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Abstract. The Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation with cut-off was in-
troduced in [E. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E
56(3), 2597–2604 (1997)] to model N -particle systems in which concentrations less than ε = 1

N
are

not attainable. It was conjectured that the cut-off function, which sets the reaction terms to zero if
the concentration is below the small threshold ε, introduces a substantial shift in the propagation
speed of the corresponding traveling waves. In this article, we prove the conjecture of Brunet and

Derrida, showing that the speed of propagation is given by ccrit(ε) = 2 − π2

(ln ε)2
+ O((ln ε)−3), as

ε→ 0, for a large class of cut-off functions. Moreover, we extend this result to a more general family
of scalar reaction-diffusion equations with cut-off. The main mathematical techniques used in our
proof are geometric singular perturbation theory and the blow-up method, which lead naturally
to the identification of the reasons for the logarithmic dependence of ccrit on ε as well as for the
universality of the corresponding leading-order coefficient (π2).

1. Introduction

The scalar reaction-diffusion equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u2),(1)

which is commonly known as the Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation [20,
24] and which also goes under the name Allen-Cahn equation [1], arises in numerous problems
in biology, optics, combustion, and various other disciplines, see e.g. [8, 2, 3]. In particular, the
dynamics of traveling wave solutions are frequently of interest in applications. In the context of
(1), traveling waves are solutions that are stationary in a frame moving at the constant speed c ≥ 0
and that connect the rest states u = 0 and u = 1. It is well-known that these waves exist for all
c ≥ 2; the speed cFKPP = 2, which is selected via classical stability considerations, is often referred
to as the “critical” wave speed.

Here, we are interested especially in classes of problems in which the FKPP equation is obtained
either in the large-scale limit (N → ∞) of many-particle systems or in the mean-field limit of
physical problems that are discrete at a microscopic level [6, 22, 7, 11, 12, 23].

The propagation speed of traveling waves in the continuum limit—cFKPP = 2 for the FKPP
equation (1)—is often used to approximate the speed of propagation in such systems with large N .
However, systematic numerical simulations have revealed that the observed speeds of propagation in
these and other related systems are typically substantially smaller than expected [22, 7, 11, 23, 27]
and that the characteristic propagation speed converges only very slowly to cFKPP as N → ∞.
Even for large values of N , such as N = 104, the discrepancies are substantial.
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These numerical observations motivated Brunet and Derrida [9] to introduce the following mod-
ified or “cut-off” FKPP equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u2)ϕ(u),(2)

where they assumed that the cut-off function ϕ satisfies

ϕ(u)� 1 if u� ε and ϕ(u) ≡ 1 if u > ε(3)

for ε ≥ 0 sufficiently small. The motivation in [9] was that, for any fixed value of N , no particles
are available to react at any point in the domain at which the concentration is less than ε = 1

N ,
and, hence, that the reaction function must be “cut-off” there.

One question addressed in [9] is precisely the effect of the cut-off function ϕ on the velocity c
of the corresponding traveling fronts. In particular, for ϕ(u) = Θ(u − ε), where Θ denotes the
Heaviside step function, it is shown in [9] that the front velocity c in (2) differs from the continuum
wave speed cFKPP by a term that is logarithmic in ε,

c ∼ 2− π2

(ln ε)2
as ε→ 0.(4)

This leading-order approximation implies that, for ε > 0, a cut-off is introduced in the “tail” of the
traveling front which decreases the front speed considerably and that the convergence as ε→ 0 to
the unperturbed critical velocity cFKPP is indeed slow. Moreover, it agrees well with the numerical
data presented in [9].

Additionally, it is postulated in [9] that the choice of a specific cut-off function ϕ does not
fundamentally influence the asymptotic behavior of (2) as long as (3) holds; specifically, it is
conjectured that the leading-order correction to c will be independent of ϕ within this class of
cut-off functions.

The main results of this article are a rigorous, geometric derivation of the expansion in (4) for
ϕ = Θ (the Heaviside cut-off), as well as a proof of Brunet and Derrida’s conjecture for a very
general family of cut-off functions that do not even have to satisfy the condition that ϕ(u) � 1
when u� ε put forward in [9], cf. (3). The proofs presented here are constructive and give precise
information on the structure of the corresponding traveling waves. Moreover, in proving these
results, we also provide clear geometric reasons for why the leading-order correction to cFKPP is
inversely proportional to the square of the logarithm of ε, and for why the corresponding coefficient
(π2) is universal within this class of cut-off functions. (See also Remark 7 below for a heuristic
derivation of these results.)

In the present article, we will be concerned with the more general modified FKPP equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u2)ϕ(u, ε, uε ),(5)

where we assume that the cut-off function ϕ satisfies the following conditions:

Assumption A. For k ≥ 1, there exists a Ck-smooth function ψ(u, ε, ·) which depends on u, ε,
and a third (real) variable such that

ϕ(u, ε, uε ) = ψ(u, ε, uε ) if u < ε and ϕ(u, ε, uε ) ≡ 1 if u > ε;

moreover, ϕ is bounded at u = ε, for ε sufficiently small. The function ψ is defined in some
neighborhood of {0}×{0}× [0, 1] and satisfies ψ(0, 0, ·) ∈ [0, 1] on [0, 1] as well as ψ(0, 0, 0) ∈ [0, 1).

For convenience, we write Ψ(·) := ψ(0, 0, ·), and we observe that Assumption A generalizes the
assumptions of [9] insofar as we do not require Ψ(0)� 1 here. (In other words, we may allow ϕ to
be even only slightly smaller than one at the origin.)
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Remark 1. The particular choice ϕ(u, ε, uε ) = Θ(u− ε) (the Heaviside cut-off) satisfies Assump-
tion A with ψ(u, ε, ·) ≡ 0, as do the other choices of ϕ mentioned in [9]; for ψ(u, ε, ·) = ·, e.g., one
obtains the linear cut-off, with ϕ(u, ε, uε ) = u

ε for u ≤ ε. Note that ϕ will be continuous (and even
Lipschitz continuous) at u = ε if ϕ(ε, ε, 1) = 1 = ψ(ε, ε, 1). This continuity is not a requirement in
Assumption A, though; the function ϕ = Θ, for instance, is discontinuous at u = ε.

Correspondingly, (5) will not necessarily have classical (differentiable) solutions across {u = ε}.
However, as is customary in this situation, we will only consider solutions of (5) that are continuous
at u = ε, and that are therefore classical solutions for u ≥ ε, respectively for u ≤ ε, with ϕ ≡ ψ in
{u ≤ ε} and ϕ ≡ 1 in {u ≥ ε}, respectively. Finally, we note that the exact value of ϕ(ε, ε, 1) is
insignificant; to be precise, ϕ can be interpreted as an equivalence class of bounded functions, with
two such functions being equivalent if they only differ on {u = ε}.

Traditionally, the “critical” wave speed ccrit in scalar reaction-diffusion equations of FKPP-type
is defined as the particular value of c that separates traveling wave solutions of different decay rates
(exponential versus algebraic or even exponential versus algebro-exponential) at the zero rest state.
In our case, however, a distinction has to be made depending on the behavior of Ψ near the origin,
which naturally leads to a slightly generalized notion of “criticality” that encompasses the classical
definition. In particular, we have the following three cases:

(i) If Ψ(0) = 0 and if, moreover, 0 is an isolated zero of Ψ, then there is an infinite semi-axis
of wave speeds, with 0 < ccrit ≤ c, for which traveling wave solutions to (5) exist. The
traveling wave corresponding to c = ccrit decays exponentially at zero, whereas the decay is
merely algebraic for c > ccrit.

