the approximate HLLE
Riemann solver. All other details are the same as in Fig. 4.1.
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(a) (b)

Figure 4.4: The orbital paths of the two neutron stars computed using (a) the linearised
Roe solver and (b) the approximate HLLE solver are plotted as plus symbols. The paths
computed with the iterative Riemann solver are also shown as crosses for comparison. Only
about the last 20% of the simulated data are plotted for clarity.

(a) (b)

Figure 4.5: (a) Total neutrino luminosities as functions of time for the three simulations. (b)
Comparison of the time dependence of neutrino luminosity for νe, ν̄e and the heavy neutrinos
with their respective antineutrinos ντ,µ.
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Model ID Tmax Lmax
νe

Lmax
ν̄e

Lmax
νx

Lmax
ν

[MeV] [1052 erg/s] [1052 erg/s] [1052 erg/s] [1052 erg/s]

ITER 50 8.37 22.00 19.82 43.57

ROE 34 0.89 1.59 0.34 2.57

HLLE > 100 0.89 2.29 0.69 3.02

Table 4.2: A summary of results from the three simulations with the iterative Riemann
solver (ITER) and the two approximate solvers (ROE and HLLE). Tmax is the maximum gas
temperature during the simulation in energy units, Lmax

νi
denotes the maximum luminosity in

neutrino species i. The notation Lνx is shorthand for the combined luminosity of the heavy
neutrinos and their antineutrinos (ντ , ν̄τ , νµ and ν̄µ).

Figure 4.6: Two dimensional slices through the centre of the computational domain showing
temperature (in MeV) at the end of the simulation computed with the iterative Riemann solver.
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Figure 4.7: Two dimensional slices through the centre of the computational domain showing
temperature (in MeV) at the end of the simulation computed with the linearised Roe solver.

Figure 4.8: Two dimensional slices through the centre of the computational domain showing
temperature (in MeV) at the end of the simulation computed with the approximate HLLE
Riemann solver.
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Figure 4.9: Two dimensional slices through the centre of the computational domain showing
electron fraction at the end of the simulation computed with the iterative Riemann solver.

Figure 4.10: Two dimensional slices through the centre of the computational domain
showing electron fraction at the end of the simulation computed with the linearised Roe
solver.
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Figure 4.11: Two dimensional slices through the centre of the computational domain
showing electron fraction at the end of the simulation computed with the approximate HLLE
Riemann solver.



“We shall not cease from exploration, and the end of

all our exploring will be to arrive where we started

and know the place for the first time. ”— T. S. Eliot

5
Conclusions and Outlook

We have presented two main themes in this thesis; in chapter 2 we reported on

the implementation of the approximate Riemann solvers of Roe (1981), HLLE and

HLLEM (Harten et al., 1983; Einfeldt, 1988; Einfeldt et al., 1991) in the piecewise

parabolic method (PPM) of Colella and Woodward (1984). We found that the schemes

performed very well in tests with L1-normed errors which were very close those for the

iterative solver when compared with an exact or high resolution reference solution. In

chapter 4, we presented some results showing the current state of a project in which

we utilise the aforementioned approximate solvers in an astrophysical model for the

merging of compact stellar remnants. We introduced this model in chapter 3 when we

presented results from an investigation into the effect of the equation of state (EoS)

used to describe neutron star material on the dynamics of the merger and on the

emission of neutrino radiation. In the next two sections we will provide a brief résumé

of the main results from each of these research projects.
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5.1 The importance of the equation of state in GRB

simulations

In chapter 3 we presented the results from four different merger scenarios; three

neutron star - black hole (NSBH) mergers and one binary neutron star merger (NSNS).

In each case we compute the solution with the EoS of Lattimer and Swesty (1991)

(LS-EoS) and of Shen et al. (1998a,b) (Shen-EoS). Our aim was to investigate whether

or not the change of EoS would significantly affect the results.

