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Abstract

The chemical master equation (CME) represents the accepted stochastic description of chemical reaction kinetics
in mesoscopic systems. As its exact solution – which gives the corresponding probability density function – is
possible only in very simple cases, there is a clear need for approximation techniques. Here, we propose a novel
perturbative three-step approach which draws heavily on graph theory: (i) we expand the eigenvalues of the transition
state matrix in the CME as a series in a non-dimensional parameter that depends on the reaction rates and the reaction
volume; (ii) we derive an analogous series for the corresponding eigenvectors via a graph-based algorithm; (iii) we
combine the resulting expansions into an approximate solution to the CME. We illustrate our approach by applying
it to a reversible dimerization reaction; then, we formulate a set of conditions which ensure its applicability to more
general reaction networks, and we verify those conditions for two common catalytic mechanisms. Comparing our
results with the linear-noise approximation (LNA), we find that our methodology is consistently more accurate for
sufficiently small values of the non-dimensional parameter. This superior accuracy is particularly evident in scenarios
characterized by small molecule numbers, which are typical of conditions inside biological cells.

1 Introduction
Chemical reaction kinetics have traditionally been modeled by means of rate equations. These are (sets of) determinis-
tic ordinary differential equations that describe the time-evolution of the concentrations of chemical species; see, e.g.,
[28] and the references therein. However, it is well known that chemical reaction kinetics are inherently stochastic
[16]: while the dynamics average out and appear deterministic if the spatial scale is sufficiently large, on mesoscopic
scales the probabilistic nature of reaction networks cannot be ignored [24]. Hence, rate equations are useful in the
description of reaction kinetics in macroscopic volumes such as test tubes and large-size chemical reactors, but cannot
accurately describe the kinetics in smaller volumes; a prominent example are biochemical reactions occurring inside
biological cells [24].

The chemical master equation (CME) constitutes the accepted mesoscopic description of chemical reaction pro-
cesses; it can be derived from combinatorial arguments [35] or from microscopic physics [15]. The derivation typically
assumes well-mixed and dilute conditions, as in [15]; however, a modified version also exists for non-dilute regimes
[19]. The CME contains information about the mean concentrations of reactants and the fluctuations about them at all
points in time; mathematically, it is a set of linear differential equations for the probabilities of the states in the system.
The typically large dimensionality of the state space implies that it is virtually impossible to find simple analytical ex-
pressions for the solution of the CME, i.e., the probability density function of the underlying reaction network. Known
cases in which the CME is solvable in closed form are few, and include systems that are composed purely of first-
order non-catalytic reactions [12, 13, 26], as well as a rudimentary genetic feedback loop [23]; however, the former
are not typical of naturally occurring reaction networks. Hence, over the past few decades, a range of approximation
techniques have been developed to investigate systems composed of both first-order and second-order (bimolecular)
processes. Amongst these the most popular are the linear-noise (Gaussian) approximation (LNA) [35, 7] and moment-
closure approximations [17, 10]. However, only the former technique provides a systematic approximation algorithm,
whereas the latter is based on an ad-hoc truncation of the moment equations [22]. (An alternative approach, the so-
called Poisson representation [14], transforms the CME into an equivalent Fokker-Planck equation (FPE); however,
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the corresponding solution typically cannot be found in closed form, but also has to be approximated.) On the other
hand, the principal disadvantage of LNA is that it gives results in the limit of large reaction volumes and, hence, that
it is not well-suited to the investigation of reaction processes in small volumes [25, 18, 20].

In this article, we develop a novel approximation technique for the solution of the CME which is applicable both
for very small and for very large reaction volumes, and which thus provides a new analytical tool for understand-
ing mesoscopic reaction kinetics. In the interest of pedagogical clarity, the approach is first developed for a simple
bimolecular reaction, and is later extended to more general reaction networks.

The article is organized as follows. In Section 2, we introduce the CME for a dimerization reaction, we reduce it
to non-dimensional matrix form, and we approximate the eigenvalues of the transition state matrix in the CME by a
series expansion in powers of a non-dimensional combination of the reaction rate constants and the reaction volume.
In Section 3, we develop the main theoretical result of this article, a graph-based methodology for determining the
adjoint matrix of any given square matrix. In Section 4, we revisit the dimerization reaction to find an expansion for
the matrix of eigenvectors of the transition matrix, as well as for the corresponding inverse matrix, on the basis of
the theory developed in Section 3. In Section 5, we combine the results of the preceding three sections to construct
an approximate solution to the CME for dimerization. We also compare our theoretical results with “exact” solutions
of that CME – i.e., with solutions obtained by numerical integration – and with the LNA. In Section 6, we explore
the applicability of our graph-based approach to more complex sets of chemical reactions. We then summarize and
discuss our findings in Section 7. We conclude with a series of appendices: in Appendix A, we cite general eigenvector
formulae to supplement those in Section 4; in Appendix B, we present a brief derivation of LNA in the context of
dimerization; finally, in Appendix C, we verify the conditions formulated in Section 6 for two examples involving
catalysis.

2 Dimerization
To illustrate the approach developed here, we consider the simplest reversible bimolecular reaction, namely dimeriza-
tion, whereby a pair of monomer molecules (species A) react to form a single dimer molecule (species B); the latter
can dissociate back into free monomers: A+A−⇀↽− B. Despite its simplicity, dimerization is a ubiquitous component in
various intracellular reaction networks [27].

2.1 The CME
In the following, we will assume the dimerization reaction defined above to occur in a compartment of volume Ω, with
no influx or efflux of particles. We will also enforce well-mixed conditions such that the state of the system at any point
in time can simply be described by the number of molecules of species A and B. The CME is then a time-evolution
equation for P(nA,nB, t), the probability that, at time t, the system contains nA molecules of type A and nB molecules
of type B; it can be derived via a simple probabilistic analysis: defining W (nA,nB|n′A,n′B)∆t as the probability that the
system evolves from a state (n′A,n

′
B) to a state (nA,nB) within a (short) time interval ∆t, we find the gain-loss equation

P(nA,nB, t +∆t) =W (nA,nB|nA +2,nB−1)P(nA +2,nB−1, t)∆t

+W (nA,nB|nA−2,nB +1)P(nA−2,nB +1, t)∆t

+[1−W (nA−2,nB +1|nA,nB)−W (nA +2,nB−1|nA,nB)]P(nA,nB, t)∆t. (1)

In words, the above equation can be parsed as follows: (i) the first line in (1) represents the gain of state (nA,nB) from
state (nA + 2,nB− 1) due to a forward reaction – two molecules of A bind to form one of B – occurring during the
time interval ∆t; (ii) the second line describes the gain of state (nA,nB) from state (nA− 2,nB + 1) due to a reverse
reaction (dissociation of B into two molecules of A) occurring within the time interval ∆t; and (iii) the third and fourth
lines correspond to the case where the system is already in state (nA,nB) at time t and no (forward or reverse) reaction
occurs in the time interval ∆t.

The functions W in (1) can be determined from combinatorial arguments [35]; we quote them without derivation
here. If we are in state (nA,nB), the probability of a forward reaction occurring within the time interval ∆t is given
by W (nA−2,nB +1|nA,nB)∆t = k1

Ω
nA(nA−1)∆t, where k1 is the forward rate constant (with units of volume divided
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by time). Similarly, if we are in state (nA,nB), the probability of a reverse reaction occurring in the time interval ∆t
is given by W (nA + 2,nB− 1|nA,nB)∆t = k2nB∆t, where k2 is the reverse rate constant, with units of inverse time.
By analogous arguments, one obtains W (nA,nB|nA + 2,nB− 1)∆t = k1

Ω
(nA + 2)(nA + 1)∆t and W (nA,nB|nA− 2,nB +

1) = k2(nB + 1)∆t. (Here, we note that the rate constants k1 and k2 are the same as those found in the conventional
deterministic rate equations [28].)

Substituting the functions W from above into Eq. (1) and taking the limit of infinitesimally small ∆t, we finally
obtain the CME for reversible dimerization:

d
dt
P(nA,nB, t) =

k1

Ω
(nA +2)(nA +1)P(nA +2,nB−1, t)+ k2(nB +1)P(nA−2,nB +1, t)

− k1

Ω
nA(nA−1)P(nA,nB, t)− k2nBP(nA,nB, t). (2)

2.2 Non-dimensionalization and reduction
The dimerization reaction introduced above possesses a simple conservation law, namely, the total number of monomers
(in free and bound form) is constant for all times: ntot := nA +2nB. In particular, the number of molecules of B can be
expressed in terms of A, as nB = ntot

2 −
nA
2 . Thus, the possible states which can be accessed by the system are

nA =

{
1,3, . . . ,ntot−2,ntot if ntot is odd,
0,2, . . . ,ntot−2,ntot if ntot is even.

For the following analysis, we may restrict ourselves to the case where ntot is even, as the odd case can be treated in an
analogous fashion. Moreover, we introduce the new constant α via ntot = 2Ωα , where α represents half the maximum
concentration of monomers in the reaction volume Ω. It follows that nB = Ωα− nA

2 and, hence, that the CME, Eq. (2),
can be reduced to univariate form:

d
dt
P(nA, t) =

k1

Ω
(nA +2)(nA +1)P(nA +2, t)+ k2

(
Ωα− nA

2
+1
)
P(nA−2, t)

− k1

Ω
nA(nA−1)P(nA, t)− k2

(
Ωα− nA

2

)
P(nA, t). (3)

Next, we non-dimensionalize Eq. (3) by dividing the equation by k2 and by rescaling the time variable, with
t→ k2t, to obtain

d
dt
P(nA, t) = K(nA +2)(nA +1)P(nA +2, t)+

(
Ωα− nA

2
+1
)
P(nA−2, t)

−KnA(nA−1)P(nA, t)−
(

Ωα− nA

2

)
P(nA, t). (4)

Here, K := k1
k2Ω

, and we again denote the new non-dimensional time by t (with an abuse of notation).

Remark 1. An alternative non-dimensionalization is obtained by dividing out k1
Ω

from Eq. (3) and by rescaling time
accordingly; since the resulting equation is similar to (4), it is omitted here.

Eq. (4) can conveniently be written in matrix form as

d
dt

P(t) = MP(t), (5)

where

P(t) :=


P(0, t)
P(2, t)

...
P(2Ωα−2, t)
P(2Ωα, t)
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and

M :=



−g(0) f (1)K 0 · · · · · · · · · 0
g(0) − f (1)K−g(1) f (2)K 0 · · · · · · 0

0 g(1) − f (2)K−g(2) f (3)K
. . . · · · 0

...
. . . . . . . . . . . . . . .

...

0 · · ·
. . . g(n−2) − f (n−1)K−g(n−1) f (n)K 0

... · · · · · ·
. . . . . . . . .

...
0 · · · · · · · · · 0 g(Ωα−1) − f (Ωα)K


, (6)

with

f (n) := 2n(2n−1) and g(n) := Ωα−n. (7)

By Eq. (5), the (n+ 1)-th row in the matrix M corresponds to the equation for the probability P(2n, t) of the system
being in a state with 2n molecules of A at time t. For that reason, in what follows, we will conveniently relabel each
state with nA = 2n as n.