(ii) If Ψ(0) = 0, but if, additionally, 0 is an accumulation point of positive zeros of Ψ, e.g.
when Ψ vanishes in a neighborhood of 0, then there is a traveling wave solution to (5) for
precisely one value of c.

(iii) If Ψ(0) > 0, then traveling wave solutions to (5) again exist for any c ≥ ccrit, as in (i).
However, the definition of a “critical” wave speed has to be generalized insofar as all traveling
waves now decay exponentially at zero. The wave corresponding to c = ccrit is distinguished
due to the fact that its decay rate is the strongest, whereas for c > ccrit, solutions will decay
at a weaker exponential rate.

Case (i) corresponds to the traditional definition of criticality, while (ii) is significant insofar as
it includes e.g. the Heaviside cut-off ϕ = Θ analyzed in [9]. Moreover, we note that the notion
of criticality is vacuous in that case, since traveling wave solutions exist only for one value of c;
however, to ensure consistency of notation, we will still denote that value by ccrit. For the sake of
exposition and because of the specific importance of that case, we will, in our analysis, often first
consider case (ii), with the additional condition that Ψ ≡ 0 on [0, 1]. Then, we will carefully show
that our arguments are also valid in all other cases under consideration. Finally, we note that in
cases (i) and (iii), the critical wave speed can equivalently be characterized as the minimum value
of c in (5) for which monotone traveling wave solutions with u ∈ [0, 1] exist.

Given ε ≥ 0 small, let ccrit(ε) denote the corresponding critical wave speed for the cut-off FKPP
equation (5) in the sense defined above. Note that ccrit(0) = cFKPP in all three cases, since (1) is
obtained in the limit as ε→ 0 in (5). The following theorem is the principal result of this article:

Theorem 1.1. For any reaction-diffusion equation of the form (5), where ϕ satisfies Assumption A,
there exists an ε0 > 0 such that for ε ∈ [0, ε0), the (generalized) critical wave speed ccrit(ε) for (5)
is given by

ccrit(ε) = 2− π2

(ln ε)2
+O

(
(ln ε)−3

)
.(6)
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The proof of Theorem 1.1 is carried out in terms of the traveling wave variables U(ξ) = u(x, t)
and ξ = x− ct. The traveling wave equation corresponding to (5) is given by

U ′′ + cU ′ + U(1− U2)ϕ(U, ε, Uε ) = 0,(7)

where the prime denotes differentiation with respect to ξ. For the following analysis, it is convenient
to rewrite (7) as a first-order system,

U ′ = V,

V ′ = −U(1− U2)ϕ(U, ε, Uε )− cV.
(8)

Then, traveling wave solutions of (5) correspond to heteroclinic trajectories in (8) which connect
the two rest states U = 1 and U = 0, with

lim
ξ→−∞

(U, V )(ξ) = (1, 0) and lim
ξ→∞

(U, V )(ξ) = (0, 0).

We will denote the points (1, 0) and (0, 0) in (U, V )-space by Q− and Q+, respectively.
Geometrically speaking, the selection of the generalized critical wave speed ccrit(ε) in (5) is

determined by a global condition, given by the requirement that there is a singular heteroclinic
orbit Γ for ε = 0 in (8) which perturbs, for ε > 0 small, to a “critical” heteroclinic connection
between Q− and Q+. More precisely, the desired connection will be established in the intersection
of the unstable manifold Wu(Q−) of Q− with the stable manifold Ws(Q+) of Q+ (in cases (i) and
(ii)), respectively with the strong stable manifold Wss(Q+) of Q+ (in case (iii)). Consequently, the
associated traveling wave solution of (5) will decay to the zero rest state at the strongest possible
rate, in accordance with our generalized notion of criticality.

To state it differently, the required persistence of Γ will provide a necessary and sufficient con-
dition which can be applied to uniquely determine ccrit(ε). This contrasts with the fact that the
critical wave speed cFKPP = 2 in the continuum limit, i.e., in equation (1), is determined locally,
see [2, 8, 4, 20, 24, 29]. In the corresponding traveling wave ODE, the origin is a stable node for
c > 2, a degenerate stable node at c = 2, and a stable spiral when c < 2. Hence, U ∼ Cξe−ξ

as ξ → ∞ when c = 2, whereas the decay is strictly exponential for c > 2 and non-monotone for
c < 2. Therefore, the critical speed cFKPP = 2 is determined by a local transition at the origin. In
the cut-off system (8), the traveling wave with critical speed ccrit(ε) still decays exponentially and
monotonically, even though ccrit(ε) < 2.

The main tool used in the proof of Theorem 1.1 is the blow-up technique, also known as geometric
desingularization of families of vector fields. This approach is naturally suggested by the fact that
the origin is a degenerate fixed point in (8) which can be desingularized via blow-up. In particular,
it will allow us to define the (strong) stable manifold of Q+ in a precise manner. To the best of
our knowledge, the blow-up technique was first used in studying limit cycles near a cuspidal loop
in [18]. The method has since successfully been applied, including in [16] as an extension of the
more classical geometric singular perturbation theory to situations in which normal hyperbolicity
is lost; see also [13, 17, 14, 25, 26, 30, 15] and the references therein.

Our proof was guided in part by the results of Section IV in [9]. To relate their analysis to ours,
we briefly review their argument after stating the proof of Theorem 1.1.

Moreover, it is worth noting that Brunet and Derrida [9, Section IV] also give physical arguments
to show that the asymptotics in (4) are not restricted to their FKPP equation with cut-off in (2),
but that the correction to the critical wave speed due to a cut-off in more general equations of
similar type will also be O((ln ε)−2). This type of behavior should arise in numerical studies of the
corresponding discrete models. At the end of this article, we show that Theorem 1.1 generalizes to
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the cut-off FKPP equation with quadratic nonlinearity,

∂u

∂t
=
∂2u

∂x2
+ u(1− u)ϕ(u, ε, uε ),(9)

as well as to the larger class of reaction-diffusion equations with cut-off given by

∂u

∂t
=
∂2u

∂x2
+
(
u− g(u)

)
ϕ(u, ε, uε ),(10)

where g satisfies certain properties that will be specified in detail in Section 4.
The effects of cut-offs are also investigated in Section 7 of [31], as one aspect of a broad study of

fronts propagating into unstable states. It is shown there that the results of Brunet and Derrida on
the shift in propagation speed hold more generally for a large class of so-called fluctuating pulled
fronts in the large-N limit. Also, we note that for ε = 1

N > 0, these fronts are actually pushed
fronts. We refer the reader to [31, Equation (246)], and more generally to Section 7.1 of [31], for
further analysis.

Finally, our work complements the results in [28], where a variational principle has been developed
to study the shift in the front speed due to a cut-off in (9) as well as in more general classes of
equations. In particular, lower bounds were obtained for the critical wave speed, and a wide range of
trial functions was explored, giving good agreement with the numerics. We believe that our results
will help to identify the most suitable class of trial functions for this variational approach. Recently,
corresponding bounds for a stochastically perturbed FKPP-type equation have been derived in [10],
see also the references therein. We hope that the approach developed here will prove useful within
that stochastic context, as well.

This article is organized as follows. In Section 2, we carry out the geometric desingularization
(blow-up) of the degenerate equilibrium at Q+, and we construct the singular heteroclinic orbit Γ
connecting Q− and Q+. Then, in Section 3, we prove that there exists a “critical” heteroclinic so-
lution that lies near this singular heteroclinic, establishing Theorem 1.1. In Section 4, we generalize
Theorem 1.1 to the class of reaction-diffusion equations with cut-off in (9) and (10).

2. Blow-up and the singular heteroclinic orbit for (8)

In this section, we construct the singular heteroclinic orbit Γ, i.e., a connection from Q− to Q+

for ε = 0. Since ccrit(ε) → 2 in the singular limit as ε → 0, this orbit will exist for c = 2 in (8);
consequently, we will be concerned with that c-value throughout most of this section. We will only
make an exception in Lemma 2.1 and in equations (13), (15), (20), and (22) below, which are stated
for general c, in view of their use in Section 3.