Our results show that simulations with the stiff Shen-EoS tend to yield less extreme

conditions of mass density and temperature during the merging process than in

simulations using the LS-EoS (that is to say, the energies involved in the merging event

are approximately higher in the LS-EoS case). As a result, the peak neutrino emission

is smaller by a factor between 1.5 and 2.0. This is not an appreciable difference

when we consider the approximations made in order to obtain a numerical solution

(e.g. gravitational waves and the black hole are present in an essentially Newtonian

setting).

We find the Shen-EoS results to be more sensitive to changes in the resolution of

the computation than the LS-EoS simulations. The initial encounter with the black

hole causes the Shen-EoS neutron star to enter a series of elliptic orbits before its

final destruction in the highest resolution case (1283), but not in the lower resolution

simulation (643). This suggests that the larger radius of the Shen-EoS star combined

with the internal forces under the Shen-EoS make it more susceptible to being flung

out to greater separation distances through tidal interaction with the black hole. We

believe that this may be due in part to the high mass ratio between the black hole

and neutron star in the particular model chosen to compare the effects of resolution

(MBH = 10 M�,MNS = 1.6 M�) since Rosswog (2005a) describes simulations (also

using the Shen-EoS) with high mass ratios of MBH/MNS > 14/1.4 in which a similar

reduced mass neutron star can survive as many as eight encounters with the black

hole.

Direct comparison of our results for neutrino emission with the simulations in

Rosswog (2005a) is not possible since we do not have any models which match their

initial conditions which have much higher black hole to neutron star mass ratios
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than our models1. It has been noted that NSBH mergers with a high mass ratio

form much reduced accretion disks with temperatures . 2.5 MeV (Rosswog, 2005b)

and therefore inherently lower neutrino emission. Since we find temperatures in our

simulated accretion disks to exceed about 10 MeV, it would be interesting to consider

similar mass ratios to Rosswog to see whether our grid based calculation agrees with

his SPH simulations.

We can draw some comparisons with other simulations using Charybdis. Janka

et al. (1999) present NSBH mergers (computed with the LS-EoS) including models

with a 1.6 M� neutron star merging with black holes with masses 2.5 M� and 10 M�.

We find good agreement between their results for maximum neutrino emission and

our own; both are of the order of a few 1053 erg s−1. This may not seem surprising

at first but, considering that they did not use the updated method for computing the

temperature from the entropy equations (see Sect. 3.1.2) this is a reassuring result.

Setiawan et al. (2004, 2006) simulate the neutrino emission from the accretion disk

after it has already formed. We note that they find maximum neutrino luminosities

of the order 1053 erg s−1 in those cases where the mass of the accretion disk is similar

to that found in our simulations, i.e. about 1
10 M�. The values of their peak neutrino

luminosity are certainly consistent with the quasi-steady emission reached at the end

of our NSBH simulations once the accretion disk has formed.

5.2 Using approximate Riemann solvers in Charybdis

In chapter 2 we described Godunov’s method (Sect. 2.2.3) and the high resolution

derivative of this scheme, the piecewise parabolic method (PPM) (Sect. 2.6.2),

on which our astrophysical code Charybdis is based. We also introduced three

approximate Riemann solvers – the linearised solver of Roe (1981) and the approximate

HLLE and HLLEM solvers (Harten et al., 1983; Einfeldt, 1988; Einfeldt et al., 1991)

– and evaluated their performance against an exact, iterative solver (see Sect. 2.3)

in several numerical tests in one and two spatial dimensions. Comparing the one

dimensional shock-tube tests with an exact solution, we found that, relative to this

1The higher the mass of the black hole with respect to the neutron star in the case of NSBH

binaries, the more elongated the neutron star’s trajectory becomes after the initial encounter. The

longer period of this elliptical orbit means more computational time is required to simulate the merger

event. This is made worse in our simulations since we must increase the grid size to accurately track

the neutron star which leads to higher computational time for each timestep of the whole simulation.

This is one reason why we do not draw exact comparison with those particular models in the work of

Rosswog et al.
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reference solution, all three approximate solvers had very similar L1-error as the

iterative solver. This performance was repeated when we considered a two dimensional

test where a high Mach shock impinges on a reflecting surface at an angle to the

bulk flow. We also noted decrease in computational time for the approximate solvers

relative to the iterative Riemann solver by a factor of about 1.3.

