
Statistics of nascent and mature RNA fluctuations in a

stochastic model of transcriptional initiation,

elongation, pausing, and termination

Tatiana Filatova1,2, Nikola Popovic2, and Ramon Grima1

1School of Biological Sciences, the University of Edinburgh, United Kingdom
2School of Mathematics, the University of Edinburgh, United Kingdom

April 10, 2022

Abstract

Recent advances in fluorescence microscopy have made it possible to measure the fluctuations
of nascent (actively transcribed) RNA. These closely reflect transcription kinetics, as opposed to
conventional measurements of mature (cellular) RNA, whose kinetics is affected by additional pro-
cesses downstream of transcription. Here, we formulate a stochastic model which describes promoter
switching, initiation, elongation, premature detachment, pausing, and termination while being an-
alytically tractable. We derive exact closed-form expressions for the mean and variance of nascent
RNA fluctuations on gene segments, as well as of total nascent RNA on a gene. We also obtain exact
expressions for the first two moments of mature RNA fluctuations, and approximate distributions for
total numbers of nascent and mature RNA. Our results, which are verified by stochastic simulation,
uncover the explicit dependence of the statistics of both types of RNA on transcriptional parameters
and potentially provide a means to estimate parameter values from experimental data.

1 Introduction

Transcription, the production of RNA from a gene, is an inherently stochastic process. Specifically, the
interval of time between two successive transcription events is a random variable whose statistics depend
on multiple single-molecule events behind transcription [1]. When the distribution of this random variable
is exponential, we say that expression is constitutive; in that case, the number of transcripts produced
in a certain interval of time follows a Poisson distribution. On the other hand, when the distribution
of times between two successive transcripts is non-exponential, then the number of transcripts is non-
Poissonian. A special case of such non-constitutive behaviour is bursty expression, whereby transcripts
are produced in short bursts that are separated by long silent intervals [2, 3]. In yeast, genes whose
expression is constitutive include MDN1, KAP104, and DOA1, whereas PDR5 is an example of a gene
whose expression is bursty [4].

For two decades, mathematical models of gene expression have been developed to predict the distribu-
tion of RNA abundance. By matching the theoretical distribution with experimental measurements from
microscopy-based methods [5], one hopes to obtain insight into the underlying kinetics of transcription,
and to estimate transcriptional parameters. The standard model of gene expression which has been used
for these analyses is the telegraph model [6], whereby a gene can be in two states. Transcription occurs in
one of the states, whereupon RNA degrades; first-order kinetics is assumed for all processes. While the
distribution obtained from the telegraph model can typically fit cellular RNA abundance data, there are
innate difficulties with the interpretation of that fit: fluctuations in cellular RNA numbers and, hence,
the shape of the experimental RNA distribution do not only reflect transcription, but also many processes
downstream thereof, such as splicing, RNA degradation, and partitioning during cell division.
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To counteract these difficulties, in the past few years, mathematical models [7–10] have been devel-
oped to predict the statistics of nascent RNA, i.e. of RNA in the process of being synthesised by the
RNA polymerase molecule (RNAP), which can be visualised and quantified due to recent advances in
fluorescence microscopy [11–15]. In contrast to cellular RNA, the statistics of nascent RNA is a direct
reflection of the transcription process; hence, these models can potentially give more insight than the
simpler, but cruder telegraph model. Choubey and collaborators [7,8] have developed a stochastic model
with the following properties: (i) a gene can be in two states (active or inactive); (ii) from the active
state, transcription initiation occurs in two sequential steps: the pre-initiation complex is formed, after
which the RNA polymerase escapes the promoter; (iii) once on the gene, the polymerase moves from one
base pair to the next (with some probability) until the end of the gene is reached, when transcription
is terminated and polymerase detaches. Queuing theory is used to derive analytical expressions for the
transient and steady-state means and variances of numbers of RNAP that are attached to the gene in
the long-gene limit when the elongation time is practically deterministic. Xu et al. [9] have considered
a coarse-grained version of that model, whereby the movement of RNAP from one base pair to the next
is not explicitly modelled, obtaining an analytical expression for the total RNAP distribution in steady-
state conditions. More recently, Cao and Grima [10] have studied a model of eukaryotic gene expression
that yields approximate time-dependent distributions of both nascent and cellular RNA abundance as
a function of the parameters controlling gene switching, DNA duplication, partitioning at cell division,
gene dosage compensation, and RNA degradation; in their coarse-grained model, the movement of RNAP
is not explicitly modelled, while the elongation time is assumed to be exponentially distributed, which
simplifies the requisite analysis.

The complexity of nascent RNA models has thus far not allowed the same detailed level of analysis
as has been possible with the much simpler telegraph model. A few shortcomings of current models can
be summarised as follows: (i) distributions of nascent RNA have been derived from models that do not
explicitly model the movement of RNAP along a gene [9,10], resulting in a disconnect between theoretical
description and the microscopic processes underlying transcription; (ii) while the analysis of single-cell
sequencing data and electron micrograph data yields the positions of individual polymerases along the
gene, allowing for the calculation of statistics (means and variances) of the numbers of RNAP on gene
segments that are obtained after binning, detailed models of RNAP elongation [7, 8] provide analytical
results only for total RNAP on a gene and hence cannot be used to understand gene segment data;
(iii) analytical calculations of the statistics of nascent RNA ignore important details of the transcription
process such as pausing, traffic jams, backtracking, and premature termination, some of which have
to-date been explored via stochastic simulation [7, 16–19].