The construction of the singular heteroclinic orbit Γ is carried out in the vector field that is
obtained from (8) by desingularizing the origin via the blow-up transformation

U = r̄ū, V = r̄v̄, and ε = r̄ε̄.(11)

Here, (ū, v̄, ε̄) ∈ S2 =
{

(ū, v̄, ε̄)
∣∣ ū2 + v̄2 + ε̄2 = 1

}
, and r̄ ∈ [0, r0] for r0 > 0 sufficiently small. In

the blow-up process, the degenerate equilibrium at the origin is transformed into the two-sphere
S2. Moreover, since we are interested in ε ≥ 0, we only need to consider the half-sphere S2+ defined
by restricting S2 to ε̄ ≥ 0.

The analysis of the induced vector field on S2+ is naturally performed in the following two charts:
The “classical” rescaling chart K2 (ε̄ = 1), which is used to study the dynamics of (8) in the regime
{U ≤ ε}, as well as one phase-directional chart K1 (ū = 1), which is employed in the analysis of
the regime {U ≥ ε}. The dynamics in charts K2 and K1 are presented in Sections 2.1 and 2.2,
respectively. These dynamics are then combined in Section 2.3 to complete the construction of Γ.

The orbit Γ will provide the “backbone” of the perturbative analysis that will be presented in
Section 3. More precisely, we will show that, for ε > 0 sufficiently small and c chosen appropriately,

5



a heteroclinic connection will persist close to Γ. Since heteroclinic orbits in (8) correspond to
traveling wave solutions of (5), this will prove the existence of such solutions for ε small and an
appropriate “critical” value ccrit(ε) of c near ccrit(0) = 2.

Finally, we note that the analysis in Section 3 will rely heavily on the same two charts defined
above: Chart K2 will be used in showing the existence and uniqueness of ccrit(ε) in Section 3.1,
while chart K1 will play an essential role in Section 3.2, in that it will allow us to prove Theorem 1.1,
in a unified manner, for the wide range of cut-off functions that satisfy Assumption A.

Remark 2. For any object � in the original (U, V, ε)-variables, we will denote the corresponding
blown-up object by �; in chart Ki (i = 1, 2), the same object will appear as �i when necessary.

2.1. Dynamics in the rescaling chart K2. In this subsection, we study system (8) in the regime
{U ≤ ε}. The analysis is carried out in the rescaling chart K2, defined by ε̄ = 1 in (11), where the
blow-up transformation is given by

U = r2u2, V = r2v2, and ε = r2.(12)

In terms of these new variables, the equations in (8) become

u′2 = v2,(13a)

v′2 = −u2(1− r22u22)ϕ(r2u2, r2, u2)− cv2,(13b)

r′2 = 0.(13c)

Moreover, since U < ε if and only if u2 < 1, the cut-off function ϕ(r2u2, r2, u2) in K2 satisfies

ϕ(r2u2, r2, u2) = ψ(r2u2, r2, u2) if u2 < 1,(14)

by Assumption A. Due to the fact that we are interested in (13) for U ≤ ε, we extend ϕ locally
in chart K2 in a continuous manner to u2 = 1 by defining ϕ(r2, r2, 1) = limu2→1− ψ(r2u2, r2, u2).
Consequently, in {u2 ≤ 1}, the continuous extension of (13) is given by

u′2 = v2,(15a)

v′2 = −u2(1− r22u22)ψ(r2u2, r2, u2)− cv2,(15b)

r′2 = 0;(15c)

in other words, the values of the orbits of (15) on {u2 = 1} are defined as the limiting values of the
corresponding orbits, in {u2 < 1}, of (13) as u2 → 1−.

For r0 small, let `+2 denote the line of equilibria for system (15) that is given by

`+2 =
{

(0, 0, r2)
∣∣ r2 ∈ [0, r0]

}
.

For each r2 = ε fixed, the associated point on `+2 corresponds to the point Q+, before blow-up. Of
most interest to us is the point (0, 0, 0) on `+2 , which is obtained in the singular limit of r2 = 0. We
will denote it by Q+

2 in the following. A direct calculation reveals

Lemma 2.1. The point Q+
2 is semi-hyperbolic for (15), with eigenvalues λ± = 1

2(−c±
√
c2 − 4Ψ(0))

and 0. The corresponding eigenspaces are spanned by (1, λ±, 0)T and (0, 0, 1)T , respectively.

In particular, it follows that for any c ∼ 2 in (15), the point Q+
2 will have one (strong) stable

eigendirection associated to the eigenvalue λ−, and, hence, a one-dimensional stable manifold if
Ψ(0) = 0, respectively a one-dimensional strong stable manifold in case Ψ(0) > 0. The remainder
of this section is devoted to the identification of this manifold in the singular limit of r2 = 0, which
is the central object of interest for the dynamics in chart K2.

As a preliminary step, we introduce the following section,

Σin
2 =

{
(1, v2, r2)

∣∣ (v2, r2) ∈ [−v0, 0]× [0, r0]
}
,
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where v0 > 2 is an appropriately defined constant. The section Σin
2 corresponds to the hyperplane

{U = ε}, before blow-up, and is an entry face through which orbits of (15) enter the regime
{0 ≤ u2 ≤ 1}; see Figure 1. Note that {u2 = 1} separates the regime {u2 > 1}, where the dynamics
of (15) are unperturbed, from the vertical strip {0 ≤ u2 < 1}, in which the dynamics are governed
by the simplified, cut-off system; cf. Assumption A. Note also that the flow of (15) is directed
from the former into the latter, see again Figure 1.

For the remainder of this subsection, we set c = 2 in (15), which is due to the fact that ccrit(0) = 2
in the singular limit of r2 = 0. When r2 = 0, the resulting system restricted to {0 ≤ u2 ≤ 1} reduces
to

u′2 = v2,

v′2 = −u2Ψ(u2)− 2v2.
(16)

Moreover, Ψ is Ck-smooth, with k ≥ 1, and there holds Ψ(u2) ∈ [0, 1] for all u2 ∈ [0, 1] as well as
Ψ(0) ∈ [0, 1), cf. Assumption A.

For the sake of exposition, we first explicitly identify the (strong) stable manifold in case Ψ ≡ 0,
which corresponds to the Heaviside cut-off analyzed in detail in [9], cf. (ii) above. The more generic
case when Ψ 6≡ 0 is treated in Proposition 2.2 below.

With Ψ ≡ 0 and c = 2, we have λ+ = 0 and λ− = −2 in Lemma 2.1, i.e., the point Q+
2 has one

stable eigendirection (1,−2, 0)T . The corresponding singular equations in (16) simplify to

u′2 = v2,

v′2 = −2v2,
(17)

or, equivalently, to dv2
du2

= −2. The unique solution of this equation with v2(0) = 0 is given by

Γ2 : v2(u2) = −2u2.(18)

This invariant straight line is precisely the stable manifoldWs
2(Q+

2 ) of Q+
2 . We also denote it by Γ2,

and we will use the two notations interchangeably in the following, since Ws
2(Q+

2 ) will constitute

the portion of the singular orbit Γ in K2, as we will see shortly. Here, we note that Γ2 is the unique
orbit that is asymptotic to Q+

2 in K2 when Ψ ≡ 0. Moreover, we define the point P in
2 = Γ2 ∩ Σin

2

as the intersection of Γ2 with the section Σin
2 ; more precisely, P in

2 = (1,−2, 0) by (18).
Finally, for r2 ∈ [0, r0] with r0 sufficiently small, system (15) is a regular (Ck-smooth) perturba-

tion of (17) by Assumption A. Hence, one can define the stable manifold Ws
2(`+2 ) for the entire

line `+2 . Note that Ws
2(`+2 ) will correspond to the stable manifold Ws(Q+) of Q+ after blow-down.