We present some early results of the attempt to incorporate these approximate

Riemann solvers in Charybdis in chapter 4. We found that, although the approximate

schemes performed well in the tests in chapter 2, they were not as effective at

simulating the merging of two neutron stars when compared with the results for the

iterative Riemann solver. The differences in the computed solutions are greatest in

quantities which depend on local conditions in the gas, such as neutrino emission.

The actual dynamics of the merger are qualitatively correct for each scheme however,

leading us to suspect that the problems are due to our assumption that the

modifications to the basic Euler equations of Sect. 2.1 do not require any special

treatment in the approximate solvers.

5.3 Outlook

There is still tremendous scope to improve our models for the merger of compact

stellar remnants. Currently, the numerical implementation of some aspects of the

physical model are only correct to first order. The treatment of gravitational waves

in a Newtonian framework is an example of this. We reason that, since a fully

general relativistic code would take a long time to develop, it is better to have some

approximation to the true gravitational wave effects than not include them at all.

The transfer to a fully general relativistic code can be considered a long term goal

for Charybdis and one for which no plans are currently being advanced. Similarly,

there are assumptions made in our neutrino treatment (see Sect. 3.1.6) which lead to an

error of the order of a few 10% when compared with results from diffusion calculations

in one dimensional situations (Ruffert et al., 1996, 1997). This is adequate as it is

consistent with the rest of the code.

Some less ambitious modifications and additions can be considered within the

context of the current code, a few of which can be thought of as medium term goals.

They include the extension of the equation of state (EoS) tables to lower tabulated

values of density than our current version (5.01×107 g cm−3 ≤ ρ ≤ 1.12×1015 g cm−3).

The minimum density in this table is already much higher than the value of ρmin =

1.26× 105 g cm−3 given by Shen et al. (1998b). Extension of our data tables down to

this new lowest density would be straightforward but we could do better by following
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the example of Rosswog and Davies (2002) who assume that, below this density, the gas

consists of a mixture of protons, neutrons, electrons and alpha particles. Currently,

neutrino annihilation rates are computed after the hydrodynamic simulation using

a radiative transfer code. By incorporating the radiative transfer calculations into

Charybdis, we could begin to approximate the effects of neutrino pressure on the

fluid flow.

We are limited, at present, in the maximum resolution we choose for our

simulations by computing time. The use of a nested, refined grid structure (see

Sect. 3.1.7) already permits us to simulate a larger computational volume which allows

us to follow the evolution of the long spiral arms of material lost from the neutron

stars without compromising the resolution at the location of the merger. Even so, the

resolutions which are feasible when running our code on current computer hardware

do not allow us to observe the small-scale turbulence which is known to form (see, for

example Ruffert et al., 1996; Rosswog and Davies, 2002) in the shear motion at the

contact point between the two neutron stars as they begin to coalesce. To investigate

this turbulence (probably due to the Kelvin-Helmholtz instability) with the 3D code

would require a full parallelisation which would allow us to take advantage of large,

distributed memory machines. At present, we exploit an OpenMP parallelisation

which restricts us to a relatively small number of processors and does not provide us

with the several orders of magnitude speed increase we could gain by using hundreds of

processors and parallelising with, for example, the Message Passing Interface (MPI).

As a medium term project, a two dimensional PPM code could be constructed to

make use of the realistic equation of state of neutron star matter so that resolution

could be increased enough to investigate the Kelvin-Helmholtz rolls in isolation.

Looking to the immediate future, the results presented in this thesis can of course

be improved by the application of higher resolution. The comparison of neutrino

emission in the simulations of chapter 3 can be extended and made more rigorous

by considering two dimensional plots showing the local emission rates of neutrinos in

all species. The question of how the EoS changes the amount of energy which could

be available to power a gamma-ray burst could be addressed more quantitatively by

computing the annihilation rates for neutrinos and antineutrinos. This has been done

before with Charybdis using a post-processing step which is described (along with

examples for the merger of neutron star binary systems) in (Ruffert et al., 1997). Such

results were not included in this thesis due to constraints on computing time; the post-

processing involves a radiative transfer code which takes the same order of computing

time as the main hydrodynamics code (which, for a typical 1283 resolution simulation,

takes about two weeks on Edinburgh University’s compute and data facility, EDDIE.
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On a dual core desktop machine, each simulation can take up to three months).