In this paper, we overcome some of the aforementioned shortcomings of analytically tractable models
for the transcription process. In Section 2, we study a stochastic model for promoter switching and the
stochastic movement of RNAP along a gene, allowing for premature termination. We derive exact closed-
form expressions for the first and second moments (means and variances) of local RNAP fluctuations on
gene segments of arbitrary length, which allows us to study how these statistics vary along a gene as a
function of transcriptional parameters; we also obtain expressions for the mean and variance of the total
RNAP on the gene which generalize previous work by Choubey et al. [7]. In Section 3, we investigate
approximations for the distributions of total RNAP and mature RNA, showing in particular that Negative
Binomial distributions can provide an accurate approximation in certain biologically meaningful limits.
In Section 4, we illustrate the difference between the statistics of local and total RNAP fluctuations and
those of light fluorescence due to tagged nascent RNA. In Section 5, we extend our model to include
pausing by deriving approximate expressions for the mean, variance, and distribution of observables. We
conclude with a discussion of our results in Section 6.

2 Detailed stochastic model of transcription: setup and analysis

In this section, we specify the stochastic model studied here; then, we derive closed-form expressions for
the moments of mature RNA and of local and total RNAP fluctuations in various parameter regimes.
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Figure 1: Model of transcription. (a) The gene is arbitrarily divided into L segments, with RNAP (blue)
on gene segment i denoted by Pi. The promoter switches from the active state Gon to the inactive state
Goff with rate sb, while the reverse switching occurs with rate su. When the promoter is active, initiation
of RNAP occurs with rate r. Initiation is followed by elongation, which is modelled as RNAP ‘hopping’
from gene segment i to the neighbouring segment i+ 1 with rate k, i.e. as the transformation of species
Pi to Pi+1. RNAP prematurely detaches from the gene with rate d. A nascent RNA tail (red), attached
to the RNAP, grows as elongation proceeds. Termination is modelled by the change of PL with rate k
to mature RNA (M), which subsequently degrades with rate dm. In panel (b), we show the probability
distribution P (T ) of the total elongation time T – the time between initiation and termination – as
predicted by the stochastic simulation algorithm (SSA; histogram) and our theory (Erlang distribution
with shape parameter L and rate k + d; solid line). The parameter values used are L = 50, k = 10/min,
and d = 1.5/min. In panel (c), we show the dependence of the mean of the distribution P (T ) on the
RNAP detachment rate (d), as predicted by SSA (dots) and our theory (〈T 〉 = L/(k + d); solid line).
The relevant parameter values are L = 50 and k = 10/min.

2.1 Setup of model

We consider a stochastic model of transcription that includes the processes of initiation, elongation, and
termination, as illustrated in Fig. 1. For simplicity, we divide the gene into L segments; the RNAP on
gene segment i is then denoted by Pi. The promoter can be either in the inactive state (Goff) or the
active state (Gon), switching from the inactive state to the active one with rate su and from the active
state to the inactive one with rate sb. When the promoter is active, initiation commences via the binding
of an RNAP with rate r, denoted by P1. Subsequently, the RNAP either moves from a gene segment to
the neighbouring segment with rate k, or it prematurely detaches with rate d. Note that here we have
made two assumptions: (i) the movement of RNAP is unidirectional, away from the promoter site and
hence left to right, with no pausing or backtracking allowed; (ii) the detachment and elongation rates are
independent of the position of RNAP on the gene. Each RNAP has associated with it a nascent RNA
tail that grows longer as the RNAP transcribes more of the gene. When the RNAP reaches the last gene
segment, termination occurs, i.e. the RNAP-nascent RNA complex gets dissociated from the gene leading
to a mature RNA (M) which degrades with rate dm. Note that for simplicity, we have not considered
excluded-volume interaction between adjacent RNAPs here; hence, we make the implicit assumption of
low ‘traffic’, which is plausible when the initiation rate is sufficiently low. (We test the validity of this
assumption through simulations below.)

Note that, while the choice of L is arbitrary, it should be kept in mind that L needs to be sufficiently
large for the dynamics to be described at a fine spatial resolution. However, L also has to be small
enough for the length of each gene segment to be much larger than the footprint of an RNAP; the latter
is needed to ensure the validity of the low-traffic assumption. The elongation time, which is the total time
T from initiation to termination, that is, conditioning on those realisations for which the RNAP does
not prematurely detach, is Erlang distributed with mean L/(k+ d) and coefficient of variation 1/

√
L; see

Appendix A for a derivation and Figs. 1(b) and (c) for verification through stochastic simulation (SSA).
Note that the total number of RNAPs transcribing the gene is equal to the number of nascent RNA
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molecules present, irrespective of their lengths; to shed light on the fluctuations of nascent RNA, in this
section we therefore focus on the calculation of statistics of local and total RNAP fluctuations. We define
the vector of molecule numbers ~m = (n0, n1, . . . , nL, n), and we write 〈n0〉, 〈ni〉 (i = 1, 2, . . . , L), and 〈n〉
for the average numbers of molecules of active gene, RNAP, and mature RNA, respectively. The above
model can then be conveniently described by L+ 2 species interacting via a set of 2L+ 4 reactions with
the following rate functions:

Species Molecule numbers Position (in ~m)
Gon n0 1
Pi, i ∈ {1, . . . , L} ni i+ 1
M n L+ 2