Note also that the regularity of this manifold depends on the choice of ϕ, i.e., Ws
2(`+2 ) is in general

only Ck-smooth, with k again defined as in Assumption A. Moreover, for any r2 small enough and
constant, the corresponding leaf of W s

2 (`+2 ) is a small, Ck perturbation of Γ2. The geometry in
chart K2 is illustrated in Figure 1.

In case Ψ 6≡ 0, the analysis proceeds in a similar manner. However, there is an important
difference in that one cannot necessarily find an explicit expression for Γ2. Nevertheless, Γ2 can
still be uniquely defined via the following result:

Proposition 2.2. There exists a Ck-smooth function γ2 : [0, 1] → R such that the (strong) stable
manifold Γ2 of Q+

2 in (16) is given by Γ2 =
{

(u2, v2)
∣∣u2 ∈ [0, 1], v2 = γ2(u2)

}
. The graph of γ2 lies

between {v2 = −2u2} and {v2 = −u2}; there holds in particular γ2(0) = 0 and −2 ≤ γ2(1) < −1.

Proof. Given Ψ 6≡ 0, we distinguish between the two cases of Ψ(0) = 0 and Ψ(0) > 0 here, beginning
with the former.
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Σin
2

P in
2

Q+
2

ℓ+2

Γ2 Ws
2(Q

+
2 )

Ws
2 (ℓ

+
2 )

v2

r2

u2

Figure 1. The geometry in chart K2.

If Ψ(0) = 0, the origin in (16) is semi-hyperbolic, see Lemma 2.1, with a double zero eigenvalue
and a unique, one-dimensional stable manifold that can locally be represented as the graph of a Ck
function γ2. Moreover, since −2u2 ≤ γ2(u2), there clearly holds −2u2 ≤ γ2(u2) < −u2 for u2 small.

For Ψ(0) > 0, Q+
2 is a stable node for (16) by Lemma 2.1, with one strong stable eigendirection.

To be able to apply standard invariant manifold theory [21], we introduce the new (projective)
variable ṽ2 = v2

u2
in (16). The resulting system of equations

u′2 = u2ṽ2,

ṽ′2 = −Ψ(u2)− 2ṽ2 − ṽ22

is again Ck-smooth, with two equilibrium points in {u2 = 0} and corresponding ṽ2-coordinates

that are given by ṽ2 = −1 ±
√

1−Ψ(0). We focus on the lower equilibrium (u2, ṽ2) = (0,−1 −√
1−Ψ(0)), since it corresponds to the direction of the strong stable manifold of Q+

2 before the
transformation.

Linearization shows that this point is a hyperbolic saddle, with a unique stable manifold that
is described locally by the graph of some Ck function γ̃2. We now define the function γ2 via
γ2(u2) = u2γ̃2(u2). Since −2 ≤ −1 −

√
1−Ψ(0) < −1 by Assumption A, it follows that −2u2 ≤

γ2(u2) < −u2 for u2 small.
To show that these local definitions as well as the corresponding bounds on γ2 can be extended

to u2 ∈ [0, 1] in both cases, we note that in the region under consideration, we have the estimate

−2 ≤ dv2
du2

< −u2 + 2v2
v2
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on dv2
du2

. (This estimate easily follows by comparing the equations in (16) to the two extreme cases

of Ψ ≡ 1 and Ψ ≡ 0, respectively, and by recalling that v2 < 0.) Since, moreover, u2 + v2 ≤ 0, we

find −2 ≤ dv2
du2

< −1, which implies in particular −2 ≤ γ2(1) < −1. This completes the proof. �

Given Proposition 2.2, it follows that the intersection of Γ2 with Σin
2 is now given by a point

P in
2 = (1, vin2 , 0) with −2 ≤ vin2 < −1. Finally, we remark that by Assumption A, for each r2 ∈

[0, r0] sufficiently small, the corresponding leaf of the stable manifold Ws
2(`+2 ) (in case Ψ(0) = 0),

respectively of the strong stable manifold Wss
2 (`+2 ) (in case Ψ(0) > 0), will still be a regular

perturbation of Γ2. In analogy to the notation introduced for Ψ ≡ 0 above, these manifolds will be
denoted by Ws(Q+), respectively by Wss(Q+), after blow-down.

Remark 3. System (17) corresponds exactly to Equation (23) of [9] in their “region III.”

Remark 4. If Ψ(0) = 0 and if, moreover, 0 is an accumulation point of positive zeros of Ψ, (16)
will have non-trivial equilibria on the u2-axis, in addition to Q+

2 . However, we did not need to
consider these equilibria, since only points with u2 = 0 can correspond to Q+ after blow-down.

2.2. Dynamics in the phase-directional chart K1. In this subsection, we study the dynamics
of system (8) in the regime {U ≥ ε}. To that end, we consider the directional chart K1, which is
defined by ū = 1, and in which the blow-up transformation reads

U = r1, V = r1v1, and ε = r1ε1.(19)

Also, to relate the analyses of this and the previous subsections, we will make use of the following
relationship between the variables in (12) and (19) on the domain of overlap between charts K1

and K2:

Lemma 2.3. The change of coordinates κ12 : K1 → K2 is given by

u2 =
1

ε1
, v2 =

v1
ε1
, and r2 = r1ε1.

For the inverse change κ21 = κ−112 : K2 → K1, there holds

r1 = r2u2, v1 =
v2
u2
, and ε1 =

1

u2
.

Here, we note that both κ12 and κ21 are well-defined as long as ε1 and u2, respectively, are finite
and bounded away from zero. Correspondingly, the overlap domain between K1 and K2 includes
{U = ε}, where ε1 = 1, respectively u2 = 1. This fact will enable us to connect the dynamics in
the two charts there, see Section 2.3 below.

In terms of the variables in (19), system (8) becomes

r′1 = r1v1,(20a)

v′1 = −(1− r21)ϕ(r1, r1ε1,
1
ε1

)− cv1 − v21,(20b)

ε′1 = −ε1v1.(20c)

Since, moreover, chart K1 is used to analyze (8) in the regime {U ≥ ε} and since U > ε if and only
if 1 > ε1, it follows that ϕ satisfies

ϕ(r1, r1ε1,
1
ε1

) ≡ 1 if 1 > ε1,(21)

by Assumption A. To extend ϕ in chart K1 in a continuous manner to ε1 = 1, we define
ϕ(r1, r1, 1) = 1 in (20). This definition will allow us to continue the dynamics of (20) in {ε1 < 1}

9



up to ε1 = 1; more precisely, in {ε1 ≤ 1}, the continuous extension of system (20) reduces to

r′1 = r1v1,(22a)

v′1 = −(1− r21)− cv1 − v21,(22b)

ε′1 = −ε1v1.(22c)

Hence, given an orbit of (22) in {ε1 ≤ 1}, its value on {ε1 = 1} can be regarded as the limiting
value for ε1 → 1− of the corresponding orbit, in {ε1 < 1}, of (20).

The equilibria of (22) are found as follows: For v1 6= 0, we have to examine (22) with r1 = 0 and
ε1 = 0, which implies ε = r1ε1 = 0. Therefore, c = 2 in (22b), and the only equilibrium is located
at P1 = (0,−1, 0) in that case. Other equilibria are obtained for v1 = 0 in (22); these lie on the
line `−1 =

{
(1, 0, ε)

∣∣ ε ∈ [0, ε0]
}

, which corresponds to the original point Q−, before blow-up. In

particular, for ε = 0, we will denote the point (1, 0, 0) on `−1 by Q−1 .
We focus on P1 here; a straightforward calculation shows

Lemma 2.4. The eigenvalues of (22) linearized at P1 are given by −1, 0, and 1, with eigenvectors
(1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T , respectively.