Although the addition of magnetic field physics was not achieved within the

time limit of my PhD studies, this goal has been a driving force for much of

the work presented in this thesis. In Sect. 4.1 we presented the equations of

magnetohydrodynamics (MHD) to showcase the differences with the Euler equations

of ordinary hydrodynamics. There are many complications which arise when the MHD

equations are considered such as the extra wave structure which adds more work to

Riemann solver based numerical schemes, magnetic pressure and tension forces on the

plasma and the condition that the magnetic field should remain solenoidal (i.e. ∇·B) at

all times during its evolution. Depending on the numerical treatment, this can be a real

headache when multi-dimensional calculations are considered. Clearly the addition of

an MHD solver to Charybdis is not something which can be done in one step. First,

we intend to continue improving the implementation of the approximate Riemann

solvers in Charybdis (see chapter 4) until they are able to accurately reproduce the

fine detail results computed by the iterative Riemann solver. When we have achieved

that milestone we can repeat the entire development cycle for an MHD Riemann

solver; starting with one dimensional shock tube problems and leading on to multi-

dimensional tests with the ideal gas equation we hope to eventually find ourselves

implementing the MHD Riemann solver in Charybdis, ready to start investigating

the parameter space of the merger of magnetised2 neutron star binary systems.

2A new-born neutron star can have a typical magnetic field strength on the order of 1012 Gauss.

This will likely have decayed by the time it would take for two neutron stars to merge by emission

of gravitational waves and the gas pressure (which is of the order 1034 erg/cm3 within the star) will

dominate the initial merging. It is the effect of the magnetic field on the accretion disk which we

are interested in, however. Gas pressures in the disk are much lower and with amplification of the

magnetic fields due to turbulence in the merging event by about three orders of magnitude (Price and

Rosswog, 2006), plasma beta could drop from values in excess of β ∼ 104 to around β ∼ 10−10.



A
The interpolant of PPM

Here we describe the method by which the quadratic interpolant U(x) = αx2 +βx+γ

becomes

U(x) = UL,j + ξ(∆Uj + U6,j [1− ξ]), (A.1)

where

ξ ≡
x− xj−1/2

∆xj
, x ∈ [xj−1/2, xj+1/2], (A.2)

as presented in Sec. 2.6.2

We seek a quadratic interpolation formula of the form

a(ξ) = αξ2 + βξ + γ (A.3)

over the cell width (ξj− 1
2
≤ ξ ≤ ξj+ 1

2
). To make this algebraically cleaner, we introduce

the transformation

x ≡
ξ − ξj− 1

2

∆ξj
,

where ∆ξj ≡ ξj+ 1
2
− ξj− 1

2
.

We need three constraints to arrive at values for the three unknown coefficients of

the interpolated function. These values are found using the relations

a(0) = aL,j , (A.4)

115



Appendix A. The interpolant of PPM 116

a(1) = aR,j , (A.5)

and
1

∆ξj

∫ ξ
j+1

2

ξ
j− 1

2

a(ξ)dξ = an
j .

The last constraint can be rewritten using the transformation given above and, if we

substitute for the interpolation function, we can integrate as follows:∫ 1

0
a(x)dx = an

j ,∫ 1

0

(
αx2 + βx+ γ

)
dx = an

j ,[
1
3
αx3 +

1
2
βx2 + γx

]1

0

= an
j ,

2α+ 3β + 6γ = 6an
j . (A.6)

So we now have our three constraints. The first two can be rewritten

α+ β + γ = aR,j (A.7)

γ = aL,j , (A.8)

by expanding (A.4) and (A.5) using the definition of the interpolation function (A.3).