Reaction Rate function fj
Gon

sb−→ Goff f1 = sb〈n0〉
Goff

su−→ Gon f2 = su(1− 〈n0〉)
Gon

r−→ Gon + P1 f3 = r〈n0〉
Pi

k−→ Pi+1, i ∈ {1, . . . , L− 1} fi+3 = k〈ni〉
PL

k−→M fL+3 = k〈nL〉
Pi

d−→ ∅, i ∈ {1, . . . , L} fi+L+3 = d〈ni〉
M

dm−→ ∅ f2L+4 = dm〈n〉

Note that Goff is not an independent species; the reason is that the binary state of the gene implies
a conservation law, with the sum of the numbers of Gon and Goff equalling 1. Hence, the number of
independent species in the model is L+ 2. The rate functions fj are the averaged propensities from the
underlying chemical master equation (CME); note that, because our reaction network is composed of first-
order reactions, these rate functions also equal the reaction rates in the corresponding deterministic rate
equations. The description of our model is completed by the (L+2)×(2L+4)-dimensional stoichiometric
matrix S; the element Sij of S gives the net change in the number of molecules of the i-th species when
the j-th reaction occurs. Given the ordering of species and reactions as described in the Tables above, it
follows that the matrix S has the simple form

S11 = −1, S12 = 1,

Si,i+1 = 1, Si,i+2 = −1, Si,i+L+2 = −1,

SL+2,L+3 = 1, SL+2,2L+4 = −1,

(1)

where i = 2, . . . , L+ 1.

2.2 Closed-form expressions for moments of mature RNA and local RNAP

In this subsection, we outline the derivation of the steady-state means and variances of local RNAP
fluctuations (on each gene segment), as well as of mature RNA. Our results are summarised in the
following two propositions.

Proposition 1. Let η = su/(su + sb) be the fraction of time the gene spends in the active state, let
ρk = r/k be the mean number of RNAPs binding to the promoter site in the time it takes for a single
RNAP to move from one gene segment to the next, let ρ = r/dm be the mean number of RNAPs binding to
the promoter site in the time it takes for a mature RNA to decay, and let µ = k/(k+ d) be the probability
that an RNAP molecule moves to the next gene segment rather than detaching prematurely. Then, the
steady-state mean numbers of molecules of active gene, RNAP, and mature RNA are given by

〈n0〉 = η, (2a)

〈ni〉 = ηρkµ
i for i = 1, . . . , L, (2b)

〈n〉 = ηρµL, (2c)

respectively.
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Prop. 1 can be proved in a straightforward fashion, as follows. Using the underlying CME, one can

show from the corresponding moment equations [20] that the time evolution of the vector ~〈m〉 of mean
molecule numbers in a system of zeroth-order or first-order reactions, i.e. with propensities that are

linear in the number of molecules, is given by the time derivative d ~〈m〉/dt = S · ~f . Given the form of the
stoichiometric matrix S and of the rate functions fj , as described in Section 2.1, it follows that the mean
numbers of all species in steady-state can be obtained by solving the following system of L+ 2 algebraic
equations:

0 = su(1− 〈n0〉)− sb〈n0〉,
0 = r〈n0〉 − (k + d)〈n1〉,
0 = k〈ni−1〉 − (k + d)〈ni〉 for i = 2, . . . , L,

0 = k〈nL〉 − dm〈n〉.

(3)

These equations can easily be solved simultaneously to yield the steady-state value of ~〈m〉, as given in
Eq. (2).

Proposition 2. Let τp = 1/(d + k), τg = 1/(su + sb), and τm = 1/dm be the timescales of fluctuations
of RNAP, gene, and mature RNA, respectively, and define the three new parameters

α =
1

1 + τp/τg
, γ =

1

1 + τp/τm
, and θ =

1

1 + τm/τg
.

Furthermore, let β = sb/su denote the ratio of gene inactivation and activation rates. Then, the variances
and covariances of molecule number fluctuations of active gene, RNAP, and mature RNA are given by

Var(n0) = 〈n0〉2β, (4a)

Cov(n0, ni) = 〈n0〉〈ni〉αβ · f1i, where f1i = αi−1; (4b)

Cov(n0, n) = 〈n0〉〈n〉αβ · f1M , where f1M = θαL−1, (4c)

Cov(ni, nj) = δij〈ni〉+ 〈ni〉〈nj〉αβ · fij , where fij = f(i, j) + f(j, i), (4d)

Cov(ni, n) = 〈ni〉〈n〉αβ · fiM , where fiM = γiθαL−1 + (1− γ)

i∑
q=1

γi−qfqL, (4e)

Var(n, n) = 〈n〉+ 〈n〉2αβ · fMM , where fMM = fLM , (4f)

and where i, j = 1, . . . , L. Here, δij is the Kronecker delta; moreover,

f(i, j) =
αi+j−1

(2α− 1)i
+

1

2i+j−1

(
i+ j − 1

i

)[
1− 2α− 1

2α
2F1

(
1, i+ j; j; 1

2α

)]
,

where 2F1 denotes the generalised hypergeometric function of the second kind [21], which is defined as

2F1(a1, a2; b1; z) =

∞∑
s=0

(a1)s(a2)s
(b1)s

zs

s!
,

with (a)s = Γ(a+ s)/Γ(a) the Pochhammer symbol.