The planes {ε1 = 0} and {r1 = 0} are invariant for (22). To identify the portion of the singular
orbit Γ lying in K1, we analyze the dynamics of (22) separately in these two invariant planes.

The first portion of Γ1, which we label Γ−1 , is forward asymptotic to P1 and lies in {ε1 = 0}.
Since the governing equations in this invariant plane are equivalent to the FKPP equation (1)
(without cut-off), Γ−1 corresponds precisely to the unstable manifold Wu(Q−) of Q− for ε = 0 in
(8) or, alternatively, to the “tail” of the equivalent heteroclinic orbit, after blow-up. The situation
is summarized in Figure 2.

For the subsequent analysis, we require the following key fact on the asymptotics of Γ−1 in chart
K1. We first define a new section Σin

1 by

Σin
1 =

{
(r0, v1, ε1)

∣∣ (v1, ε1) ∈ [−v0, 0]× [0, 1]
}
,

where the constant v0 has the same value as in Section 2.1; moreover, we denote by P in
1 = Γ−1 ∩Σin

1

the point of intersection of Γ−1 with Σin
1 , i.e., P in

1 = (r0, v
in
1 , 0); see Figure 2.

Lemma 2.5. The orbit Γ−1 is tangent to (0, 1, 0)T (i.e., to the v1-axis) as Γ−1 → P1.

Proof. The assertion follows from a straightforward phase plane argument. Consider the original
first-order system (8), and recall that it corresponds to the FKPP equation (1) (without cut-off)
in the singular limit of ε = 0. Moreover, recall that for c = 2, the point Q+ is a degenerate node,
with a unique, C∞-smooth, one-dimensional, invariant manifold that corresponds precisely to the
strong stable manifold Wss(Q+) in this case. Note that Wss(Q+) agrees with the stable manifold
of P1 after transformation to chart K1, and let P s1 = (r0, v

s
1, 0) denote the point of intersection of

this manifold with Σin
1 . ExpandingWss(Q+) about Q+, one finds V (U) = −U − 1

2U
3 +O(U5) and,

hence, vs1 < −1.
To see where Γ−1 will lie with respect to the manifold Wss(Q+) after blow-up, we construct a

trapping region for the flow of (8). On the U -axis given by {V = 0}, there holds

U ′ = 0,

V ′ = −U(1− U2),

and, hence, (0, 1) · (0,−U(1− U2))T = −U(1− U2) < 0, since U < 1. Similarly, on {V = −U},
U ′ = −U,
V ′ = U(1 + U2),
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and therefore (1, 1) · (−U,U(1 + U2))T = U3 > 0. Thus, the flow of (8) is trapped in the wedge
bounded by the lines {V = 0} and {V = −U}.

In particular, for the flow of the blown-up vector field (22) in chart K1, this implies that the
singular orbit Γ−1 corresponding to Wu(Q−) must enter the equivalent of that trapping region in
K1, i.e., it must intersect Σin

1 in a point P in
1 = (r0, v

in
1 , 0) with vin1 > vs1. Therefore, it follows that

Γ−1 is tangent to the v1-axis as Γ−1 → P1. �

The second portion of the singular orbit Γ1 is backward asymptotic to P1 and lies in the invariant
plane {r1 = 0}; it is labeled Γ+

1 in Figure 2. In {r1 = 0}, system (22) is given by

v′1 = −(1 + v1)
2,

ε′1 = −ε1v1,
(23)

where we have again simplified the right-hand side of (22b) using the fact that c = 2 for r1 = 0.
Rewriting (23) with ε1 as the independent variable, we find

dv1
dε1

=
(1 + v1)

2

ε1v1
.

This equation is separable and can be solved explicitly; the explicit solution is

v1(ε1) = −
1 + W( αε1 )

W( αε1 )
.(24)

Here, α is a real constant and W denotes the principal branch of the Lambert W-function, which
is defined as the solution of

W(z) · eW(z) = z.

To complete the construction of Γ+
1 , we need to determine the value of α in (24). We fix a section

Σout
1 via

Σout
1 =

{
(r1, v1, 1)

∣∣ (r1, v1) ∈ [0, r0]× [−v0, 0]
}

;

here, r0 and v0 are defined as before. Therefore, under the coordinate transformation κ12 between
the variables in charts K1 and K2 (recall Lemma 2.3), this new section coincides with the section
Σin
2 ; that is, κ12(Σ

out
1 ) = Σin

2 . Consequently, it again corresponds to {U = ε}, before blow-up.
More importantly, the entry point P in

2 of the singular orbit Γ2 in chart K2 determines a unique
point in Σout

1 that allows us to uniquely fix α in (24). Let P out
1 = κ21(P

in
2 ), and note that P out

1 =
(0, vout1 , 1), see Lemma 2.3 and the definition of P in

2 . Hence, it remains to find α such that v1(1) =
vout1 . We will analyze the two cases of Ψ ≡ 0 and Ψ 6≡ 0 separately, beginning with the former.

In case Ψ ≡ 0, we have P out
1 = (0,−2, 1), where the v1-coordinate vout1 of P out

1 is determined via

vout1 =
vin2
uin2

= −2. Therefore, v1(1) = −2, which implies that α = e and

Γ+
1 : v1(ε1) = −

1 + W( e
ε1

)

W( e
ε1

)
(25)

in {r1 = 0}. Finally, by Taylor expanding (25) for ε1 small, we find that the orbit Γ+
1 is tangent to

the v1-axis as Γ+
1 → P1.

In the more generic case when Ψ 6≡ 0, the orbit Γ+
1 can be constructed, and the corresponding

value of α can be found, in a similar fashion. In particular, note that the geometry in K1 is the
same for all functions ϕ that satisfy Assumption A. Hence, one only needs to require thatWs

2(Q+
2 )

can be extended (in K2) to the section Σin
2 , in backward “time.” In fact, recalling the definition

of P in
2 (= Γ2 ∩ Σin

2 ) = (1, vin2 , 0), one finds −2 ≤ vin2 < −1 by Proposition 2.2. Also, v1 → −1 as
ε1 → 0 in (24) regardless of the value of α, i.e., Γ+

1 → P1 in K1 tangent to the v1-axis. Therefore,
11
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Figure 2. The geometry in chart K1.

to complete the construction of Γ+
1 it only remains to show that α can still be fixed such that

vout1 = vin2 . Now, a direct calculation reveals that

α = − 1

vout1 + 1
e
− 1

vout1 +1 for vout1 < −1 and α = 0 for vout1 = −1.(26)

Summarizing the above discussion, we have established

Lemma 2.6. The orbit Γ+
1 is tangent to the v1-axis as Γ+

1 → P1.

The geometry in chart K1 is illustrated in Figure 2.

Remark 5. Equations (23) correspond precisely to Equation (22) of [9] in their “region II.”

Remark 6. In this subsection, we analyzed the dynamics in the regime {U ≥ ε} in chart K1.
The dynamics in this regime could also have been studied in chart K2. In fact, in {u2 ≥ 1}, the
continuous extension of system (13) in K2 yields

u′2 = v2,

v′2 = −u2(1− r22u22)− cv2,
(27)

which of course again corresponds to the FKPP equation without cut-off, after blow-up. Now,
recall that in the singular limit of r2 = 0, we have c = 2 in (27). Therefore, system (27) further
simplifies in that limit, and is equivalent to Equation (22) of [9].