Equations (A.6)-(A.8) can be represented by the matrix equation
2 3 6

1 1 1

0 0 1




α

β

γ

 =


6an

j

aR,j

aL,j

 ,

which after Gaussian elimination becomes
1 0 0

0 1 0

0 0 1




α

β

γ

 =


3
(
aL,j + aR,j − 2an

j

)
2
(
3an

j − 2aL,j − aR,j

)
aL,j

 .

Returning to the definition of a(ξ) and applying some algebra

a(ξ) = 3(aL,j + aR,j − 2an
j )x2 + 2(3an

j − 2aL,j − aR,j)x+ aL,j ,

= aL,j +
[
6
(
an

j −
1
2
(aL,j + aR,j)

)
− aL,j + aR,j

]
x−

− 6
(
an

j −
1
2
(aL,j + aR,j)

)
x2. (A.9)

Defining a6,j ≡ 6
[
an

j − 1
2 (aL,j + aR,j)

]
and ∆aj ≡ aR,j − aL,j , we arrive at

a(ξ) = aL,j + x [∆aj + a6,j(1− x)] ,

which is the form of the quadratic interpolation function as presented in Colella &

Woodward Colella and Woodward (1984).



B
Numerical results

In this appendix we present the complete list of plots for the 1D PPM Toro tests from

Chap. 2.
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Figure B.1: Toro test 1: PPM reconstruction with iterative Riemann solver. Initial
discontinuity position was x0 = 0.3. The numerical solution (symbols) and the exact solution
(line) are shown at time T = 0.2. This particular plot is identical to Fig. 2.14 in Sect. 2.7.1.
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Figure B.2: Toro test 1: PPM reconstruction with Roe solver. All other details are as
Fig. B.1.
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Figure B.3: Toro test 1: PPM reconstruction with HLLE Riemann solver. All other details
are as Fig. B.1.

Figure B.4: Toro test 1: PPM reconstruction with HLLEM Riemann solver. All other
details are as Fig. B.1.
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Figure B.5: Toro test 2: PPM reconstruction with iterative Riemann solver. Initial
discontinuity position was x0 = 0.5. The numerical solution (symbols) and the exact solution
(line) are shown at time T = 0.15.
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Figure B.6: Toro test 2: PPM reconstruction with HLLE Riemann solver. All other details
are as Fig. B.5.

Figure B.7: Toro test 2: PPM reconstruction with HLLEM Riemann solver. All other
details are as Fig. B.5.
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Figure B.8: Toro test 3: PPM reconstruction with iterative Riemann solver. Initial
discontinuity position was x0 = 0.5. The numerical solution (symbols) and the exact solution
(line) are shown at time T = 0.012.
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Figure B.9: Toro test 3: PPM reconstruction with Roe solver. All other details are as
Fig. B.8.

Figure B.10: Toro test 3: PPM reconstruction with HLLE Riemann solver. All other
details are as Fig. B.8.
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Figure B.11: Toro test 3: PPM reconstruction with HLLEM Riemann solver. All other
details are as Fig. B.8.
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Figure B.12: Toro test 4: PPM reconstruction with iterative Riemann solver. Initial
discontinuity position was x0 = 0.4. The numerical solution (symbols) and the exact solution
(line) are shown at time T = 0.035.
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Figure B.13: Toro test 4: PPM reconstruction with Roe solver. All other details are as
Fig. B.12.

Figure B.14: Toro test 4: PPM reconstruction with HLLE Riemann solver. All other
details are as Fig. B.12.
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Figure B.15: Toro test 4: PPM reconstruction with HLLEM Riemann solver. All other
details are as Fig. B.12.
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Figure B.16: Toro test 5: PPM reconstruction with iterative Riemann solver. Initial
discontinuity position was x0 = 0.8. The numerical solution (symbols) and the exact solution
(line) are shown at time T = 0.012.
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Figure B.17: Toro test 5: PPM reconstruction with Roe solver. All other details are as
Fig. B.16.

Figure B.18: Toro test 5: PPM reconstruction with HLLE Riemann solver. All other
details are as Fig. B.16.
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Figure B.19: Toro test 5: PPM reconstruction with HLLEM Riemann solver. All other
details are as Fig. B.16.