Here, we note that an alternative representation of the functions fij in Eq. (4d), in terms of finite
sums, is given in Eq. (B.33) of Appendix B.

As above, since the underlying propensities are linear in the number of molecules, the CME implies [20]
that the corresponding second moments in steady-state are exactly given by a Lyapunov equation. That
equation, which is precisely the same as the one that is obtained from the linear-noise approximation
(LNA) [22], takes the form

J ·C + C · JT + D = 0. (5)
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Here, C, J, and D are (L + 2) × (L + 2)-dimensional matrices; C is a variance-covariance matrix that

is symmetric (Cij = Cji), J is the Jacobian matrix with elements Jij = ∂(S · ~f)i/∂〈nj〉, and D =

S ·Diag(~f) ·ST is a diffusion matrix, where Diag(~f) is a diagonal matrix whose elements are the entries

in the rate function vector ~f . The non-zero elements of J are given by

J11 = −(su + sb),

J21 = r, J22 = −(k + d),

Ji,i−1 = k, Jii = −(k + d) for i = 3, . . . , L+ 1,

JL+2,L+1 = k, JL+2,L+2 = −dm,

(6)

while the non-zero elements Di read

D11 = sb〈n0〉+ su(1− 〈n0〉),
D22 = r〈n0〉+ (k + d)〈n1〉, D23 = −k〈n1〉,

Di,i−1 = −k〈ni−2〉, Dii = k〈ni−1〉+ (k + d)〈ni〉 for i = 3, . . . , L+ 1,

Di,i+1 = −k〈ni−1〉 for i = 3, . . . , L,

DL+2,L+1 = −k〈nL〉, DL+2,L+2 = k〈nL〉+ dm〈n〉.

(7)

Given the structure of the matrices J and D above, the Lyapunov Eq. (5) can be solved explicitly for the
covariance matrix C whose elements are given by Eq. (4). The solution by induction is involved and can
be found in Appendix B, which proves Prop. 2.

2.2.1 Simplification in bursty and constitutive limits

Bursty limit. We now consider a particular parameter regime – the limit of large initiation rate r and
large gene inactivation rate sb such that b = r/sb is constant. Since the fraction of time spent in the
active state is η, it follows that the gene is mostly in the inactive state in that limit. During the short
periods of time when it transitions to the active state, a burst of initiation events occur; in particular, a
mean number b of RNAPs bind to the promoter during activation. Hence, such genes are often termed
bursty, since transcription proceeds via sporadic bursts of activity and b is called the mean transcriptional
burst size. For r and sb large with b constant, the expressions for the first two moments of RNAP at
every gene segment and of mature RNA from Eqs. (2) and (4), respectively, simplify to

〈ni〉b = bυkµ
i, (8a)

〈n〉b = bυmµ
L, (8b)

Cov(ni, nj)b = δij〈ni〉b + 〈ni〉b〈nj〉b(υkµ)−1 · hij , where hij =
1

2i+j−2

Γ(i+ j − 1)

Γ(i)Γ(j)
, (8c)

Cov(ni, n)b = 〈ni〉b〈n〉b(υkµ)−1 · hiM , where hiM = (1− γ)

i∑
q=1

γi−q · hqL (8d)

Var(n)b = 〈n〉b + 〈n〉2b(υkµ)−1 · hMM , where hMM = hLM ; (8e)

here, the subscript b denotes the moments in the bursty limit. Moreover, υk = su/k, υm = su/dm, and
hij = fij |α→0 denotes the simplified function fij in the limit of α−→ 0, which is achieved when sb →∞.
We note that the above expressions for the functions hij are derived from the expressions for fij that are
given in Eq. (B.33), rather than from those in Eq. (4d). The reason is that, in the bursty limit, we have
that 1

2α → ∞, in which case the identity in Eq. (B.36) does not hold. The bursty limit in Eq. (B.33) is
simply taken by collecting terms that are not dependent on α, since α −→ 0 in that limit.

To test the accuracy of our theory, in Fig. 2 we compare our analytical expressions for the mean
of local RNAP numbers, as well as for various measures of local RNAP fluctuations – the coefficient of
variation CV, the Fano factor FF, and the Pearson correlation coefficient CC – with those calculated from
stochastic simulation using Gillespie’s algorithm (SSA) [23]. Simulations are performed for two different
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scenarios: (i) without volume exclusion, where the footprint of RNAPs is not taken into account; and
(ii) with volume exclusion, where RNAPs are treated as solid objects with a footprint of 35bp, which is
the value reported in [19]. For our simulations in Fig. 2, we use parameter values characteristic for the
gene PDR5 of length 3070bp, as reported in [4]. Our choice of L = 30 implies that the length of each
gene segment is about 100bp and, hence, that at most 3 RNAPs can fit in each segment when volume
exclusion is taken into account. In this case, Gillespie’s algorithm is modified such that the initiation and
RNAP ‘hopping’ rates are proportional to the available volume in the gene segment which the RNAP is
moving to. That is achieved by rescaling the transcription initiation rate as r 7→ r(1 − n1/3) and the
RNAP hopping rate from the i-th to the (i + 1)-th gene segment as k 7→ k(1 − ni+1/3). Since we use
parameters measured for a gene that demonstrates bursty expression (PDR5) [4], we test the accuracy of
both the exact theory from Eqs. (2) and (4) and the approximate expressions given in Eq. (8).