The exact solution of the CME, Eq. (5), can then be expressed as

P(t) = E−1eΛtEP(0), (8)

where Λ is a diagonal matrix whose entries are the eigenvalues of the transition state matrix M, E is the matrix of
eigenvectors of M, and E−1 is its inverse.

While the above solution is formally exact, it is impossible in practice to find analytical (closed-form) expressions
for E and Λ for general values of Ωα and K. Numerical integration of (5) – or, equivalently, the evaluation of (8) –
for Ωα and K fixed, on the other hand, does not provide insight into the asymptotics with respect to these parameters.
Hence, there is a clear need for approximation techniques that allow one to infer the (dynamical and steady-state)
properties of the probability distribution P(t) defined by (8). The approach developed in this article is perturbative
in nature, in that we expand the exact solution of (5) in an asymptotic series in powers of K, for K sufficiently
small. We shall perform this expansion in three steps: we first construct an approximation for the eigenvalue matrix Λ

(Section 2.4); then, in Sections 4.1 and 4.2, we approximate the eigenvector matrix E and its inverse E−1, respectively;
finally, in Section 5, we combine the resulting formulae to obtain the desired approximation for P(t). We emphasize
that our approximation for E is based on the results developed in Section 3 which, in turn, rely heavily on concepts from
graph theory [6]; see, in particular, Proposition 1. The eigenvalue matrix Λ, on the other hand, can be approximated
algebraically in the context of the dimerization reaction considered here. However, in more complex reaction networks,
that approximation may need to be graph-based, as well; cf. also Remark 3 below.

Remark 2. As P(t) is the solution of the linear differential Eq. (5) that is, moreover, a regular perturbation problem (in
K), we expect P to be a C∞ smooth function of K. This expectation will be confirmed by our analysis, as we will show
that all three matrices E, Λ, and E−1 involved in (8) are C∞ smooth in K; see Remarks 4 and 9 below. In particular, it
will follow that P admits an asymptotic series expansion in K, as claimed.

2.3 Significance and applicability
Before proceeding with our perturbative approach, we briefly discuss the physical significance and the practical appli-
cability of the small-K limit in Eq. (4).

The physical significance is easily discerned. The inverse of k2 defines the time-scale governing the dissociation
of a dimer molecule B, whereas the inverse of k1

Ω
determines the time-scale on which the binding of two monomer

molecules A occurs. Thus, K small simply implies a time-scale separation between these two processes.
The practical applicability of a small-K expansion can be seen as follows. For a given ratio of forward and reverse

rate constants k1
k2

, small values of K ensue if the reaction volume Ω is significantly larger than that ratio. To estimate
how large Ω needs to be for our methodology to be of physical significance, we note that the range of the forward
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(bimolecular) rate constant is approximately 106− 109 M−1s−1, where the upper and lower limits are relevant for
diffusion-limited reactions and for reaction-limited ones, respectively [11]. Since well-mixed conditions are only
compatible with reaction-limited dynamics [24], we choose k1 = 106 M−1s−1. As for the reverse (unimolecular)
rate constant, the typical range is given by 1− 104 s−1 [11]. Hence, for k2 = 1s−1, K is “small” if the reaction
volume Ω is significantly larger than a cube of side length 0.1µm; similarly, if we take k2 = 104 s−1, K is small if
the volume is considerably larger than a cube of side length 6nm. As intracellular compartments range in size from
diameters of about 50nm to a few microns [2], it is clear that small values of K are compatible with the modeling
of intracellular conditions. We also note that smallness of K places no restriction on the total number of monomers
ntot; correspondingly, our expansion will be capable of capturing equally well scenarios with small or large molecule
numbers, which is desirable.

Finally, we emphasize that our expansion is different from the conventional system-size expansion of the CME
[35]. The latter is a large-volume expansion at constant macroscopic concentration, which, for the dimerization re-
action, would imply taking the large-Ω limit at constant total monomer concentration α . (In other words, the total
number of monomers ntot would increase proportionately with the volume.) This scenario is typically referred to as
the thermodynamic (or macroscopic) limit [16], and is the limit employed by the system-size expansion and by LNA,
on which it is based; see again [35]. By contrast, our small-K expansion corresponds to the limit of large volumes at
some fixed total number of monomers ntot; that limit is frequently more relevant in practice, since it potentially allows
for small copy numbers of molecules, as it is often the case in living cells. The conceptual difference between the two
expansions is illustrated in Fig. 1.

(a) (b)

Figure 1: Illustration of the effects of a change in reaction volume. In panel (a), the total number of monomers
is fixed for all volumes, which implies that the total monomer concentration decreases as the volume increases; in
panel (b), the total number of monomers is increased proportionately with the reaction volume such that the total
concentration remains constant. Case (a) is the one studied in this article, whereas case (b) corresponds to the well-
studied thermodynamic (macroscopic) limit [35].

2.4 Eigenvalue expansion
In this subsection, we approximate the set of eigenvalues of the transition matrix M defined in Eq. (6) by a series
expansion in terms of the non-dimensional parameter K. As is well known, eigenvalues of M are obtained by solving
the eigenvalue equation

det(M−λ I) = 0 (9)
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for λ . Expanding λ = a0 +a1K +o(K) and omitting the o(K) terms, we find

Mλ := M−λ I

=



−g(0)−a0−a1K f (1)K 0 · · · 0

g(0) − f (1)K−g(1)−a0−a1K f (2)K
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . .

...
0 · · · 0 g(Ωα−1) − f (Ωα)K−a0−a1K


.

We can now apply the determinant property

det(Mλ ) = ∑
σ∈S

sgn(σ)
Ωα

∏
n=0

Mλ [n,σ(n)], (10)

where S is the set of all permutations of {0,1, . . . ,Ωα} and Mλ [i, j] denotes the (i, j)-th entry in Mλ .
The advantage of employing the expression in (10) when evaluating the determinant of Mλ lies in the fact that

most of the terms in the above sum are either zero or o(K) and, hence, negligible to the order considered here. In fact,
the only non-zero permutations in (10) will be the ones that exchange pairs of neighboring numbers (n,n+1). Each
time a pair of such numbers is exchanged, the factor Mλ [n,n+1] ·Mλ [n+1,n] =K f (n+1)g(n) appears in the product
in Eq. (10). Consequently, the only permutation that contributes to the constant term in (10) is the identity. Similarly,
the only permutations contributing to the O(K) term are the ones that exchange pairs of neighboring numbers, i.e., all
cyclic permutations of the form σn := (n n+1), with n = 0,1, . . . ,Ωα−1. Thus, it follows that Eq. (10) can be written
as

det(Mλ ) =
Ωα

∏
i=0

Mλ [i, i]+
Ωα−1

∑
j=0

sgn(σ j)
Ωα

∏
i=0

Mλ [i,σ j(i)]+o(K)

=
Ωα

∏
i=0

[−g(i)−a0− f (i)K−a1K]−K
Ωα−1

∑
j=0

f ( j+1)g( j)
Ωα

∏
i=0

i6= j,i 6= j+1

[−g(i)−a0]+o(K), (11)

where the functions f and g are defined in Eq. (7). (Here and in the following, conventional “big-O” notation indicates
exact knowledge of the order in K of a given expression, whereas “small o” is used otherwise, as in the case of the
error resulting from the truncation at O(K) above.)

For Eq. (9) to be satisfied, the terms in the expansion in (11) must equal zero separately, i.e., order-by-order in K.
Setting the O(1) term to zero, we find the Ωα +1 solutions

an
0 :=−g(n) = n−Ωα, with n = 0,1, . . . ,Ωα.

Next, we observe that
Ωα

∏
i=0

[−g(i)−an
0− f (i)K−an

1K] = [− f (n)K−an
1K]

Ωα

∏
i=0
i6=n

[−g(i)−an
0]+o(K)

and

K
Ωα

∑
j=0

f ( j+1)g( j)
Ωα

∏
i=0

i6= j,i6= j+1

[−g(i)−an
0] = K ∑

j=n−1
j=n

f ( j+1)g( j)
Ωα

∏
i=0

i 6= j,i6= j+1

[−g(i)−an
0]+o(K).

Hence, for the O(K) terms in Eq. (11) to evaluate to zero, we require

an
1 =−

[
f (n)+

f (n)g(n−1)
g(n)−g(n−1)

+
f (n+1)g(n)

g(n)−g(n+1)

]
; (12)

the corresponding eigenvalue of M will be denoted by λn = an
0+an

1K+o(K). (Here, we remark that f (0)g(−1) = 0 =
f (Ωα +1)g(Ωα), which is due to f (0) = 0 = g(Ωα); cf. again Eq. (7).)
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Remark 3. We note that an
1 consists of three terms which correspond to the identity, the “left” permutation (n−1 n),

and the “right” permutation (n n+1), respectively; all other permutations annihilate the last product in the second line
of Eq. (11), as an

0 =−g(n). Interpreting the above observation in a graph-theoretic context [6], we may conclude that
the expansion for λn only depends on neighboring vertices in the graph associated to M, at least to the order considered
here; cf. also Section 4, where we will determine a graph-based approximation for the corresponding eigenvectors, as
well as Section 6, where the extension of the approach developed in this article to more general reaction networks is
discussed.

Substituting the definition of the functions f and g from Section 2.2 into Eq. (12), we obtain

an
1 :=−2(Ωα−n)(4n+1), with n = 0,1, . . . ,Ωα,

for the first-order term in the expansion of λn.
In sum, a compact expression for the n-th eigenvalue of the transition matrix M is thus given by

λn = (n−Ωα)+2(n−Ωα)(4n+1)K +o(K), for n = 0,1, . . . ,Ωα. (13)

Remark 4. It follows from standard linear algebra [3] that λn is C∞ smooth in K; hence, the expansion in (13) can in
principle be taken to any order. However, we note that this expansion may only be an asymptotic series in K; in other
words, it may not be convergent.

3 Main result
In this section, we develop the main theoretical result of this article, a graph-based algorithm for calculating the adjoint
matrix of a given square matrix that is inspired by “method (B)” of [30]. Our proof of Proposition 1 below relies on
an application of the Laplace expansion for the determinant of a matrix which also underlies the analysis in [30] and
which is, to the best of our knowledge, novel in the context of the CME, as considered here. We begin by recalling
that any non-zero column of the adjoint of M−λ I is an eigenvector of the matrix M, corresponding to the eigenvalue
λ . In the subsequent section, we will apply our approach to the dimerization reaction introduced in Section 2 to obtain
a series expansion (in K) for the matrix of eigenvectors of the transition state matrix defined in Eq. (6).

3.1 Preliminaries
The next (well-known) result on the relationship between a given square matrix and its adjoint matrix follows directly
from Laplace’s expansion of the determinant of a matrix; see, e.g., [3] for a proof.

Lemma 1. For any (square) matrix H,

H ·Adj(H) = det(H)I,

where Adj(H) is the adjoint matrix of H.

In particular, if λ is an eigenvalue of some matrix M, then det(M− λ I) = 0. Hence, by Lemma 1, (M− λ I) ·
Adj(M−λ I) = 0 or M ·Adj(M−λ I) = λ Adj(M−λ I), i.e., every non-zero column of Adj(M−λ I) is an eigenvector
of M. (Here, we note that a non-zero column always exists when λ has geometric multiplicity one; cf. [4].)