2.3. Connecting the dynamics in charts K2 and K1. In this subsection, we prove the existence
of a singular heteroclinic connection from Q−1 to Q+

2 :
12
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Figure 3. The global geometry of the blown-up vector field.

Proposition 2.7. Let ϕ be a cut-off function which satisfies Assumption A. Then, there exists a
singular heteroclinic orbit Γ for equations (15) and (22), respectively, that connects Q−1 to Q+

2 .

An illustration can be found in Figure 3.

Proof. To construct Γ, we combine the results obtained in charts K2 and K1 in the previous
subsections. The connection between the dynamics in the individual charts is established in {ū = ε̄},
which corresponds to Σin

2 in K2, respectively to Σout
1 in K1. For the sake of exposition, we restrict

ourselves to the case when Ψ ≡ 0 in the following; the argument in case Ψ 6≡ 0 is completely
analogous.

Recall that on the blown-up locus given by {r̄ = 0}, there holds r2 = 0, respectively r1 = 0;
hence, systems (15) and (22), respectively, reduce to (17) and (23). Moreover, recall the expressions
in (18) and (25), obtained for Γ2 and Γ+

1 , respectively. Given the definitions of the points P in
2 and

P out
1 above, one sees immediately that Γ2 and Γ+

1 connect in a C0 manner in Σin
2 = κ12(Σ

out
1 ). This

shows the existence of a singular connection from P1 to Q+
2 .

For the connection between Q−1 and P1, recall that in the invariant plane {ε1 = 0}, system (22)
corresponds precisely to the original FKPP equation (1) (without cut-off). Hence, the heteroclinic
orbit connecting Q−1 and P1 is given by the orbit denoted by Γ−1 above, after blow-up.

In sum, the desired singular heteroclinic connection Γ is thus obtained as the union of the orbits
Γ−1 , Γ+

1 , and Γ2 and of the singularities Q−1 , P1, and Q+
2 , see Figure 3. This completes the proof. �

The orbit Γ is unique if Ψ(0) = 0 and if, in addition, 0 is an accumulation point of positive
zeros of Ψ (as is the case, for example, when Ψ ≡ 0), since Γ2 is the unique orbit in K2 which is
asymptotic to Q+

2 then and since the corresponding value of α required in the definition of Γ+
1 is

also unique, cf. (26). This verifies the claim made in (ii) above, namely, that there is a unique value
of c in this case for which traveling wave solutions to (5) exist.
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In case Ψ has an isolated zero at 0, or when Ψ(0) > 0, there will be an infinity of orbits
asymptoting into Q+

2 in K2. However, Γ2 can again be uniquely defined, respectively, as the stable
manifold of Q+

2 when 0 is an isolated zero of Ψ and as the strong stable manifold when Ψ(0) > 0. In
both cases, it is that particular orbit for which the decay rate is the strongest, cf. Proposition 2.2.
All other orbits which asymptote into Q+

2 do so tangent to, respectively, a center manifold (in
the former case) and to the weak stable eigendirection of Q+

2 (in the latter case); therefore, the

associated decay rates must be weaker. This justifies the assertions made in (i) and (iii), since Γ
then corresponds, to leading order, to the traveling wave solution in (5) for which the decay at the
origin is strongest, in accordance with the generalized definition of a “critical” wave speed in that
case.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We start by showing that, for each ε > 0 sufficiently
small, there exists a unique value ccrit(ε) ∼ 2 of c in (8) for which there is a heteroclinic orbit
connecting Q− to Q+ that lies in the intersection of Wu(Q−) with Ws(Q+), respectively with
Wss(Q+), and that is close to the singular orbit Γ constructed in the previous section. Then, we
derive corresponding necessary conditions involving the dependence of ccrit(ε) on ε in order for
Γ to persist. Combining these two aspects of the analysis, we obtain the existence of a unique
(generalized) critical speed ccrit(ε) as well as the leading-order expansion of ccrit(ε), as stated in
Theorem 1.1. We emphasize that the invariant manifoldsWu(Q−),Ws(Q+), andWss(Q+) depend
on the system parameters in (8), including c; however, as is customary in dynamical systems theory,
that dependence may be suppressed in the notation.

The required analysis is summarized in the following subsections. In Section 3.1, we demonstrate
the existence of a “critical” heteroclinic connection for a unique value ccrit(ε) of c in (8), with ε > 0
sufficiently small, in the context of the original variables (U, V ) in combination with the “classical”
rescaling chart K2. In Section 3.2, the transition from the unperturbed into the modified, cut-off
regime in (8) is naturally described in chart K1, which also provides a clear geometric understanding
of Theorem 1.1.

3.1. Existence and uniqueness of ccrit(ε). We set out by proving that, for ε > 0 in (8), the
unstable manifold of Q− intersects the (strong) stable manifold of Q+ for a unique value of c,
labeled ccrit(ε). In particular, we show that ccrit(ε) < 2:

Proposition 3.1. For ε ∈ (0, ε0) with ε0 > 0 sufficiently small and c ∼ 2, there exists a unique
ccrit(ε) such that for c = ccrit(ε) in (8), there is a “critical” heteroclinic orbit connecting Q− and
Q+. Moreover, there holds ccrit(ε) < 2.

Proof. The proof is given for general ϕ and, consequently, for any Ψ that is admissible by Assump-
tion A.

Recall the definition of the section Σin
2 in chart K2, as well as of the point P in

2 = (1, vin2 , 0). For
r2(= ε) sufficiently small, the intersection of the stable manifoldWs(`+2 ) (respectively of the strong
stable manifold Wss

2 (`+2 )) with Σin
2 can be written as the graph of a Ck function vin2 = vin2 (c, ε).

Here, k is as in the definition of ϕ, see Assumption A. In the singular limit of ε = 0, it follows from
Proposition 2.2 that −2 ≤ vin2 (2, 0) < −1 for any admissible Ψ. Moreover, given that for general,
fixed c, (16) becomes

u′2 = v2,

v′2 = −u2Ψ(u2)− cv2,
14



one easily sees that
∂vin2
∂c (2, 0) < 0. (Note that in the special case when Ψ ≡ 0, one may explicitly

find these quantities as vin2 (2, 0) = −2 and
∂vin2
∂c (2, 0) = −1.) Hence,

∂vin2
∂c (c, ε) < 0 for c ∼ 2

and ε > 0 small enough, and it follows by regular perturbation theory that the intersection of
the (strong) stable manifold of Q+ with {U = ε}, which is given by V in(c, ε) ≡ εvin2 (c, ε) after

blow-down, certainly satisfies −3ε < V in(c, ε) < −ε as well as ∂V in

∂c (c, ε) < 0.
To describe the unstable manifold Wu(Q−) of Q− on {U ≥ ε}, with ε > 0, we consider the

equations in (8) for ϕ ≡ 1:

U ′ = V,

V ′ = −U(1− U2)− cV.
(28)

The intersection of Wu(Q−) with {U = ε} can be represented as the graph of an analytic function

V out = V out(c, ε), where ∂V out

∂c > 0.
Now, for any c . 2 fixed, a standard phase plane argument shows that the limit as ε → 0 in

V out(c, ε), which represents Wu(Q−) ∩ {U = 0}, is well-defined, as well as that V out(c, 0) < 0.
Hence, for ε > 0 small enough, V out(c, ε) must also be strictly O(1) and negative, which, together
with V in(c, ε) > −3ε, implies that V in > V out for c . 2.

It remains to consider the case where c = 2, with ε > 0 small: Recall that by the proof of
Lemma 2.5, the flow of (28) is trapped in the wedge bounded by the lines {V = 0} and {V = −U},
which shows that in {U = ε}, V out(2, ε) ≥ −ε for ε > 0 sufficiently small. Since V in(2, ε) < −ε, as
before, it follows that V in < V out for c = 2.