The perfect agreement between our exact theory (solid lines) and simulation without volume exclusion
(dots) provides a numerical validation of that theory. Our approximate theory (dashed lines) also yields
a reasonably good approximation; the mismatch can be decreased if the degree of burstiness is increased,
i.e. by increasing the parameters r and sb relative to the other rates in the model. We also note that the
theory is in good agreement with simulation with volume exclusion (open circles), which shows that the
‘low traffic’ assumption upon which our theory is based is valid.

The following interesting observations can be made from these figures: (i) if the rate of premature
detachment is greater than zero, then the mean of local RNAP decreases monotonically with the distance
i from the promoter according to a power law, whereas that mean is constant along the gene if there is
no premature detachment, as expected; (ii) the size of RNAP fluctuations, as measured by CV, decreases
with i for small premature detachment rates, but increases with i for sufficiently large values of the
detachment rate; (iii) the Fano factor approaches 1 – the value of FF for a Poissonian distribution – as i
increases, which is due to the dispersal of the burst as stochastic elongation proceeds; (iv) the correlation
coefficient between the local RNAP on two neighbouring gene segments decreases monotonically with i,
which is exacerbated by premature detachment and is a direct result of the stochasticity inherent in the
elongation process.

The observation in (iii) can be explained in detail as follows. When the detachment rate is zero, a burst
of RNAPs rapidly bind to the promoter, leading to large fluctuations near that site; however, thereafter
each RNAP moves distinctly from all others due to stochastic elongation. Hence, the burst is gradually
dispersed as elongation proceeds, which implies a decrease in the variance of fluctuations with increasing
i. When the detachment rate is non-zero, then the same effect is at play; however, the increase in the
variance of fluctuations along the gene is now counteracted by the decrease of mean RNAP numbers,
which leads to two types of behaviour: for small i, CV decreases with i, since the variance dominates
over the mean, while for large i, the opposite occurs and CV increases with i.

Constitutive limit. The other common parameter regime is that of constitutive gene expression, where
the gene spends most of its time in the active state and transcription is continuous, which corresponds
to the limit of very small sb. In that limit, the expressions from Eqs. (2) and (4) simplify to

〈ni〉c = Var(ni)c = ρkµ
i and 〈n〉c = Var(n)c = bρµL, (9)

while the covariances Cov(ni, nj)c and Cov(ni, n)c between the species are zero; here, the subscript c
denotes the constitutive limit. This drastic simplification reflects the fact that, in the constitutive limit,
the distributions of mature RNA and local RNAP are Poissonian: as the regulatory network is effectively
given by ∅ → P1 → P2 → ... → PL → M → ∅ then, the result follows directly from the exact solution
provided in [24].

To further test the accuracy of our theory, in Fig. 3 we compare our analytical expressions for the
mean of local RNAP numbers, as well as for various measures of local RNAP fluctuations, with those
calculated from stochastic simulation using Gillespie’s algorithm, where we use parameters measured for
a gene that demonstrates constitutive expression (DOA1) [4]. As before, we test the accuracy of both the
exact theory given by Eqs. (2) and (4) and the approximate expressions from Eq. (9). Unsurprisingly, we
observe agreement between exact theory (solid lines) and simulation (dots); the mismatch between our
approximate theory and simulation is due to the fact that the gene does not spend 100% of its time in
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Figure 2: First and second moments of the distribution of local RNAP for the PDR5 gene in yeast,
which demonstrates bursty expression. In panels (a), (b), (c), and (d), we show the dependence of the
mean, coefficient of variation squared, Fano factor, and Pearson correlation coefficient, respectively, of
local RNAP fluctuations on gene segment i, as predicted by our exact theory (Eqs. (2) and (4); solid
lines), the approximate theory in the bursty limit (Eq. (8); dashed lines), and simulation via Gillespie’s
stochastic simulation algorithm (SSA), respectively. We performed simulations for two different cases:
without volume exclusion (dots) and with volume exclusion (open circles). The parameters are fixed to
su = 0.44/min, sb = 4.7/min, and r = 6.7/min, which are characteristic of the PDR5 gene in yeast, as
reported in Supplemental Table 2 of [4]. The number of gene segments is arbitrarily chosen to be L = 30.
The total elongation time 〈T 〉 = 4.5 min is also reported for PDR5, described as the synthesis time and
denoted by τ in [4]. The elongation rate by definition takes the value of the ratio k = L/〈T 〉−d ≈ L/〈T 〉,
since d � k. The detachment rate d is arbitrarily chosen to be d = 0.01/min (red lines and dots) or
d = 0.2/min (black lines and dots). Note that, for the SSA, moments are calculated from one long
trajectory with a few million time points, sampled at unit intervals.

the active state – the true constitutive limit – but, rather, su/(su + sb) ≈ 85%. The local mean RNAP
number decreases with distance from the promoter, as was the case for bursty expression in the previous
subsubsection, which is to be expected. The various measures which depend on the second moments
are, however, considerably different: CV increases monotonically with i, independently of the rate of
premature detachment, while FF and CC are very close to 1 and zero, respectively; moreover, the latter
two measures practically show very little variation along the gene. The lack of transcriptional bursting
explains all these effects in a straightforward fashion.