3.2 Calculation of adjoint
We now extend “method (B),” as developed in [30], with the aim of obtaining an algorithmic procedure for the calcu-
lation of the adjoint of a given matrix. In [30], the Laplace expansion is applied to adjacency matrices of “chemical”
graphs, i.e., to graphs in which vertices correspond to the atoms in the compound under consideration, while edges
represent chemical bonds between those atoms. However, their results only hold for non-directed graphs; moreover,
they obtain no explicit formula for the sign associated with a given path. By contrast, our extension is valid for directed
graphs, and we do find a simple expression for the corresponding sign, as specified below.
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Remark 5. In the following, we will assume familiarity with basic concepts and notions from graph theory, which we
will not define explicitly here; the reader is referred to [6] for details.

Proposition 1. Let G be the graph with adjacency matrix M, and let A be the adjoint matrix of M−λ I, with λ an
eigenvalue of M. Then,

A[i, j] =


Q(G\{i},λ ) if i = j,

∑
Pi j

(-1)`(Pi j)ω(Pi j)Q(G\Pi j,λ ) otherwise,
(14)

where the sum is calculated over all paths Pi j between the vertices i, j ∈V (G). Here, V (G) is the set of vertices in G,
`(Pi j) denotes the length of (or number of edges in) Pi j, ω(Pi j) is the product of the weights of the edges in Pi j, and
Q(G,λ ) is the characteristic polynomial of the graph G, expressed in terms of λ , with the additional requirement that
Q( /0,x) = 1.

Proof. The proof consists in applying Laplace’s expansion alternatively to the rows and the columns of M−λ I until
the problem is reduced to finding the characteristic polynomial Q(G\Pi j,λ ) of the graph G\Pi j, i.e., the determinant
of the adjacency matrix corresponding to G\Pi j minus λ I.

Since the assertion is trivial when i = j, we only consider the case where i 6= j. Let H := M−λ I; then, we denote
by Hc1,c2,c3,...

r1,r2,r3,... the matrix that is obtained from H by elimination of rows r1,r2,r3, . . . and of columns c1,c2,c3, . . ..
Moreover, we will refer to a particular row or column in the sub-matrix Hc1,c2,c3,...

r1,r2,r3,... not by its index in Hc1,c2,c3,...
r1,r2,r3,... , but

by its original index in the matrix H. (Thus, for instance, when referring to column 2 in matrix H1
1, we actually mean

the first column of that matrix, as H1
1 is obtained from H by elimination of the first row and the first column.)

Now, the (i, j)-th entry A[i, j] of the adjoint matrix A of H equals the cofactor C[ j, i] of H, which is defined as the
determinant of the matrix Hi

j times (−1)i+ j [3]. We apply the Laplace expansion over row i of Hi
j, i.e., over the i-th

row of H. Since the only non-zero terms in that row are the neighbors of vertex i in G, we have

det
(
Hi

j
)
= ∑

x1∼i
(−1)sx1 H[i,x1]det

(
Hi,x1

j,i

)
,

where sx1 is the sum of the actual position of row i and column x1 in matrix Hi
j, with x1 ∼ i denoting the neighboring

vertices of i in G. Moreover, we recall that H[i,x1] is the weight of the edge (i,x1) connecting i and x1.
Let us now fix x1 ∼ i. We again apply Laplace’s expansion over row x1 of Hi,x1

j,i , obtaining

det
(
Hi,x1

j,i

)
= ∑

x2∼x1
x2 6=i

(−1)sx2 H[x1,x2]det
(
Hi,x1,x2

j,i,x1

)
;

here, sx2 is the sum of the actual position of row x1 and column x2 in matrix Hi,x1
j,i .

Iterating this procedure p times gives

det
(
Hi,x1,x2,...,xp−1

j,i,x1,x2,...,xp−2

)
= ∑

xp∼xp−1
xp 6=i,x1,...,xp−2

(−1)sxp H[xp−1,xp]det
(
Hi,x1,x2,...,xp−1,xp

j,i,x1,x2,...,xp−2,xp−1

)
,

where sxp is the sum of the actual position of row xp−1 and column xp in matrix Hi,x1,x2,...,xp−1
j,i,x1,x2,...,xp−2

.
Clearly, performing the above iteration corresponds to following all paths in G that originate from vertex i. We

continue until one of the following two cases occurs:

1. xp = j;

2. the only neighbors of xp are in {i,x1, . . . ,xp−1}.
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In the first case, we have managed to eliminate the same rows and columns i, j,x1, . . . , xp−1, i.e., we have reduced
the problem to finding the determinant of the matrix Hi, j,x1,...,xp−1

i, j,x1,...,xp−1
that corresponds to the characteristic polynomial

Q(G\P,λ ), with P being the path {i,x1, . . . ,xp−1, j}; in other words, we have found one path in the sum in (14). In
the second case, row xp only contains zero terms; thus, the resulting determinant is zero. (An illustration of the above
procedure can be found in Example 1 below.)

Finally, the sign in front of a path P = {x0,x1, . . . ,xd} with x0 := i and xd := j is given by the product (−1)i+ j

∏
d
p=1(−1)sxp . Hence, we need to find i+ j+∑

d
p=1 sxp mod 2. Let us define

mP
β ,γ :=

{
1 when xγ < xβ ,
0 when xβ < xγ

for β ,γ ∈ {0,1, . . . ,d}, and let

HPp :=

{
Hi

j for p = 1,

Hi,x1,x2,...,xp−1
j,i,x1,x2,...,xp−2

for p > 1.

We have already shown that sxp = rPp (xp−1)+ cPp (xp), where rPp (x) and cPp (x) denote the actual row and column
index of x, respectively, in HPp . It is easy to see that

rPp (xp−1) = xp−1−mPp−1,d−
p−2

∑
r=0

mPp−1,r and cPp (xp) = xp−
p−1

∑
r=0

mPp,r.

Summing over all p, we obtain

d

∑
p=1

sxp = i+ j+
d−1

∑
p=1

xp +
d

∑
p=2

xp−1−
d−1

∑
p=0

mPp,d−
d−1

∑
p=1

p−1

∑
r=0

mPp,r−
d

∑
p=1

p−1

∑
r=0

mPp,r.

Taking the result modulo 2, one finds

d

∑
p=1

sxp mod 2≡ i+ j−
d−1

∑
p=0

mPp,d−
d−1

∑
r=0

mPd,r mod 2≡ i+ j+d.

Hence, we have

i+ j+
d

∑
p=1

sxp mod 2≡ d,

which concludes the proof.

Remark 6. Proposition 1 implies, in particular, that the eigenvectors of a matrix M which depends smoothly on a
parameter K and whose eigenvalues are all distinct are C∞ smooth in K: by Section 3.1, any non-zero column of
Adj(M−λ I) yields an eigenvector corresponding to a given eigenvalue λ ; the proposition affirms that every entry of
this adjoint is proportional to a characteristic polynomial which is C∞ smooth in K.

We now illustrate the proof of Proposition 1 by studying a simple example.

Example 1. Consider the matrix

M =


∗ 1 1 0 0
1 ∗ 0 1 0
1 0 ∗ 1 1
0 1 1 ∗ 1
0 0 1 1 ∗
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1

2

3

4

5

Figure 2: Graph G associated to the matrix M defined in Fig. 3. The paths connecting 4 and 1 are given by {4,2,1},
{4,3,1}, and {4,5,3,1}, corresponding to the sub-matrices in (a), (b), and (d), respectively, in Fig. 3. The sub-matrix
in (c) corresponds to the path {4,3,5} and equals zero, since that path does not end in 1.

and its associated undirected graph G, as shown in Fig. 2. (Here, we ignore the values on the diagonal of M, as those
would correspond to “loops” in the graph.) We intend to calculate the term A[4,1], where A := Adj(M); in particular,
retracing the procedure developed in the proof of Proposition 1, we will show that A[4,1] depends on the determinants
of the sub-matrices associated to the graphs G\P for all paths P connecting vertices 1 and 4.

Hence, we need to find the cofactor C14 of M which, by definition, equals the determinant of the topmost matrix
in Fig. 3, ignoring again any greyed-out entries. Applying the Laplace expansion of the determinant over row 4 –
the crossed-out row in that same matrix – we decompose the original determinant into the sum of determinants of
the three sub-matrices (left, center, and right) shown in the second row in Fig. 3; the sign of each term in the sum
depends on the position at which we are applying the cofactor. In the context of the graph G given in Fig. 2, each of
these sub-matrices corresponds to a neighbor of vertex 4, as indicated by a non-zero term in row 4 of M. (Following
the convention in the above proof, we also include greyed-out rows when counting.) Specifically, the circled numbers
represent, respectively, the second, third, and fifth entries in row 4, or, equivalently, vertices 2, 3, and 5 in G. (We
remark that, when considering weighted graphs, each of the determinants involved must additionally be multiplied by
the weight of the corresponding edge.)

Next, we apply another Laplace expansion to each of the three sub-matrices in the second row in Fig. 3 which,
incidentally, do not themselves have any graph-theoretical meaning.

1. Left matrix: we expand the determinant over row 2 and find the one non-zero entry corresponding to vertex 1,
the only remaining neighbor of 2. That is the vertex we intended to reach; in fact, the resulting sub-matrix (a)
in Fig. 3 corresponds to the adjacency matrix of the graph G\ (4,2,1). (We note that all diagonal entries have
fallen into place, since we eliminated rows and columns with the same indices 1, 2, and 4.)

2. Center matrix: expanding over row 3, we find two non-zero values, corresponding to vertices 1 and 5, which are
the remaining neighbors of 3. The cofactor over (3,1) results in sub-matrix (b) in Fig. 3, which is the adjacency
matrix of G \ (4,3,1); again, all diagonal entries are correctly placed. The cofactor over (3,5), on the other
hand, yields sub-matrix (c), whose determinant is 0, since vertex 5 has no neighbors other than the already
considered vertices 4 and 3; thus, its corresponding row only contains zero entries.

3. Right matrix: expanding over row 5, we find that only the third entry is non-zero, which gives the rightmost
matrix in the third row of matrices in Fig. 3. Expanding one more time over row 3, we obtain sub-matrix (d),
which corresponds to the graph G\ (4,5,3,1), i.e., to the vertex 2 itself.

In sum, it is instructive to verify how, in following the above procedure, we have covered all paths between vertices 4
and 1 in the graph G shown in Fig. 2.

While we intend to approximate the “full” eigenvector matrix E that is associated with a given matrix M, the
required computational effort is reduced by the observation that it suffices to determine one column of Adj(M−λ I)
for each eigenvalue λ of M. Moreover, we note that no assumption is made in Proposition 1 on the order (in K) of the
expressions involved in the evaluation of that adjoint; in fact, as we will show below, many of the paths Pi j occurring
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Figure 3: Illustration of the proof of Proposition 1. Our aim is to calculate A[4,1]: greyed-out entries have been
removed from the matrix, crossed-out rows are the ones we are applying the Laplace expansion to, and circled entries
indicate the calculation of a cofactor. The corresponding graph G is shown in Fig. 2.

in Eq. (14) are of higher order and can hence be neglected when applying the (very general) result of the proposition
to the dimerization reaction considered in Section 2.