In sum, we conclude that Ws(Q+) and Wu(Q−), respectively Wss(Q+) and Wu(Q−), must
connect to each other in {U = ε} for some value of c, which we call ccrit(ε); moreover, we note that

by the above argument, ccrit(ε) < 2. Finally, since ∂V in

∂c < 0 and ∂V out

∂c > 0 for c ∼ 2 and ε > 0
small, it follows that ccrit(ε) is unique. This completes the proof. �

3.2. Transition through chart K1. To study the passage of trajectories through chart K1 under
the flow of (22), it is again convenient to work with appropriate sections for the flow. We will
employ the sections Σout

1 = κ21(Σ
in
2 ) and Σin

1 defined above. The transition of orbits through chart
K1 from Σin

1 to Σout
1 is governed by the transition map Π1 : Σin

1 → Σout
1 . Our aim is to derive a

sufficiently accurate approximation for this map.
Taking into account that ccrit(ε) → 2 in the singular limit as ε → 0, we first define c̃(ε) =

ccrit(ε)− 2, where we note that c̃(ε) = O(1) for ε→ 0. Since c̃(ε) must be strictly negative for the
heteroclinic connection whose existence was demonstrated in Proposition 3.1, we set c̃(ε) = −η(ε)2.
Moreover, we shift the point P1 = (0,−1, 0) to the origin by introducing the new variable w = v1+1.
As before, let P in

1 denote the point of intersection of Γ−1 with Σin
1 . Since c̃ . 0, we restrict ourselves

to describing Π1 on Σin
1 ∩ {v1 < vin1 } in the following.

Under the above transformations, the equations in (22) become

r′1 = −r1(1− w),(29a)

w′ = r21 − w2 − η2(1− w),(29b)

ε′1 = ε1(1− w).(29c)
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In turn, after a rescaling of ξ by a division through the positive factor 1− w, we find that system
(29) can be written as

ṙ1 = −r1,(30a)

ẇ = −η2 +
r21 − w2

1− w
,(30b)

ε̇1 = ε1.(30c)

(Here, the overdot denotes differentiation with respect to the new rescaled “time” ξ1.) Plainly, the
ε1-equation (30c) decouples, and we have ε1(ξ1) = ε

r0
eξ1 . To study the (r1, w)-subsystem in (30),

we change notation, replacing r1 by s. Moreover, we introduce η as a third variable. Hence, in the
following we analyze the system of equations

ṡ = −s,(31a)

ẇ = −η2 +
s2 − w2

1− w
,(31b)

η̇ = 0.(31c)

Remark 7. Before giving a rigorous analysis of the transition past P1 and the proof of Theorem 1.1,
we present a heuristic argument. Consider the leading-order approximation to (31b),

ẇ = −η2 + s2 − w2 +O(3) ∼ −η2 − w2,

and note that the transition “time” from Σin
1 to Σout

1 under the flow of (30) is given by Ξ1 = − ln ε
r0

.
Hence, by separation of variables, one finds that to leading order,

−1

η
arctan

(w
η

)∣∣∣∣wout

win

= − ln
ε

r0
.

Here, win ≈ 1 + vin1 and wout ≈ 1 + vout1 are assumed to be “almost independent” of ε. Evaluating
the arctangent and taking into account that η = O(1) by assumption, one obtains 1

η (−π) ∼ ln ε.

Solving for η to obtain η ∼ − π
ln ε and recalling that c̃ = −η2, one retrieves the leading-order

correction to the critical wave speed, as stated in Theorem 1.1.

To analyze rigorously the transition through chart K1 in the vicinity of the point P1 (which
is now located at the origin) for ε ∈ (0, ε0) small, we have to describe the map Π1 in more
detail. More precisely, the fact that the unstable manifoldWu(Q−) connects to the stable manifold
Ws(Q+) (respectively to the strong stable manifold Wss(Q+)), i.e., that Wu

1 (`−1 ) is “matched” to
Ws

2(`+2 ) (respectively to Wss
2 (`+2 )) in Σin

2 = κ12(Σ
out
1 ) after transition past P1, imposes a particular

dependence of η on ε.
To leading order, an expression for η(ε) is derived in the following proposition:

Proposition 3.2. For a “critical” heteroclinic connection between Q− and Q+ to be possible when
ε > 0 in (8), there must necessarily hold

η(ε) = − π

ln ε
+O

(
(ln ε)−2

)
.(32)

Proof. To simplify the analysis of (31), we make a normal form transformation which decouples
the dynamics of s and w in (31). By Theorem 1 of [5], there exists, for each r ≥ 1, a Cr coordinate
change

(s, w, η) 7→
(
S(s, w, η),W (s, w, η), η

)
(33)
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with S(0, w, η) = 0 which transforms (31) into

Ṡ = −S,(34a)

Ẇ = −η2 − W 2

1−W
,(34b)

η̇ = 0.(34c)

Note that (33) respects the invariance of {s = 0} and that it additionally leaves the level surfaces
{η = η0} (with η0 constant) invariant.

For η sufficiently small, we need to calculate the transition “time” Ξ̃1 of solutions of system
(34) between the two sections corresponding to Σin

1 and Σout
1 after transformation by (33). Let

W in > 0 and W out < 0 denote the corresponding values of W . We will see that, to leading order,

Ξ̃1 = Ξ̃1(W
in,W out, η) is independent of the exact values of W in and W out.

Since the equations in (34) are decoupled, we can solve (34b) by separation of variables. To that

end, we introduce a new variable Z = W − η2

2 in (34b), which gives

−dξ̃1 =
(1− Z − η2

2 ) dZ

Z2 + η2(1− η2

4 )
.

Integrating, we find

−Ξ̃1 =
1− η2

2

η

√
1− η2

4

arctan
(

Z

η

√
1− η2

4

)∣∣∣∣Zout

Zin

− 1

2
ln
∣∣Z2 + η2

(
1− η2

4

)∣∣∣∣∣∣Zout

Zin

.(35)

Here, Z in and Zout are the values of Z that are obtained from W in and W out, respectively.
Reverting to W in (35) and dividing out a factor of η−1, we have

(36) − Ξ̃1 =
1

η

[
1− η2

2√
1− η2

4

[
arctan

(
W out− η2

2

η

√
1− η2

4

)
− arctan

(
W in− η2

2

η

√
1− η2

4

)]
− η

2

[
ln
∣∣(W out)2 −W outη2 + η2

∣∣− ln
∣∣(W in)2 −W inη2 + η2

∣∣]].
Since we are only interested in deriving a leading-order expression for η, we expand (1 − η2

2 )(1 −
η2

4 )−
1
2 = 1 +O(η2). Also, since wout < 0 and win > 0 and since (33) is near-identity, we conclude

that W out < 0 and W in > 0 are O(1) as ε→ 0 and independent of η to leading order.
To derive expansions for the arctangent-terms in (36), we make use of the identity

arctan(x) + arctan
(1

x

)
= ±π

2
,

where the sign equals the sign of x. In particular, for |x| large, we have

arctan(x) = ±π
2
−
(1

x
− 1

3x3
+ . . .

)
.