Finally, we remark that the accuracy of our expressions for the mean and variance of mature RNA,
as given in Eq. (2) and (4), is verified by simulation (SSA) in Figs. 4(a) and (b) for parameters typical of
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Figure 3: First and second moments of the distribution of local RNAP for the DOA1 gene in yeast, which
demonstrates constitutive expression. In panels (a), (b), (c), and (d), we show the dependence of the
mean, coefficient of variation squared, Fano factor, and Pearson correlation coefficient, respectively, of
local RNAP fluctuations on gene segment i, as predicted by our exact theory (Eqs. (2) and (4); solid lines),
the approximate theory in the constitutive limit (Eq. (9); dashed lines), and simulation via Gillespie’s
stochastic simulation algorithm (SSA; dots), respectively. The parameters are fixed to su = 0.7/min,
sb = 0.12/min and r = 0.14/min, which are characteristic of the DOA1 gene in yeast, as reported in
Supplemental Table 2 of [4]. The number of gene segments is arbitrarily chosen to be L = 30. The total
elongation time 〈T 〉 = 2.9 min is also reported for DOA1, described as the synthesis time and denoted by
τ in [4]. The elongation rate by definition takes the value of the ratio k = L/〈T 〉−d ≈ L/〈T 〉, since d� k.
The detachment rate d is arbitrarily chosen to be d = 0.01/min (red lines and dots) or d = 0.2/min (black
lines and dots). Note that, for the SSA, moments are calculated from one long trajectory with a few
billion time points, sampled at unit intervals.

the bursty PDR5 gene. The meaning of the dependence of descriptive statistics on L is discussed in the
next section.

2.3 Closed-form expressions for moments of total RNAP

While local RNAP fluctuations are measurable in experiment, as discussed in the Introduction, mea-
surements of total RNAP on a gene are typically reported. Hence, in this section, we briefly discuss
descriptive statistics of total RNAP fluctuations.

Recalling that ni is the number of RNAP molecules on the i-th gene segment, the total number
of RNAPs on the gene – arbitrarily divided into L segments – is given by ntot =

∑L
i=1 ni. Given

Eq. (2) and (4), the steady-state mean 〈ntot〉 =
∑L
i=1〈ni〉 and the steady-state variance Var(ntot) =

9



Figure 4: Mean and variance of the distributions of mature RNA and total RNAP for the PDR5 gene in
yeast. In panels (a) and (b), we show the dependence of the moments of mature RNA fluctuations on the
number of gene segments L, as predicted by our theory (Eqs. (2) and (4); solid lines) and SSA (dots). In
panels (c) and (d), we show the dependence of the moments of total RNAP on L, as predicted by our exact
theory (Eq. (10); solid lines) and SSA (dots). The parameters su, sb, r, and 〈T 〉 are characteristic of the
PDR5 gene, and are the same as in Fig. 2. The premature detachment rate is chosen to be d = 0.01/min;
the elongation rate is then given by k ≈ L/〈T 〉. The degradation rate of mature RNA is dm = 0.04/min,
which is chosen such that the mean mature RNA is roughly consistent with that reported in Fig. 6(b)
of [4]. Note that, for the SSA, moments are calculated from one long trajectory with a few billion time
points, sampled at unit intervals.

∑L
i,j=1 Cov(ni, nj) of the total RNAP distribution are given by

〈ntot〉 = ηρkµ
µL − 1

µ− 1
and Var(ntot) = 〈ntot〉+ αβ(ηρk)2

L∑
i,j=1

µi+j · fij . (10)

For a detailed derivation of the variance in Eq. (10), we refer to Appendix C. These expressions for the
mean and variance of the total RNAP distribution simplify in the bursty and constitutive limits, as can
be seen in Appendix D. The accuracy of Eq. (10) is tested by comparing against stochastic simulation
with SSA in Figs. 4(c) and (d). Both mean and variance are seen to increase monotonically with the
number of gene segments L, as we keep the mean elongation time constant; the mean shows very little
dependence on L, while the dependence of the variance is more pronounced. We recall that, while the
parameter L is arbitrary in principle, it actually determines the size of fluctuations in the elongation
time. Since that time is the sum of L independent exponential variables with mean 1/(k + d) each, it
follows that the distribution of the elongation time T is Erlang with mean 〈T 〉 = L/(k+d) and coefficient
of variation squared equal to 1/L. Hence, the larger L is, the narrower is the distribution of T and the
more deterministic is elongation itself. Thus, Figs. 4(c) and (d) predict that the mean and variance of
total RNAP increase rapidly with decreasing fluctuations in the elongation time T . It hence follows that
models in which the elongation rate is assumed to be exponentially distributed [10], which correspond to
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the case where L = 1 in our model, underestimate the size of nascent RNA fluctuations.

2.4 Special case of deterministic elongation

Next, we derive expressions for the descriptive statistics of total RNAP and mature RNA in the limit
of large L taken at constant mean elongation time, which corresponds to deterministic elongation. As
is shown in Fig. 4, these statistics converge quickly to the ones obtained in the large-L limit; hence, the
resulting limiting expressions are likely to be useful across a variety of genes.