4 Dimerization revisited

In this section, we apply the results of the previous section to the reaction A+A
k1


k2

B, i.e., to the corresponding transition

state matrix M which is defined in (6). The graph of that reaction, which we shall denote by Gd , is illustrated in Fig. 4.
We remark that there is a natural correspondence between the eigenvalues of the matrix M and the vertices of the

associated graph Gd . In fact, for K = 0, M reduces to a triangular matrix; hence, the n-th eigenvalue λn equals the
element M[n,n] on the diagonal of M which, in turn, corresponds to the n-th vertex in the graph Gd . Similarly, for K >
0, we assign to n ∈ V (Gd) the eigenvalue whose leading-order term is given by M[n,n]; we recall the corresponding
series expansion (in K) for λn, Eq. (13), from Section 2.4.

4.1 Eigenvector matrix
We now discuss how the methodology developed in Section 3 can be applied to approximate (to first order in K) the
matrix of eigenvectors E of the transition matrix M. As the eigenvalues λn of M are distinct, with n = 0,1, . . . ,Ωα , we
have Ωα +1 corresponding eigenvectors; see again Section 2.4.
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(0,Ωα) (2,Ωα−1) (2Ωα−2, 1) (2Ωα, 0)

f (1)K

g(0)

f (2)K

g(1)

f (Ωα− 1)K

g(Ωα− 2)

f (Ωα)K

g(Ωα− 1)

Figure 4: Graph associated to the transition state matrix M defined in Eq. (6). The vertices correspond to all possible
states in the system, while the edges are weighted with the transition probabilities; specifically, the weight of the edge
connecting states i and j equals the probability of going from state j to i. (No edge is drawn when that probability is
zero.) Although this notation may seem counterintuitive, it is consistent with much of the relevant literature; see, e.g.,
[35, 13].

Next, we note that, for each pair of vertices i, j ∈V (Gd), there exists only one pathPi j connecting i and j; cf. Fig. 4.
Hence, the weight ω(Pi j) of that path is given by

ω(Pi j) =
j−1

∏
r=i

ω((r,r+1)) =
j−1

∏
r=i

M[r,r+1] = K j−i
j−1

∏
r=i

f (r+1) for i < j (15)

and by

ω(Pi j) =
i−1

∏
r= j

ω((r+1,r)) =
i−1

∏
r= j

M[r+1,r] =
i−1

∏
r= j

g(r) for i > j. (16)

Remark 7. For i = j, we do not obtain a proper path in Gd , in the sense that we only have a vertex and no edges, which
corresponds to the first case in Eq. (14).

Since we are interested in the asymptotics of ω(Pi j) up to and including first-order terms in K, it is evident from
Eqs. (15) and (16) that we only need to consider the three cases where i = j−1, i = j, and i > j here. We require the
following definition.

Definition 1. Given the eigenvalue λn of M that corresponds to vertex n ∈V (Gd), we define

λ
+
n := λn−

f (n+1)g(n)
g(n+1)−g(n)

K

and

λ
−
n := λn +

f (n)g(n−1)
g(n)−g(n−1)

K.

The definition of λ±n agrees with the expression for λn given in Eq. (12), up to one of the permutations considered
there; specifically, we omit the “right” permutation in λ+

n and the “left” one in λ−n .

Proposition 2. Let i, j∈{1, . . . ,Ωα−1}, and let Si j be the set of vertices Si j = {µ−1,µ,µ+1, . . . ,ν ,ν+1}⊆V (Gd),
where µ = min(i, j) and ν = max(i, j). Then,

Q(Gd \Pi j,λn) = (λ+
µ−1−λn)(λ

−
ν+1−λn)

Ωα

∏
r=0

r/∈Si j

(λr−λn)+o(K). (17)

Proof. The statement follows by adapting the results of Section 2.4 to the graph Gd \ Pi j or, equivalently, to the
characteristic polynomial of that graph. In particular, one finds that any eigenvalue associated with a vertex outside
Si j agrees with the corresponding eigenvalue in Gd , up to and including terms of order K. Similarly, the eigenvalues
λµ and λν have the same O(1) term in Gd and in Gd \Pi j; however, when determining the first-order term in K, one
permutation drops out, as one of the neighboring vertices µ +1 and ν−1, respectively, does not enter the calculation
anymore, leading to the introduction of λ

+
µ−1 and λ

−
ν+1, respectively, and to a discrepancy at O(K).

12



When µ = 0 or ν = Ωα , Eq. (17) is still valid provided that the terms (λ+
µ−1−λn) and (λ−

ν+1−λn), respectively,
are ignored. Hence, defining An := Adj(M−λnI) to be the adjoint matrix of M−λnI and combining the results of
Propositions 1 and 2, we can obtain the eigenvector of M corresponding to λn from the n-th column of An. Normal-

izing the resulting expression by dividing out a common (non-zero) factor of
n−3

∏
r=0

(λr−λn) from An[i,n], denoting the

normalized column by Ãn[i,n], and assuming that n 6= 0,1,Ωα , for simplicity, we find

Ãn[i,n] =



−K f (n)(λ+
n−2−λn)(λ

−
n+1−λn)

Ωα

∏
r=n+2

(λr−λn) if i = n−1;

(λ+
n−1−λn)(λ

−
n+1−λn)(λn−2−λn)

Ωα

∏
r=n+2

(λr−λn) if i = n;

(-1)i−n(λ+
n−1−λn)(λ

−
i+1−λn)(λn−2−λn)

Ωα

∏
r=i+2

(λr−λn)
i−1

∏
r=n

g(r) if n < i < Ωα;

(-1)Ωα−n(λ+
n−1−λn)(λn−2−λn)

Ωα−1

∏
r=n

g(r) if i = Ωα;

o(K) otherwise.

(18)

While Eq. (18) gives Ãn[i,n] in its most compact form, the above expressions still contain terms that are insignificant
to the order considered here, i.e., terms of order K2 and higher. In Appendix A, we quote alternative formulae that are
truncated to O(K) and that are hence more convenient for our purposes; moreover, we treat the cases when n= 0,1,Ωα .

4.2 Inverse eigenvector matrix
In this subsection, we discuss how the inverse E−1 of the matrix of eigenvectors E, as defined in Eq. (8), can be
approximated; to that end, we slightly adapt the approximation developed in the previous subsection.

We begin by observing that the left eigenvector yn of the transition matrix M, corresponding to the eigenvalue λn,
solves the equation

(MT −λnI)yn = 0, with n = 0,1, . . . ,Ωα.

By standard linear algebra [3], E−1 can be determined from the set of the left eigenvectors of M; specifically, E−1 is
the matrix whose rows are suitably normalized versions of these eigenvectors.

Remark 8. For future reference, we note that the vector 1 (as well as any non-zero multiple thereof) is always a left
eigenvector of M.

Given the result of Proposition 1, we need to determine (one column of) the matrix Bn := Adj(MT −λnI), as noted
in Section 4.1. The only difference between the graph corresponding to MT and the one associated with M lies in the
orientation of the edges, which are inverted now. Hence, Eq. (17) remains valid, while the weights of the paths are
again given by Eqs. (15) and (16), albeit with reversed conditions on the index i; correspondingly, we have

ω(Pi j) =
i−1

∏
r= j

ω((r+1,r)) =
i−1

∏
r= j

MT [r+1,r] = Ki− j
i−1

∏
r= j

f (r+1) for i > j

and

ω(Pi j) =
j−1

∏
r=i

ω((r,r+1)) =
j−1

∏
r=i

MT [r,r+1] =
j−1

∏
r=i

g(r) for i < j.
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The only cases of interest are i = j+1, i = j, and i < j. For n 6= 0,Ωα−1,Ωα , we find

B̃n[n, i] =



−K f (n+1)(λ+
n−1−λn)(λ

−
n+2−λn)

n−2

∏
r=0

(λr−λn) if i = n+1;

(λ+
n−1−λn)(λ

−
n+1−λn)(λn+2−λn)

n−2

∏
r=0

(λr−λn) if i = n;

(-1)n−i(λ+
i−1−λn)(λ

−
n+1−λn)(λn+2−λn)

i−2

∏
r=0

(λr−λn)
n−1

∏
r=i

g(r) if 0 < i < n;

(-1)n(λ−n+1−λn)(λn+2−λn)
n−1

∏
r=i

g(r) if i = 0;

o(K) otherwise.

(19)

Here, B̃n[n, i] is obtained from Bn[n, i] by dividing the latter by the non-zero product
Ωα

∏
r=n+3

(λr−λn), in analogy to the

definition of Ãn[i,n]. As was the case in Section 4.1, the above Eq. (19) represents the most compact expression for
B̃n[n, i] which may, however, still contain insignificant (higher-order) terms. We refer the reader to Appendix A for the
solution to order K, as well as for a discussion of the cases where n = 0,Ωα−1,Ωα .

Finally, the inverse matrix E−1 of E is found from Eq. (19) by normalization. The normalizing values can be
determined by multiplication of the matrix that is defined by (18) with the matrix given by (19). The result is a
diagonal matrix, up to terms of order K. Dividing each left eigenvector of M by the corresponding value in that
matrix, we obtain E−1. This normalization procedure can easily be performed numerically for any fixed value of the
non-dimensional parameter Ωα .

5 Numerical validation
We are now ready to construct our approximation to the solution P(t) of the CME, Eq. (5), as defined in (8). (For
illustrative purposes, we restrict ourselves to the example of the dimerization reaction introduced in Section 2; in
Section 6 below, we will indicate how our results can be extended to more general reaction networks.) To that end,
we combine the results of Sections 2.4, 4.1, and 4.2: expanding the eigenvalues of M as in Eq. (13), we construct the
diagonal eigenvalue matrix Λ; applying the expansions from Eqs. (18) and (19), we approximate the corresponding
matrix of eigenvectors E and its inverse E−1, respectively. Substituting into Eq. (8) and retaining terms of at most
order K, we obtain the desired approximate solution.

Remark 9. Remark 6 and the derivation of Eqs. (18) and (19) above imply that both E and its inverse E−1 are C∞

smooth in K, in all of their entries.

In panels (a) and (b) of Fig. 5, we compare the mean M and the variance V , respectively, of the number of monomer
molecules, as calculated from our approximate solution (open circles) and the numerical solution of the CME, Eq. (5)
(solid lines), for a total of 40 monomers and K = 10−7. (Henceforth, we will refer to the latter as the “exact” solution
of (5) for fixed values of Ωα and K.) The two solutions are in excellent agreement – and are, in fact, indistinguishable
on the scale of panels (a) and (b) in Fig. 5 – which strongly supports the validity of our perturbative approach. In panels
(c) and (d) of Fig. 5, we show the corresponding relative error in the mean and the variance, respectively. (Here, the
relative error is equal to the modulus of the absolute error, divided by the exact solution.) We remark that, in both
cases, the relative error grows from zero to some maximum that is achieved at steady state, independently of initial
conditions.