In our case,

x =
W− η2

2

η

√
1− η2

4

=
W

η

(
1 +O(η2)

)
and, hence,

arctan
(
W out− η2

2

η

√
1− η2

4

)
= −π

2
− η

W out
+O(η3) and arctan

(
W in− η2

2

η

√
1− η2

4

)
=
π

2
− η

W in
+O(η3).
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To estimate the logarithmic terms in (36), we note that ln |W 2 −Wη2 + η2| = ln |W 2|+ ln |1−
η2

W 2 (1−W )| = 2 ln |W |+O(η2). Collecting these estimates, we find

Ξ̃1 =
1

η

[
π + η

[ 1

W out
− 1

W in
+ ln

∣∣∣W out

W in

∣∣∣]+O(η3)

]
.(37)

On the other hand, we know that S evolves according to S = Sine−ξ̃1 , where Sin > 0 denotes
the initial value S(0). Hence, we may also write

ξ̃1 = − ln
S

Sin
= − ln

(
sβ(s, w, η)

)
,(38)

where β(s, w, η) is a strictly positive, Cr-smooth function that depends on the choice of normalizing
coordinates in (33). (Note that the ε-dependence of β is implicitly encoded in its arguments s, w,

and η, and that β = O(1) as ε → 0.) Now, during that same “time” Ξ̃1 introduced above, the
S-variable has to change from Sin to a value Sout that permits a connection between Wu

1 (`−1 ) and
Ws

2(`+2 ), respectively Wss
2 (`+2 ), in Σin

2 = κ12(Σ
out
1 ). This condition will impose a relation between η

and ε that can be described, to leading order, in the normal form coordinates (S,W, η).
To that end, recall that s in (31) stands for r1, as defined in chart K1, as well as that r1 in Σout

1

is fixed to rout1 = ε. Hence, we obtain from (38) that

Ξ̃1 = − ln
(
εβ̃(ε, η)

)
(39)

for some function β̃(ε, η) which is strictly positive and Cr-smooth, with β̃ = O(1) for ε→ 0.
Combining (37) and (39) and recalling that W in and W out are O(1) as ε → 0, as noted below

equation (36), we find

− ln ε =
1

η

[
π + ηθ(ε) +O(η2)

]
(40)

for some bounded function θ. (In fact, we can assume that θ is Cmin{k,r}-smooth, see Assumption A
and (33).) Solving (40) for η, we obtain

η = − π

ln ε
+ η̃,(41)

where η̃ defines a relative correction in (41), i.e., there holds η̃ = O((ln ε)−1). In fact, substituting
(41) into (37), one can check that η̃ = O((ln ε)−2): Given (40), it follows that

η̃(ln ε)2 = (π − η̃ ln ε)θ(ε) +O
(
(ln ε)−1, η̃, η̃2 ln ε

)
.

Since η̃ ln ε = O(1) by assumption, we have η̃ = O((ln ε)−2). This concludes the proof. �

Now, the assertions of Theorem 1.1 follow immediately from Propositions 3.1 and 3.2. By
Proposition 3.1, given ε > 0 sufficiently small, there exists a “critical” heteroclinic connection in
(8) close to Γ for a unique value ccrit(ε) of c. This connecting orbit lies in the intersection of the two
manifoldsWu(Q−) andWs(Q+) (in cases (i) and (ii)), respectivelyWu(Q−) andWss(Q+) (in case
(iii)), and corresponds, by construction, to the traveling wave solution of (5) with the strongest
possible decay at the zero rest state, in accordance with our generalized notion of criticality. In
addition, by Proposition 3.2, ccrit(ε) must necessarily satisfy

ccrit(ε) = 2 + c̃(ε) = 2− η(ε)2 = 2− π2

(ln ε)2
+O

(
(ln ε)−3

)
.

This completes the proof of Theorem 1.1.

Remark 8. While it suffices to take k = 1 in Assumption A to establish Theorem 1.1, the com-
putation of higher-order terms in the expansion of ccrit(ε) will generally require stronger regularity
assumptions on ϕ.
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Remark 9. An alternative way of analyzing (31) would be to make use of the fact that S0 : {s = 0}
is an invariant manifold which is normally attracting and which has a fast, strong stable foliation.
Hence, the dynamics in chart K1 can be decomposed into the dynamics along the fast fibers and
the slow motion of the associated base points on S0 [19].

Alternatively still, instead of proving Proposition 3.2 via an explicit calculation, one could apply
the blow-up technique again inside S0 to obtain an approximation for the transition map Π1.

Remark 10. As stated in Section 1, our proof of Theorem 1.1 was guided in part by the results of
Section IV in [9]. These were derived by dividing the phase space of the traveling wave equation (7)
into three regions, an inner “region III” about the origin (U < ε) in which ϕ ≡ 0, an outer “region
I” (U = O(1)) in which ϕ ≡ 1, and an intermediate “region II” (ε < U � 1) in which ϕ makes the
transition from zero to one. Then, asymptotic matching was applied at the interfaces between these
regions. To relate our analysis to that of [9], we briefly summarize their argument here. In region I,
equation (5) is precisely the original FKPP equation, without cut-off. Hence, the asymptotic form of
the corresponding solution to (7) is given by UI(ξ) ∼ Aξe−ξ, for ξ large. In the intermediate region
II, equation (7) reduces to leading order to the linear equation U ′′ + cU ′ + U = 0, see Remark 5.
The asymptotic form of the solution for large ξ is given by UII(ξ) ∼ Ce−γrξ sin(γiξ), where γr ± iγi
are the roots of λ2−cλ+1, and where we note that γr−1 = O(c−cFKPP) and γi = O(

√
c− cFKPP).

Matching UI and UII to leading order in
√
c− cFKPP implies that C = A

γi
. Finally, in the inner

region III, equation (7) reduces to U ′′ + cU ′ = 0, and the solution satisfies UIII(ξ) ∼ εe−c(ξ−ξ0),
where ξ = ξ0 when U = ε, see also Remark 3. The requirement of continuity of U and U ′ at
the interface between regions II and III then implies (after some calculation) that γiξ0 ∼ π and

ξ0 ∼ − ln ε. Therefore, one directly obtains γi ∼ π
| ln ε| , and, hence, that c − cFKPP ∼ − π2

(ln ε)2
as

ε→ 0.

4. Generalization of Theorem 1.1 to (9) and (10)

In this section, we generalize the result of Theorem 1.1 to reaction-diffusion equations with cut-
off other than (5), focusing in particular on equations (9) and (10). In fact, it suffices to consider
equation (10) only, since (9) is a special case of (10) with g(u) = u2.

Thus, we are concerned with the general class of reaction-diffusion equations with cut-off in (10),
where g(u) is chosen such that

(i) g(u) = O(u2) as u→ 0,
(ii) there exists a q− > 0 such that g(q−) = q−,

(iii) g′(q−) > 1, and
(iv) 0 < g(u) < u for all u ∈ (0, q−).

Note that the function g does not have to be analytic or even C∞-smooth; a finite degree of differ-
entiability suffices. Geometrically, the above conditions may be interpreted as follows. Condition
(i) guarantees that Q+ = (0, 0) is an equilibrium of the corresponding traveling wave equation
U ′′ + cU ′ + (U − g(U))ϕ(U, ε, Uε ) = 0, cf. (7), and that it is again a degenerate stable node for
c = 2, with the same linearization as before. Conditions (ii) and (iii) guarantee that Q− = (q−, 0)
is a hyperbolic saddle equilibrium of that same traveling wave ODE. Finally, condition (iv) implies
that there are no equilibria apart from Q+ and Q− and that the trapping region constructed in
Lemma 2.5 exists also for these more general equations.

Given conditions (i)–(iv), the analysis of the previous two sections carries over almost verbatim.
In particular, the origin is still a degenerate equilibrium for (10) which can again be desingularized
via the blow-up transformation in (11). The analysis can again be performed in the same two
charts K2 and K1, with the dynamics in chart K2 being exactly as given in Section 2.1. In chart
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K1, the only modification that has to be made is that the r21-term in equation (20b) is now replaced

by g(r1)
r1

. The rest of the analysis, however, proceeds as above.

In particular, one obtains precisely the same normal form system (34) as in Section 3. Therefore,
the result of Theorem 1.1 also holds exactly for the more general class of equations defined in (10),

and the first-order correction to the continuum wave speed is again given by − π2

(ln ε)2
.
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