Moments of total RNAP distribution. We define the non-dimensional parameters δg = τg/τd,
Tg = 〈T 〉/τg, and Td = 〈T 〉/τd, which correspond to the ratio of the gene timescale and the polymerase
detachment timescale, the ratio of the mean elongation time and the gene timescale, and the ratio of the
mean elongation time and the polymerase detachment timescale, respectively; here, τd = 1/d, as before.
Substituting k 7→ L/〈T 〉 − d into Eq. (10) and taking the limit of deterministic elongation, i.e. letting
L → ∞ at constant 〈T 〉, we obtain the following expressions for the mean, variance, and CV2 of total
RNAP:

〈ntot〉∞ = η
r

d
(1− e−Td),

Var(ntot)∞ = 〈ntot〉∞ + 〈ntot〉2∞ · βδg
(δg − 1) + (δg + 1)e−2Td − 2δge

−Tge−Td

(δg − 1)(δg + 1)(1− e−Td)2
,

CV2(ntot)∞ = 〈ntot〉−1
∞ + βδg

(δg − 1) + (δg + 1)e−2Td − 2δge
−Tge−Td

(δg − 1)(δg + 1)(1− e−Td)2
.

(11)

Here, the subscript ∞ denotes the limit of L→∞. A detailed derivation of the variance in Eq. (11) can
be found in Lemma C.1 of Appendix C.

In the special case when RNAP does not prematurely detach from the gene, i.e. for d = 0, the
expressions in Eq. (11) simplify to

〈ntot〉(∞;0) = ηr〈T 〉,
Var(ntot)(∞;0) = 〈ntot〉(∞;0) + 〈ntot〉2(∞;0) · 2βT

−1
g

(
1− T−1

g + T−1
g e−Tg

)
,

CV2
(∞;0) = 〈ntot〉−1

(∞;0) + 2βT−1
g

(
1− T−1

g + T−1
g e−Tg

)
,

(12)

where the subscript (∞; 0) denotes the limit of (L, d) → (∞, 0). The expressions in Eq. (12) have
been previously reported in [7], where they were derived using queuing theory. Hence, our expressions in
Eq. (11) constitute a generalisation of known results, by further taking into account premature detachment
of RNAP from the gene.

Eq. (12) shows that the coefficient of variation squared of total RNAP, denoted by CV2
(∞;0), can be

written as the sum of two terms: (i) the inverse of the mean which is expected if the distribution of
total RNAP is Poissonian, and (ii) a term that increases with increasing β and decreasing Tg. Hence, the
latter term provides a measure for the deviation of the total RNAP distribution from a Poissonian. In
particular, it shows that the deviation is significant in genes for which (i) the fraction of time spent in
the inactive state is large (large β), and (ii) the elongation time is much shorter than the switching time
between the active and inactive states (small Tg).

Moments of mature RNA distribution. Similarly, in the limit of deterministic elongation, it is
straightforward to show that the expressions for the mean and variance of the distribution of mature
RNA given by Eqs. (2) and (4) reduce to

〈n〉∞ = ηρe−Td and Var(n)∞ = 〈n〉∞ + 〈n〉2∞ · βθ. (13)

These expressions can be further simplified in the special case of no premature detachment to read

〈n〉(∞;0) = ηρ and Var(n)(∞;0) = 〈n〉(∞;0) + 〈n〉2(∞;0) · βθ. (14)

11



Note that the mean and variance are precisely the same as would be obtained from the telegraph model,
for which the corresponding Fano factor in the bursty limit is given by Eq. (16) below. Hence, we an-
ticipate that, in the limit of no premature detachment and deterministic elongation, the distribution of
mature RNA from our transcription model is the same as the distribution obtained from the coarser
telegraph model. A formal proof of that claim will be given in Section 3.

Relationship between Fano factors of total RNAP and mature RNA. Specifying to the case of
no premature detachment, it is interesting to note that in the bursty limit, i.e. for r, sb →∞ at constant
mean burst size b = r/sb in Eq. (12), the Fano factor of total RNAP is given by

FFn(b;∞;0) = 1 + 2b; (15)

see also Eq. (D.3) in Appendix D. Here, the subscript n denotes nascent RNA (total RNAP). Eq. (15) is
in contrast to the Fano factor of mature RNA in the same bursty limit:

FFm(b;∞;0) = 1 + b, (16)

see Eq. (D.8) in Appendix D, where the subscript m denotes mature RNA. (Note that FFm(b;∞;0) also
equals the Fano factor of the telegraph model in the same bursty limit [25].) Hence, by comparing
Eqs. (15) and (16), we can deduce the following for bursty expression: (i) if the telegraph model is used
to estimate the mean transcriptional burst size from total RNAP data where the elongation time is
deterministic, then the mean burst size will be overestimated by a factor of two – in other words, the
implicit assumption that the elongation time is exponentially distributed is inadequate; (ii) fluctuations
in total RNAP (nascent RNA) deviate more from Poisson statistics, for which the Fano factor equals one,
than fluctuations in mature RNA.

More generally, if we do not enforce the bursty limit, then we find the following relationship between the
Fano factors of total RNAP and mature RNA, which are calculated from Eqs. (12) and (14), respectively:

FFn(∞;0)

FFm(∞;0)
= 1 +

e−TgTrTsbΞ

T 2
g

[
TrTsb + Tg(Tg + Tm)

] . (17)

Here,
Ξ = 2(Tg + Tm) + eTg [2(Tg − 1)Tm + (Tg − 2)Tg], (18)

while Tg = (su + sb)〈T 〉, Tr = r〈T 〉, Tm = dm〈T 〉, and Tsb = sb〈T 〉 are non-dimensional parameters
representing the ratio of the mean elongation time to the timescales of promoter switching, initiation,
decay of mature RNA, and gene deactivation, respectively. From Eq. (17), we deduce that FFn(∞;0) >
FFm(∞;0) if and only if Ξ > 0. From the contour plot of Ξ in Fig. 5, one can deduce that

Ξ > 0 if and only if Tm ' 1− 5

8
Tg. (19)

Hence, the Fano factor of nascent RNA is larger than that of mature RNA if and only if the above
(approximate) condition is satisfied. In the bursty limit, Tg → ∞ due to sb → ∞ which, together with
Tm > 0, implies that Eq. (19) holds; the condition is also satisfied if promoter switching is very fast
compared to elongation. By contrast, if Tm < 1 and Tg < 1, then it is possible to have the opposite
scenario where the Fano factor of mature RNA is larger than that of nascent RNA, which occurs for
example if promoter switching and mature RNA decay are very slow compared to elongation.