In Fig. 6, we plot the maximum absolute error in the mean and the variance of the number of monomer molecules
– which are denoted by εM and εV , respectively – as a function of K for Ωα equal to 5, 10, and 20. In all cases, the
maximum absolute error scales like O(K2), which is consistent with our first-order truncation of the series expansion
in K for the solution P(t) of the CME, Eq. (5).
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(a) (b)

(c) (d)

Figure 5: Comparison of the graph-based approximation and the exact (numerical) solution of Eq. (5). In panels (a)
and (c), we plot the mean number M of monomer molecules and the relative error in the mean ηM as a function of
time for different initial conditions; panels (b) and (d) show the variance V in the number of monomer molecules and
the corresponding relative error ηV , respectively. The non-dimensional parameter Ωα is fixed to 20, allowing for a
maximum of 40 monomer molecules in the system, while K = 10−7 throughout.
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(a) (b)

Figure 6: Maximum absolute error in the mean (εM) and the variance (εV ) of the number of monomer molecules
as a function of K, as shown in panels (a) and (b), respectively. Here, Ωα is alternatively set to 5 (circles), 10
(crosses), and 20 (diamonds). The maximum error is attained when steady-state conditions ensue; in practice, we
evaluated our approximate probability density at t = 15. The solid, dashed, and dotted lines represent 2

3 · 104K2,
6 ·104K2, and 5 ·105K2 in panel (a) and 104K2, 1

3 ·106K2, and 107K2 in panel (b), respectively. The initial condition
is P(nA = 0, t = 0) = 1 in all cases.
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5.1 Comparison with LNA
As discussed already in Section 2.3, LNA [35, 7] is based on an expansion procedure that is different from the per-
turbative approach developed in this article. Nevertheless, it is still possible to compare the two approaches for fixed
values of the volume Ω, the total semi-concentration α , and the non-dimensional parameter K. A concise derivation
of LNA for the dimerization reaction considered here can be found in Appendix B.

(a) K = 10−2 (b) K = 10−3

(c) K = 10−5 (d) K = 10−7

Figure 7: Relative error ηM in the mean of the number of monomer molecules as a function of time and for different
values of K, as given by our perturbation approach (solid lines) versus LNA (dashed lines). The parameter Ωα is fixed
to 20 throughout. Although LNA performs better most of the time in panels (a) and (b), there is a short time interval
during which our approach is superior. For sufficiently small K, the perturbative approach is more accurate than LNA
for practically all times; see panels (c) and (d). (The sharp dips in the dashed graphs actually go down to zero, but are
truncated here for aesthetic reasons. These dips correspond to times at which the difference between the exact and the
approximate solution changes sign; see also [22].)

In Figs. 7 and 8, we compare the relative error in the mean and the variance that is predicted by the two approaches
for several different values of K; throughout, we set Ωα = 20, i.e., we allow for a maximum of 40 monomer molecules
in the system. We note that the mean concentrations according to LNA are the same as those obtained from the
conventional rate equations. For very small K = O(10−5), our perturbative approach outperforms LNA for practically
all times, as seen in panels (c) and (d) of Figs. 7 and 8; however, for larger values of K = O(10−3), it performs better
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than LNA for short times only. Hence, it can be stated that our approach is always superior to LNA for K sufficiently
small; moreover, this statement is independent of the number of molecules in the system.

(a) K = 10−2 (b) K = 10−4

(c) K = 10−5 (d) K = 10−7

Figure 8: Relative error ηV in the variance of the number of monomer molecules as a function of time and for different
values of K, as given by our perturbation approach (solid lines) versus LNA (dashed lines). The parameter Ωα is fixed
to 20 throughout. Although LNA performs better most of the time in panels (a) and (b), there is a short time interval
during which our approach is superior. For sufficiently small K, the perturbative approach is more accurate than LNA
for practically all times; see panels (c) and (d).

Next, we compare our perturbative expansion for the probability distribution P(nA, t) of the number of monomer
molecules with the approximation given by LNA, cf. Eq. (42), as well as with the distribution obtained from the
standard stochastic simulation algorithm (SSA) [16]. (We note that, in all three cases, the height of the histogram for
fixed nA is calculated by integrating the corresponding density over the range nA− 1 to nA + 1; as indicated also in
Appendix B, the continuous probability distribution resulting from LNA is discretized by this procedure and, hence,
becomes directly comparable to the other two (discrete) distributions.) The result is shown in Fig. 9 for K fixed to
10−4 and three different values of t, the choice of which is motivated by the very fast convergence to steady state that
is observed in the context of the probability distribution, as opposed to the moments considered earlier. We find that
LNA is inaccurate both at short times and at long times, as seen in panels (a) and (c), while it performs reasonably
well at intermediate times, as shown in panel (b); by contrast, our graph-based approximation achieves a uniformly
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high accuracy throughout. The poor performance of LNA in this scenario is due to the fact that it predicts a Gaussian
monomer distribution for all times, whereas the true distribution is highly skewed and non-Gaussian whenever the
mean number of monomer molecules is close to the two natural boundaries, i.e., to zero and to the total number of
monomers in the system.

Our findings are validated by Fig. 10, where we show the Kullback-Leibler (K-L) divergence [5] of our approach
(dashed line) and of LNA (solid line) with respect to the distribution obtained from SSA as a function of time. (For
consistency with Fig. 9, we have again taken K = 10−4, and we have assumed that no monomer molecules are present
initially.) One observes that, for all times, the K-L divergence is significantly lower for our graph-based methodology
than it is for LNA; correspondingly, for small values of K, the difference between the probability distribution predicted
by our approach and the true solution of the CME, Eq. (2), is much smaller than the difference between the probability
distribution predicted by LNA and the true solution.

Since, on the other hand, our methodology is perturbative, its accuracy deteriorates with increasing K, as illus-
trated in panel (a) of Fig. 11: when K is not sufficiently small, our series expansion for the distribution P(nA, t) may
become inconsistent; in other words, it may predict negative probabilities. Such inconsistencies are well-known in the
literature, see, e.g., [21] and the references therein for details: in general, the asymptotic expansion of a probability
distribution is not a distribution itself and, hence, does not satisfy the non-negativity conditions required of the latter.
Nevertheless, our approach can still yield a decent approximation for “intermediate” values of K when t is small, as
seen in panel (b) of Fig. 11.

Remark 10. We note that the derivation of LNA in Appendix B is based on the original (dimensional) CME, Eq. (2),
as is conventional, rather than on its non-dimensionalized equivalent in (4). In order to avoid a rescaling of time
when comparing LNA with our approach, we have chosen k2 = 1 throughout this section. (Clearly, the value of k2 is
irrelevant for the remainder of our analysis, as only the non-dimensional parameter K is considered.)
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(a) t = 0.05 (b) t = 0.7

(c) t = 3

Figure 9: Comparison between the probability distribution obtained from SSA (histogram), our perturbative approach
(squares), and LNA (crosses) for Ωα = 20 and K = 10−4 fixed and three points in time. (The initial condition is set
to nA = 0 in all cases.) Our methodology agrees with SSA on the scale of the figure for small times, as seen in panel
(a). As the distribution approaches steady state, the quality of the approximation decreases; yet, it still exceeds the
accuracy achieved by LNA, as shown in panel (c).
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Figure 10: Kullback-Leibler (K-L) divergence of our approach (dashed line) and LNA (solid line) with respect to the
distribution obtained from SSA, with 2 · 105 trajectories; here, we have fixed Ωα = 20 and K = 10−4, and chosen
nA = 0 initially throughout. We observe that the K-L divergence of our approach is lower for all times.

(a) K = 10−2 (b) K = 1
6 ·10−2

Figure 11: Comparison between the distribution obtained from SSA (histogram), our perturbative approach (squares),
and LNA (crosses) for Ωα = 20 and t = 1 fixed and two different values of K. (As before, we assume that, initially,
nA = 0.) In panel (a), we have joined individual points with lines – dotted for our approach and dashed for LNA – to
guide the reader’s eye.
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6 General reaction networks
In this section, we briefly discuss how the graph-based approach developed in this article can be extended from
the bimolecular (dimerization) reaction studied in Section 4 to more general sets of chemical reactions; an in-depth
investigation will be the topic of an upcoming publication. We begin by noting that the CME for a continuous-in-time
Markov chain will be of the general form

d
dt
P(n, t) = ∑

n′∼n

{
W (n|n′)P(n′, t)−W (n′|n)P(n, t)

}
, (20)

where W (n′|n) and W (n|n′) denote the transition probabilities of going from state n to n′ and from state n′ to n,
respectively; see, e.g., [35] for details.

We shall impose the following four conditions:

(A) the stochastic process described by the CME, Eq. (20), can only contain a finite number of states;

(B) the CME, Eq. (20), can be non-dimensionalized so that the resulting equation depends on a unique small (non-
dimensional) parameter K;

(C) the corresponding transition matrix M can be written as M = M0 +KM1, where M0 is lower triangular (possibly
after a relabeling of states);

(D) the weight of cycles of length 2 in M is Θ(K) (of exact order K), while cycles of length greater than 2 carry a
weight of o(K).

Remark 11. Condition (A) is imposed to ensure that Eq. (20) has a representation in matrix form, with a finite-
dimensional transition matrix M, and to avoid that the number of molecules of some species may become so large
as to render the perturbation in K inconsistent; cf. condition (B). However, when condition (A) is not met, it is
still possible to study open reaction networks – and the associated unbounded graphs G – either by applying our
methodology to a truncation of G, or by modeling explicitly the corresponding external system and the interaction (via
diffusion) between the two; see also [31].

Condition (B) is usually satisfied when considering reaction networks in very large or very small volumes, even if
more than two reaction rates are involved: conveniently, the reaction volume is often simultaneously relevant to many
reactions in a system. Hence, it sometimes suffices to fix all rate constants, and to take the limit of Ω going to zero or to
infinity to obtain a unique small parameter and, thus, a separation of scales. Alternatively, letting several rate constants
tend to infinity or to zero usually results in the presence of more than one small parameter in the system; thus, a fixed
direction in parameter space must be imposed in that case for our approach to be applicable. Details can be found in
Appendix C below; while we expect that most physically relevant reaction networks will satisfy condition (B) (at least
in some parameter regime), a general characterization is beyond the scope of this article.

Condition (C) is equivalent to requiring that the graph associated to the “fast system” – which, incidentally, has
the adjacency matrix M0 – is acyclic.

Finally, condition (D) will allow us to consider only cycles of length 2 when deriving the first-order asymptotics
(in K) of solutions to the non-dimensionalized CME that is obtained from Eq. (20). While this last condition is not
indispensable, it does allow for remarkable simplifications in the analysis.

In sum, the above set of conditions is certainly sufficient to ensure the applicability of the graph-based methodology
developed in this article; however, we do not expect it be be optimal, or even minimal. We again refer the reader to
Appendix C, where the verification of conditions (A) through (D) is sketched for two examples of reaction networks
that involve enzyme catalysis.

Now, any given network generates a weighted graph G whose vertices represent all attainable states in the network,
and which we label as in the definition of the matrix M in Section 2.2; the weights of the edges in that graph correspond
to the entries of its adjacency matrix M. Thus, e.g., the dimerization reaction discussed in detail in this article generates
the graph shown in Fig. 4. (Entries on the diagonal of the matrix M defined in (6) are omitted in that figure.)
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6.1 Eigenvalue expansion
In our perturbation expansion for the eigenvalues of the transition state matrix M in Section 2.4, we only employed
algebraic considerations. The generalization of that expansion to potentially complex reaction processes will need
to rely more heavily on concepts from graph theory [6]; recall Remark 3. In this subsection, we give a preliminary
discussion, and we outline some potential challenges.