C
Two Dimensional Plots of NSBH Simulations

In this appendix we present the complete list of the 2D cross-sectional plots for the

NSBH and models described in Chapter 3 which there wasn’t enough cause to include

in the Chapter itself.
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(a) (b)

(c) (d)

(e) (f)

Figure C.1: Temperature in the x− z plane.

(a) (b)

(c) (d)

Figure C.2: Temperature in the x− z plane (part2).
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(a) (b)

(c) (d)

(e) (f)

Figure C.3: Temperature in the y − z plane.

(a) (b)

(c) (d)

Figure C.4: Temperature in the y − z plane (part2).
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(a) (b)

(c) (d)

(e) (f)

Figure C.5: Electron fraction in the x− z plane.

(a) (b)

(c) (d)

Figure C.6: Electron fraction in the x− z plane (part2).
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(a) (b)

(c) (d)

(e) (f)

Figure C.7: Electron fraction in the y − z plane.

(a) (b)

(c) (d)

Figure C.8: Electron fraction in the y − z plane (part2).
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(a) (b)

(c) (d)

(e) (f)

Figure C.9: Two dimensional slices through the centre of the grid showing mass density in
the disk for models NBLB and NBSB plotted as colour filled contours. The velocity field is
shown as white arrows, the longest arrow corresponding to a velocity of about 0.3c.



Appendix C. Two Dimensional Plots of NSBH Simulations 138

(a) (b)

(c) (d)

(e) (f)

Figure C.10: Mass density and velocity field in the disk for models NBLC and NBSC. See
Fig. C.9.
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(a) (b)

(c) (d)

(e) (f)

Figure C.11: Temperature in the disk, NBLB and NBSB.
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(a) (b)

(c) (d)

(e) (f)

Figure C.12: Temperature in the disk, NBLC and NBSC.
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(a) (b)

(c) (d)

(e) (f)

Figure C.13: Electron fraction in the disk, NBLB and NBSB.
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(a) (b)

(c) (d)

(e) (f)

Figure C.14: Electron fraction in the disk, NBLC and NBSC.



Bibliography

Artemova, I. V., Bjoernsson, G., and Novikov, I. D.: 1996, Astrophys. J. 461, 565

Baade, W. and Zwicky, F.: 1934, Phys. Rev. 45(2), 138

Band, D., Matteson, J., Ford, L., Schaefer, B., Palmer, D., Teegarden, B., Cline, T.,

Briggs, M., Paciesas, W., Pendleton, G., Fishman, G., Kouveliotou, C., Meegan,

C., Wilson, R., and Lestrade, P.: 1993, Astrophys. J. 413, 281

Bell, J., Berger, M., Saltzman, J., and Welcome, M.: 1994, SIAM Journal on Scientific

Computing 15(1), 127

Benz, W.: 1990, in J. R. Buchler (ed.), Numerical Modelling of Nonlinear Stellar

Pulsations Problems and Prospects, pp 269–+

Berger, M. J. and Colella, P.: 1989, J. Comp. Phys. 82, 64

Birkl, R., Aloy, M. A., Janka, H.-T., and Müller, E.: 2007, Astron. Astrophys. 463,

51
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Tóth, G. and Odstrčil, D.: 1996, J. Comp. Phys. 128, 82

van Leer, B.: 1977, J. Comp. Phys. 23, 276

van Leer, B.: 1979, J. Comp. Phys. 32, 101

Wesenberg, M.: 2003, Ph.D. thesis, Fakultät für Mathematik und Physik der Albert-

Ludwigs-Universität Freiburg im Breisgau

Wheeler, J. A.: 1968, American Scientist 56, 1

White, L. and Adcroft, A.: 2008, Journal of Computational Physics 227, 7394

Woodward, P. and Colella, P.: 1984, J. Comp. Phys. 54, 115

Woosley, S. E.: 1993, Astrophys. J. 405, 273

Ziegler, U.: 1999, Computer Physics Communications 116, 65