Because of condition (C), the constant terms in the expansion for each of the eigenvalues of M are found on the
diagonal of M0; these terms are obtained by imposing K = 0 and by noting that the determinant of a triangular matrix
is the product of its diagonal entries. For K > 0, one can again associate the n-th eigenvalue λn of M with the vertex
labeled n. When calculating the determinant in (10) to determine the O(K) term in the expansion for λn, only the
permutations σn,n′ := (nn′) with n ∼ n′ and the identity will contribute, leading to the following generalized version
of Eq. (11):

det(Mλ ) = ∏
n∈V (G)

{
M0[n,n]−a0 +K(M1[n,n]−a1)

}
− ∑

n,n′∈V (G)
n′∼n

M[n,n′]M[n′,n] ∏
m 6=n,n′

(M0[m,m]−a0). (21)

In sum, the first-order asymptotics (in K) of the n-th eigenvalue λn of M can thus be obtained via the same reasoning
as was applied in the derivation of Eq. (13). For simplicity, and without loss of generality, we restrict ourselves to the
case where all eigenvalues of the “singular” transition matrix M0 are distinct:

Proposition 3. Let conditions (A), (B), (C), and (D) be satisfied, and let G be the graph with adjacency matrix M.
Moreover, let all eigenvalues of M0 be of multiplicity one. Then,

λn = M0[n,n]+KM1[n,n]− ∑
n′∼n

M[n,n′]M[n′,n]
M0[n′,n′]−M0[n,n]

+o(K). (22)

(We note that the third term in (22) is of order K, by condition (C), as well as that M0[n′,n′] 6= M0[n,n] for n′ ∼ n
and, hence, that the expansion in (22) is always well-defined; the proof is omitted here.)
Remark 12. Whenever two eigenvalues of M – λm and λn, say – agree to leading order, the first product in Eq. (21)
will not produce a term of order K, since M0[m,m]−am

0 = 0 = M0[n,n]−am
0 . Consequently, the system of (algebraic)

equations in (21) which determines the asymptotics of these eigenvalues needs to be closed at higher order (in K) in
that case, resulting in a generalised version of Eq. (22).

6.2 Eigenvector matrix
We shall impose conditions (A) through (D), as stated above; additionally, we again assume that all eigenvalues of M0
are distinct. By continuity, it then follows that the transition state matrix M also has no multiple eigenvalues – at least
when K is sufficiently small – which guarantees, in particular, that a non-zero column exists in the adjoint matrix of
M−λ I; cf. Section 3.1. (In practice, one typically does not require K to be “too small.”)

Under these assumptions, we may extend the analysis of Section 3 to generalized reaction networks by applying
again Proposition 1; hence, given some path P in G, it remains to determine both the characteristic polynomial
Q(G\P,λ ) and the weight ω(P) of P .

To obtain an expression for Q(G\P,λ ), we essentially have to rederive Proposition 2 in this more general setting.
To that end, we first need to generalize Definition 1: recalling that, under condition (C), each vertex n ∈ V (G) of G
corresponds uniquely to an eigenvalue λn of M, we have

Definition 2. Let P be a path in G, let n ∈ V (G) such that n ∼ n′ for some n′ ∈ P , and let λn be the eigenvalue
corresponding to vertex n. Then, we define

λ
P
n := λn + ∑

n′∈P
n′∼n

M[n,n′]M[n′,n]
M0[n′,n′]−M0[n,n]

. (23)
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In other words, λPn is equal to λn (up to first-order terms in K) minus all terms corresponding to permutations that
exchange n with an index in P . (We remark that these terms are negative, which implies the change in sign in (23), as
compared to Eq. (22).)

In analogy to Proposition 2, we thus obtain

Proposition 4. Let the conditions of Proposition 1 be satisfied, let P be a path in G, and let SP := {m′ ∈V (G) : m′ ∼
m,m ∈ P}. (Here, we note that P ⊆ SP .) Then,

Q(G\P,λn) = ∏
m′∈SP\P

(λPm′ −λn) ∏
m′ /∈SP

(λm′ −λn)+o(K).

Remark 13. As was the case for the dimerization reaction discussed in Section 4, the eigenvalues of G \P differ
from the corresponding eigenvalues in G only due to permutations dropping out following the elimination of vertices
associated with P . Hence, for some values of n, the eigenvalue λn will have to be replaced with λPn in the resulting
characteristic polynomial.

Finally, the weight ω(P) of a given path P depends on the topology of the graph G and must be determined on a
case-by-case basis. Since chemical reaction networks typically result in very regular graphs, it is usually possible to
obtain closed-form formulae for ω(P). Naturally, the more complex the network is, the more difficult it is to derive
such formulae.

In sum, one thus finds the desired approximation for the matrix of eigenvectors E that is associated with the
transition state matrix M. The inverse E−1 of the matrix E can be approximated in an analogous fashion, based on
conditions (A) through (D); we omit the details here.

7 Conclusions and outlook
In the present article, we have solved the chemical master equation (CME), Eq. (5), which describes the dimerization

reaction A+A
k1


k2

B, by applying a novel graph-based approach to approximate the matrix of eigenvectors E of the cor-

responding transition matrix M, as well as the inverse E−1 of that matrix; recall Eqs. (18) and (19). In Section 5, we
have then compared our results with those obtained by direct matrix exponentiation, by the linear-noise approximation
(LNA), and by the standard stochastic simulation algorithm (SSA) [16], and we have discussed strengths and weak-
nesses of our approach. Throughout, we have found the error incurred by our expansion for the probability distribution
P(t) to be O(K2), which is consistent with a truncation at first order in K.

In particular, we have shown that our approach outperforms LNA for all times as long as the perturbation parameter
K is sufficiently small; for larger values of K, there still exists some time interval – well away from steady state –
during which LNA is inferior. However, if K is “too large,” our approximation predicts negative probabilities, which is
indeed a general feature of perturbative techniques for approximating probability distribution functions [21]. Hence,
admittedly, LNA performs reasonably well for “intermediate” values of both K and time t in the dimerization reaction
considered here. However, we do not necessarily expect this conclusion to hold for more general reaction networks,
in which our expansion may well remain consistent for larger K; a precise characterization is left for future research
[18, 20].

One could still ask oneself why it might not be preferable to evaluate the explicit solution for P in (8) by direct
matrix exponentiation. While the latter approach – which also involves the construction of the eigenvalue matrix Λ,
as well as of the associated eigenvector matrices E and E−1 – is conceptually straightforward, preliminary numerical
experiments suggest that both the involved computational effort and the execution time exceed those required by our
graph-based methodology. Thus, for instance, taking Ωα = 20 and K = 10−6, and setting the machine precision to
10−18 – which ensures that the error incurred by the two approaches is comparable – resulted in an execution time
of less than half a second for our methodology, as compared to more than 6 seconds for matrix exponentiation, on
an Intel Pentium R© Dual-Core CPU T4500 running at 2.30 GHz with 3.00 GB of RAM, and averaged over 100 trials.
However, our experiments relied on a brute-force implementation of matrix exponentiation that made use of built-in
(“black-box”) routines provided by computer algebra packages such as MAPLE, which was used in the illustrative
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example above. Hence, a more sophisticated (theoretical) analysis of the computational cost incurred by the two
approaches is due before a definitive assessment can be made; see, e.g., [32] and the references therein.

Alternatively, one could apply standard numerical integration techniques (such as Runge-Kutta) instead of matrix
exponentiation to approximate the solution of the CME, Eq. (5), thus bypassing entirely the evaluation of the matrix
product in (8) and reducing significantly the resulting computational effort. However, comparing the error incurred
by the Fehlberg fourth-fifth-order Runge-Kutta method with degree four interpolant [9] against the solution calculated
both by matrix exponentiation and via the graph-based approach developed in this article, we found that Runge-Kutta
presents a markedly larger error during the initial (transient) phase, i.e, before steady-state conditions set in. Again,
further investigation – and, in particular, a systematic comparison with more advanced numerical techniques [33] – is
required in order to assess authoritatively the accuracy provided by our methodology, as compared to these alternative
approaches.

Finally, numerous “spectral” techniques have been suggested for the solution of the CME; for instance, Walczak
et al. [36] studied reaction cascades by introducing generating functions which are then projected onto the eigenbasis
of an appropriately defined “uncoupled” cascade. The projected equations can be solved, and the solution transformed
back, to yield approximate joint probability distributions. Since that approach is not perturbative, unlike ours, it does
not require the presence of a small parameter. However, it is assumed that there are no feedback “loops” in the cascade,
the eigenbasis that is employed differs from ours, and the technique is applied to a generating function instead of to
the CME itself. Hence, our methodology seems more general than theirs in some ways, yet more restrictive in others.

A definite advantage of the graph-based perturbation approach developed here lies in the fact that we have ob-
tained an approximation for P(t) which is cheap to evaluate for varying values of the system parameters once the
(non-dimensional) parameter Ωα has been fixed. By contrast, any numerical solution of the CME can only give an
approximation for fixed values of both Ωα and K. Similarly, our approximation can easily be evaluated at any point in
time, which allows us to avoid a time-step discretization and, hence, the resulting error that is necessarily incurred by
numerical integration techniques. Compared with SSA, on the other hand, our approach benefits from the fact that it
is not Monte-Carlo based, i.e., that no repeated sampling is necessary to achieve the desired level of accuracy; rather,
the quality of our approximation can be improved instantaneously simply by taking the parameter K to be sufficiently
small.

Our graph-based approach has its own limitations, of course, two of which can be summarized as follows:

(1) While we have found a suitable condition (“condition (D)” in Section 6) that allows us to avoid having to
consider “too many” cycles in the calculation of the eigenvalues of the transition state matrix M, we are still
forced to account for all paths with constant weight when approximating the corresponding eigenvectors. (We
cannot impose a condition to avoid such paths entirely, as chemical reaction networks always contain them.)

(2) The evaluation of the product of the eigenvector matrix E, the exponential of the eigenvalue matrix Λ, and the
inverse E−1 of E – and, indeed, the normalization that is involved in approximating the matrix E−1 itself, by
Section 4.2 – can only be performed once Ωα has been fixed, which implies that no closed-form formula is
available for the probability distribution P(t) in Eq. (8).

To address the first point, we shall in the future investigate systematically the intrinsic structure of networks corre-
sponding to chemical reaction processes; even so, the complexity involved in determining all possible paths between
any two states in a network will realistically limit the applicability of our approach to small sets of reactions, as well
as to those that exhibit additional structural properties. In order to tackle the second issue, we shall try to combine
Proposition 1 with results obtained in [29], where a cofactor-dependent solution is found by application of the Laplace
transform.

Another natural topic for future research concerns the question of how our approach can be extended to more
general sets of chemical reactions. In Section 6, we have obtained some preliminary results in that direction; further
investigation is required to identify suitable conditions on the associated graphs and, in particular, to improve on the
conditions (A) through (D) imposed there. Thus, for instance, it might be feasible to omit condition (D) as long as any
cycles of constant weight that occur in the graph associated with a given reaction process are “sufficiently short” and
as long as the corresponding network structure is “reasonably regular;” recall Remark 11. The formulation of precise
criteria is currently being investigated.
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Appendix A Eigenvector formulae
In this appendix, we give complete formulae for the eigenvectors of the transition matrix M for any value of n =
0,1, . . . ,Ωα , with Ωα > 1; in particular, we include the special cases where n = 0,1,Ωα , which were omitted in
Section 4.1. Then, we quote the corresponding (less compact) expressions that are obtained by retaining only asymp-
totically relevant terms, i.e., terms up to and including O(K), in these formulae. (We recall that, given an eigenvalue
λn of M, the n-th column An[i,n] of the adjoint matrix An yields an associated eigenvector, which is then normalized
to Ãn[i,n]; cf. again Section 4.1.)

1 < n < Ωα :

Ãn[i,n] =



−K f (n)(λ+
n−2−λn)(λ

−
n+1−λn)

Ωα

∏
r=n+2

(λr−λn) if i = n−1;

(λ+
n−1−λn)(λ

−
n+1−λn)(λn−2−λn)

Ωα

∏
r=n+2

(λr−λn) if i = n;

(-1)i−n(λ+
n−1−λn)(λ

−
i+1−λn)(λn−2−λn)

Ωα

∏
r=i+2

(λr−λn)
i−1

∏
r=n

g(r) if n < i < Ωα;

o(K) otherwise.

(24)

n = 0 :

Ãn[i,0] =



(λ−1 −λ0)
Ωα

∏
r=2

(λr−λ0) if i = 0;

(-1)i(λ−i+1−λ0)
Ωα

∏
r=i+2

(λr−λ0)
i−1

∏
r=0

g(r) if 0 < i < Ωα;

o(K) otherwise.

(25)

n = 1 :

Ãn[i,1] =



−2K(λ−2 −λ1)
Ωα

∏
r=3

(λr−λ1) if i = 0;

(λ+
0 −λ1)(λ

−
2 −λ1)

Ωα

∏
r=3

(λr−λ1) if i = 1;

(-1)i−1(λ+
0 −λ1)(λ

−
i+1−λ1)

Ωα

∏
r=i+2

(λr−λ1) if 1 < i < Ωα;

o(K) otherwise.

(26)

n = Ωα :

Ãn[i,Ωα] =


−K f (Ωα)(λ+

Ωα−2−λΩα) if i = Ωα−1;
(λ+

Ωα−1−λΩα)(λΩα−2−λΩα) if i = Ωα;
o(K) otherwise.

(27)

26



Considering only the relevant terms in the above formulae, we find

1 < n≤Ωα :

Ãn[i,n] =



2K f (n)(Ωα−n)! if i = n−1;

2(Ωα−n)!
{

1−2K
[
2(Ωα)2 +(4n2−6n+6)Ωα−4n3 +6n2−15n+10

]}
if i = n;

(-1)i−n
(

Ωα−n
Ωα− i

)
(Ωα−n)!×{

2−K
[

8(Ωα)2 +4Ωα

(
2n2−3n−2i+6+

n(2n−1)
i−n+1

)
−4
(

2n3−n2−2(i−8)n−2i−10+
n(2n−1)(n−1)

i−n+1

)]}
if i > n;

o(K) otherwise.

(28)

n = 0 :

Ãn[i,0] =


(Ωα)!−4KΩα(Ωα−1)(Ωα)! if i = 0;

(-1)i
(

Ωα

Ωα− i

)
(Ωα)!

[
1−4K(Ωα−1)(Ωα− i)

]
if i > 0;

o(K) otherwise.

(29)

n = 1 :

Ãn[i,1] =


−2K(Ωα−1)! if i = 0;
−(Ωα−1)!+4K(Ωα−1)(Ωα +1)(Ωα−1)! if i = 1;

(-1)i
(

Ωα−1
Ωα− i

)
(Ωα−1)!

{
1−K

[
4(Ωα)2−4iΩα +2

i+1
i

Ωα +8i−12
]}

if i > 1;

o(K) otherwise.

(30)

Remark 14. We note that the particular case where n = Ωα , as given in Eq. (27), is contained in the more general
Eq. (28), after simplification of the latter.

Similarly, we obtain the following formulae for the n-th row of the adjoint Bn of MT −λnI introduced in Section 4.2
or, rather, for the normalized version B̃n[n, i]; here, we again assume n = 0,1, . . . ,Ωα , with Ωα > 1.

1≤ n < Ωα−1 :

B̃n[n, i] =



−K f (n+1)(λ+
n−1−λn)(λ

−
n+2−λn)

n−2

∏
r=0

(λr−λn) if i = n+1;

(λ+
n−1−λn)(λ

−
n+1−λn)(λn+2−λn)

n−2

∏
r=0

(λr−λn) if i = n;

(-1)n−i(λ+
i−1−λn)(λ

−
n+1−λn)(λn+2−λn)×

i−2

∏
r=0

(λr−λn)
n−1

∏
r=i

g(r) if 0 < i < n;

(-1)n(λ−n+1−λn)(λn+2−λn)
n−1

∏
r=i

g(r) if i = 0;

o(K) otherwise.

(31)

n = 0 :

B̃n[n, i] =

−2K(λ−2 −λ0) if i = 1;
(λ−1 −λ0)(λ2−λ0) if i = 0;
o(K) otherwise.

(32)
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n = Ωα−1 :

B̃n[Ωα−1, i] =



−K f (Ωα)(λ+
Ωα−2−λΩα−1)

Ωα−3

∏
r=0

(λr−λΩα−1) if i = Ωα;

(λ+
Ωα−2−λΩα−1)(λ

−
Ωα
−λΩα−1)

Ωα−3

∏
r=0

(λr−λΩα−1) if i = Ωα−1;

(-1)Ωα−1−i(λ+
i−1−λΩα−1)(λ

−
Ωα
−λΩα−1)×

i−2

∏
r=0

(λr−λΩα−1)
Ωα−2

∏
r=i

g(r) if 0 < i < Ωα−1;

(-1)Ωα−1(λ−
Ωα
−λΩα−1)

Ωα−2

∏
r=i

g(r) if i = 0;

o(K) otherwise.

(33)

n = Ωα :

B̃n[Ωα, i] = 1. (34)

In particular, the expression for n = Ωα is obtained by observing that none of the remaining expressions for B̃n[n, i]
equals the vector 1 (or a multiple thereof). Hence, by Remark 8, we may take the last row to equal 1, after normaliza-
tion.

In sum, considering only asymptotically relevant terms for Ωα > 2, we have

0≤ n < Ωα−1 :

B̃n[n, i] =



4K(-1)n−1(2n+1)(n+1)! if i = n+1;

(-1)nn!
{

2−4K
[
(4n2 +6n+9)Ωα− (4n3 +6n2 +17n+14)

]}
if i = n;

(-1)n−1 n!
(n− i+1)!

(Ωα− i)!
(Ωα−n)!

{
2(i−n−1)

+4K
[(

2n3− (2i−5)n2 +(i+12)n−2i2−6i+9
)
Ωα−2n4

+(2i−5)n3− (i+20)n2 +(2i2 +14i−31)n+14(i−1)
]}

if 1≤ i < n;

2(-1)n (Ωα)!
(Ωα−n)!

{
1−2K

[
(2n2 +3n+9)Ωα

−(2n3 +3n2 +17n+14)
]}

if i = 0;
o(K) otherwise.

(35)

n = Ωα−1 :

B̃n[Ωα−1, i] =



2K(-1)Ωα−2(2Ωα−1)(Ωα)! if i = Ωα;
(-1)Ωα−1(Ωα−1)!

[
1−4K(2Ωα−1)(Ωα−1)

]
if i = Ωα−1;

(-1)Ωα−1(Ωα−1)!
{

Ωα− i−2K
[
2(Ωα)3

−(2i+5)(Ωα)2 +3(3i+1)Ωα−2i(i+2)
]}

if 0 < i < Ωα−1;

(-1)Ωα−1(λ−
Ωα
−λΩα−1)

Ωα−2

∏
r=i

g(r) if i = 0;

o(K) otherwise.

(36)

n = Ωα :

B̃n[Ωα, i] = 1. (37)

Remark 15. The particular case of n = 0 in Eq. (32) is contained in the more general Eq. (35); cf. also Remark 14
above.
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Finally, we note that the restriction to Ωα > 2 is necessary to ensure that the products in Eq. (33) remain well-
defined. When Ωα = 2, particular care has to be taken when evaluating the latter; still, one can show that, while
B̃1[1,1] =−1+12K in that case, the above formulae for the remaining rows B̃n[n, i] continue to be valid.

Appendix B Derivation of LNA
In Section 5.1, we compared the error incurred by LNA with the accuracy that is achieved by our perturbative approach.
In this appendix, we present a concise derivation of LNA for the dimerization reaction on which our comparison was
based.

Let φ(t) and ψ(t) represent the concentrations of molecules of A and B, respectively, at time t. Then, the conven-

tional rate equations [28] for the reaction scheme A+A
k1


k2

B are given by

d
dt

φ(t) =−2k1φ(t)2 +2k2ψ(t),

d
dt

ψ(t) = k1φ(t)2− k2ψ(t).

Assuming that φ(0) = 0, i.e., that the initial concentration of A is zero, we find

φ(t) =
4α[e(c−1)t −1]

c[e(c−1)t +1]−2
, (38)

ψ(t) = 2α−φ(t) (39)

for the time-dependent solution of this pair of coupled differential equations, where

c := 1+

√
1+16

k1

k2
α;

in particular, the conservation law in (39) implies ψ(0) = 2α .
Now, the CME for the dimerization reaction, Eq. (2), can be rewritten as

d
dt
P(nA,nB, t) =

k1

Ω

[
E2

AE−1
B −1

]
nA(nA−1)P(nA,nB, t)+ k2

[
E−2

A EB−1
]
nBP(nA,nB, t), (40)

where E i
n j

is the step operator defined by

E i
n j

f (n1,n2, . . . ,n j, . . . ,nd) = f (n1,n2, . . . ,n j + i, . . . ,nd).

The principal idea underlying LNA is to make the following change of variables [20] in (40):

nA = Ωφ(t)+Ω
1/2

ξ (t) and nB = Ωψ(t)+Ω
1/2

η(t).

(Typically, one assumes deterministic initial conditions, i.e., one sets ξ (0) = 0 and η(0) = 0.) The above ansatz has the
effect of transforming all functions of nA and nB into functions of the continuous random variables ξ and η , leading to
a series expansion of Eq. (40) in powers of Ω1/2. The derivation is carried out for general chemical reaction networks
in [20]; we simply quote the result here, as applied to dimerization:

∂

∂ t
Π = [4k1φ(t)+ k2]

∂

∂ξ
(ξ Π)+

1
2
[4k1φ(t)+4k2α−2k2φ(t)]

∂ 2

∂ξ 2 Π+O(Ω−1/2), (41)

where Π := Π(ξ , t) := P(nA, t) denotes the reduced distribution, rewritten in terms of nA only. (We note that we have
also applied the conservation law from Eq. (39) in (41) to eliminate η , as ξ +2η = 0, as well as that the above initial
conditions correspond to assuming P(nA = 0, t = 0) = 1; recall Section 5.) The above equation is the Fokker-Planck

29



approximation to the CME; as its drift and diffusion coefficients are linear in ξ , it admits a Gaussian solution at all
times.

Multiplying Eq. (41) by ξ and integrating, we find a differential equation for the mean 〈ξ 〉,

d
dt
〈ξ 〉=−[4k1φ(t)+ k2]〈ξ 〉,

which, due to the deterministic initial condition ξ (0) = 0, implies 〈ξ 〉= 0 for all times. Equivalently, we have

〈nA〉= Ωφ(t)+O(Ω−1/2) and 〈nB〉= Ωψ(t)+O(Ω−1/2).

Hence, the mean concentrations obtained from LNA are identical to those obtained from the conventional rate equa-
tions.

The advantage of LNA lies in the resulting simple expression for the second moment 〈ξ 2〉 of the distribution:
multiplying Eq. (41) by ξ 2 and integrating with respect to ξ , we find the ordinary differential equation

d
dt
〈ξ 2〉=−2[4k1φ(t)+ k2]〈ξ 2〉+4k1φ(t)2 +2k2ψ(t),

which is known as the Lyapunov equation. In particular, the variance in the number of monomer molecules is then
given by 〈n2

A〉−〈nA〉2 = Ω(〈ξ 2〉−〈ξ 〉2) = Ω〈ξ 2〉, which implies

p(x, t) =
1√

2πΩ〈ξ 2〉
exp
[
− 1

2

(x−Ωφ(t)√
Ω〈ξ 2〉

)2]
for the (continuous) probability density function that is obtained from LNA. Finally, to determine a corresponding
discrete probability distribution for a given state nA, we need to integrate p over a neighborhood of width 1 around that
state:

P(nA, t) =
∫ nA+1

nA−1
p(x, t)dx. (42)

Appendix C Additional examples
In this appendix, we present two additional examples to which the graph-based approach developed in this article
can be applied. Given the motivational character of the following discussion, we omit much of the detail; rather, our
intention is to show that conditions (A) through (D) imposed in Section 6 can be verified in a straightforward fashion.

C.1 Cooperative catalysis: case I
We first consider the catalytic mechanism that is described by [8]

S+E
k1


k2

C0
k3−→E +P,

S+C0
k4


k5

C1
k6−→C0 +P; (43)

here, S, E, and P are substrate, (free) enzyme, and product, respectively, while C0 and C1 denote the two intermediate
complexes.

As there is no input of molecules into the above network, condition (A) is trivially satisfied.
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Next, dividing the CME that corresponds to the reaction scheme in (43) by k2, rescaling time, and abusing notation
to denote the new non-dimensional time by t, as before, we obtain

d
dt
P(nS,nE ,nC0 ,nC1 ,nP, t) =K

(
ESEEE−1

C0
−1
)
nS nEP(nS,nE ,nC0 ,nC1 ,nP, t)

+
(
E−1

S E−1
E EC0 −1

)
nC0P(nS,nE ,nC0 ,nC1 ,nP, t)

+
k3

k2

(
E−1

E EC0E−1
P −1

)
nC0 P(nS,nE ,nC0 ,nC1 ,nP, t)

+K
k4

k1

(
ESEC0E−1

C1
−1
)
nS nC0 P(nS,nE ,nC0 ,nC1 ,nP, t)

+
k5

k2

(
E−1

S E−1
C0

EC1 −1
)
nC1 P(nS,nE ,nC0 ,nC1 ,nP, t)

+
k6

k2

(
E−1

C0
EC1E−1

P −1
)
nC1P(nS,nE ,nC0 ,nC1 ,nP, t) (44)

for K := k1
k2Ω

, where E i
n j

is the step operator defined in Appendix B. Thus, condition (B) holds in the limit as K→ 0.
The “fast” transition matrix M0, i.e., the matrix corresponding to the “fast” subsystem

S+E←−C0 −→ E +P,

S+C0←−C1 −→C0 +P

in the reaction scheme defined by (43), is lower triangular, since the associated graph is acyclic; hence, condition (C)
is satisfied.

Finally, we need to show that condition (D) is met. Each reversible reaction in the scheme in (43) generates cycles
of any even length 2d and weight Θ(Kd) (as long as they are compatible with the initial condition), since for each “fast”
reaction, the reverse reaction is “slow,” and vice versa. Hence, the weight of cycles of length two is Θ(K), whereas
it is o(K) otherwise. It only remains to prove that there can be no other cycles, i.e., cycles that involve one of the
irreversible reactions. Now, each reaction R in the system is associated to a vector vR, which is given by the negative
of the difference between a given state and the state of the system after R has occurred. Clearly, the corresponding
reverse reaction −R satisfies v−R = −vR. In our case, these vectors, arranged in columns in a stoichiometric matrix
and excluding reverse reactions, are given by 

1 0 1 0
1 1 0 0
−1 −1 1 1
0 0 −1 −1
0 1 0 1

 . (45)

(Here, the entries in each column correspond to the number of molecules of substrate, enzyme, complexes 0 and 1, and
product, in that order.) A necessary condition for the existence of a cycle is for a linear combination of the columns of
the above matrix to be zero. However, since the nullspace of (45) is generated by the vector (1,−1,−1,1), any such
cycle would have to contain at least one of the reactions P+E −→C0 or P+C0 −→C1; as neither of the two occurs
in (43), we have verified (D).

Remark 16. We note that we implicitly assume k4
k1

to be constant as K→ 0 in (44), which imposes a direction in the

parameter plane (K,K k4
k1
). As that limit can be realised by fixing the rate constants in the reaction and by increasing

the volume Ω, the direction taken is mathematically justified. (In practice, we require k1 ≈ k4, k2 ≈ k3 ≈ k5 ≈ k6, and
Ω� k1

k2
.)

C.2 Cooperative catalysis: case II
In general, it may be necessary to study the reaction scheme in (43) in the limit as certain rate constants go either to
zero or to infinity, thus specifying directions in the parameter space; one such limit, with k4

k1
constant, was studied in
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the previous subsection. A potential further candidate that has been considered in the literature – albeit in the context
of the derivation of the Hill equation via the deterministic rate equations – is defined by

k2 + k3

k1
→ ∞, (46)

k5 + k6

k4
→ 0, (47)

k2 + k3

k1

k5 + k6

k4
= K2

m ≡ constant, (48)

as discussed for instance in [8]; here, nT = n+E + nC0 + nC1 denotes the total number of enzyme molecules that is
present in the system.

We begin by noting that, obviously, condition (A) remains true, as shown in the previous subsection.
Next, we observe that the limits in Eqns. (46) and (47) can be achieved, for instance, if one assumes that k2 and k4

tend to infinity, while all other rate constants in the system and the reaction volume Ω remain fixed. (We remark that
the left-hand sides in these equations correspond to the Michaelis-Menten constants for the first and second reactions
in (43), respectively.) The direction thus imposed in Eq. (48) can then be written as

k4 =
k5 + k6

K2
mk1

(k2 + k3).

Dividing the CME corresponding to (43) by k2, rescaling time accordingly, and defining K := 1
Ωk2

, we obtain

d
dt
P(nS,nE ,nC0 ,nC1 ,nP, t) = K

(
ESEEE−1

C0
−1
)
nS nE P(nS,nE ,nC0 ,nC1 ,nP, t)

+
(
E−1

S E−1
E EC0 −1

)
nC0 P(nS,nE ,nC0 ,nC1 ,nP, t)

+
Ωk3

k1
K
(
EC0E−1

E E−1
P −1

)
nC0 P(nS,nE ,nC0 ,nC1 ,nP, t)

+
(Q

Ω
+Q

k3

k1
K
)(

ESEC0E−1
C1
−1
)
nS nC0 P(nS,nE ,nC0 ,nC1 ,nP, t)

+
Ωk5

k1
K
(
E−1

S E−1
C0

EC1 −1
)
nC1 P(nS,nE ,nC0 ,nC1 ,nP, t)

+
Ωk6

k1
K
(
EC1E−1

C0
E−1

P −1
)
nC1 P(nS,nE ,nC0 ,nC1 ,nP, t),

where Q := k5+k6
K2

mk1
denotes a new parameter. Clearly, condition (B) is satisfied, since K→ 0 by definition.

To verify condition (C), we observe that the “fast” system

S+E←−C0,

S+C0
Q−→C1,

is acyclic. In fact, all states that are reachable from any fixed state n are of the form n+β (1,1,−1,0,0)+γ (−1,0,−1,1,0),
for some β ,γ ∈ N. Hence, no cycles can exist due to the linear independence of the vectors (1,1,−1,0,0) and
(−1,0,−1,1,0).

Finally, it is easy to verify that condition (D) still holds, by the same argument as above.

C.3 Push-pull mechanism
As our second example, we consider the reaction scheme

W +Ea
k1


k2

Ca
k3−→Ea +X ,

X +Ed
k4


k5

Cd
k6−→Ed +W,
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which is known as the push-pull mechanism [34]. (Here, Ea and Ed denote free enzyme, with W and X the corre-
sponding substrates and Ca and Cd the resulting complexes, respectively.) We study the parameter regime where k1

Ω

and k4
Ω

tend to infinity in such a manner that the ratio k := k1
k4

remains constant. Magnitudes of rate constants that are
well-suited to that regime are common in prokaryotic and eukaryotic cells [1].

As usual, the validity of condition (A) is guaranteed by the absence of molecule input into the network.
A non-dimensionalization that satisfies condition (C) is obtained by dividing the corresponding CME by k4

Ω
, rescal-

ing time, and by defining the small parameter K := Ω
k2
k4

, which ensures that condition (B) is met. The resulting
non-dimensional equation is given by

d
dt
P(nW ,nEa ,nEd ,nCa ,nCd ,nX , t) = k

(
EW EEaE−1

Ca
−1
)
nW nEa P(nW ,nEa ,nEd ,nCa ,nCd ,nX , t)

+K
(
E−1

W E−1
Ea

ECa −1
)
nCa P(nW ,nEa ,nEd ,nCa ,nCd ,nX , t)

+
k3

k2
K
(
E−1

Ea
ECaE−1

X −1
)
nCa P(nW ,nEa ,nEd ,nCa ,nCd ,nX , t)

+
(
EX EEd E−1

Cd
−1
)
nX nEd P(nW ,nEa ,nEd ,nCa ,nCd ,nX , t)

+
k5

k2
K
(
E−1

X E−1
Ea

ECd −1
)
nCd P(nW ,nEa ,nEd ,nCa ,nCd ,nX , t)

+
k6

k2
K
(
EW EEaE−1

Ca
−1
)
nCdP(nW ,nEa ,nEd ,nCa ,nCd ,nX , t).

As in the previous example, the weight of cycles of length 2d that are generated by one of the reversible reactions
in the above system is Θ(Kd). The associated stoichiometric matrix is given by

−1 0 0 1
−1 1 0 0
0 0 −1 1
1 1 0 0
0 0 1 −1
0 1 1 0

 ;

its nullspace is spanned by the vector (1,1,1,1). The corresponding cycle is realized by the following set of reactions,

W +Ea −→Ca,

Ca −→ Ea +X ,

X +Ed −→Cd ,

Cd −→ Ed +W,

the weight of which is Θ(K2). Other cycles could be obtained by permuting the above set; moreover, repeating each
reaction in that set any given number of times in any order gives another cycle. Since, however, the weight of the
resulting cycles is always o(K), it follows that condition (D) is also satisfied.
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