Sensitivity of coefficient of variation of total RNAP and mature RNA. Since we have found
explicit expressions for the first two moments of the distributions of total RNAP and of mature RNA,
we can now estimate the sensitivity of the noise in each of those to small perturbations in the tran-
scriptional parameters. Specifically, we calculate the logarithmic sensitivity (LS), which is also known
as the relativity sensitivity, of the coefficient of variation (CV) to a parameter s, which is defined as
Λs = (s/CV)(∂CV/∂s). (That definition implies that a 1% change in the value of the parameter s results
in a change of Λs% in CV.)

12



Figure 5: Comparison between the Fano factors of nascent and mature RNA. Contour plot showing the
variation of Ξ – a measure of the difference between the two Fano factors which is defined in Eq. (18)
– with the non-dimensional parameters Tg and Tm which denote the ratio of the mean elongation time
to the timescales of promoter switching and of mature RNA decay, respectively. As can be appreciated
from Eq. (17), Ξ is positive if the Fano factor of nascent RNA is larger than that of mature RNA and
negative if the reverse is true. The line Tm ≈ 1 − 5

8Tg, where Ξ = 0, shows where the two Fano factors
are identical.

In Table 1b, we report the logarithmic sensitivity of the coefficient of variation of total RNAP fluctua-
tions, which is obtained from Eq. (12), to perturbations in the parameters su, sb, r, and 〈T 〉. Similarly, in
Table 1c, we report the logarithmic sensitivity of the coefficient of variation of mature RNA fluctuations
from Eq. (14) to perturbations in the parameters su, sb, r, and dm. In both cases, these sensitivities are
calculated for parameter values estimated for five genes in yeast, as reported in [4]; see Table 1a.

The following observations can be made regarding the sensitivity of the noise in total RNAP fluctu-
ations: (i) for the two genes PDR5 and POL1 which spend most of their time in the inactive state due
to sb � su, CV is most sensitive to changes in the parameters su and 〈T 〉; (ii) for the genes DOA1,
MDN1, and KAP104 which spend most of their time in the active state due to su � sb, CV is most
sensitive to changes in the parameters r and 〈T 〉; (iii) the size of mature RNA fluctuations is found to
be most sensitive to perturbations in su and dm for PDR5 and POL1, and to perturbations in r and dm
for the other three genes. We furthermore note that for both total RNAP and mature RNA, r is the
least sensitive parameter for the genes which are mostly inactive, whereas it is among the most sensitive
parameters for genes that are mostly active.

3 Approximate distributions of total RNAP and mature RNA

Thus far, we have derived expressions for the first two moments of the distributions of total RNAP and
mature RNA. Naturally, it would also be useful to derive closed-form expressions for the distributions
themselves; such a derivation is, however, analytically intractable in general [24] due to the presence of
the catalytic reaction Gon → Gon + P1, which models initiation of the transcription process. Still, there
are two special cases where analytical distributions are known: (i) when the elongation time is considered
to be fixed, which corresponds to our model with L → ∞ at constant 〈T 〉 [9]; (ii) when the elongation

13



Table 1: Logarithmic sensitivity (LS) of the coefficient of variation CV of total RNAP and mature RNA
fluctuations for five genes in yeast; see Section 2.4 for a discussion.

(a) Parameter values from Supplemental Tables 2 and 4 in [4]. The degradation rate dm of mature mRNA is
estimated from the reported mean number of mature RNA, the parameters su, sb, r, and Eq. (14) for the mean.

PDR5 POL1 DOA1 MDN1 KAP104
mean mature RNA # 13.40 3.13 2.59 6.12 4.93

〈T 〉(min) 4.50 3.75 2.90 16.75 3.50
su(min−1) 0.44 0.07 0.70 0.70 0.70
sb(min−1) 4.70 0.68 0.12 0.12 0.12
r(min−1) 6.70 2.00 0.14 0.19 0.27
dm(min−1) 0.04 0.06 0.05 0.03 0.05

(b) Logarithmic sensitivity of CV of total RNAP fluctuations. The most sensitive parameter and the next most
sensitive one are marked in dark blue and light blue, respectively.

LS PDR5 POL1 DOA1 MDN1 KAP104
Λsu -0.52 -0.51 -0.09 -0.12 -0.11
Λsb 0.18 0.29 0.09 0.09 0.10
Λr -0.15 -0.12 -0.49 -0.47 -0.47
Λ〈T 〉 -0.48 -0.34 -0.49 -0.50 -0.49

(c) Logarithmic sensitivity of CV of mature mRNA fluctuations. The most sensitive parameter and the next most
sensitive one are marked in dark blue and light blue, respectively.

LS PDR5 POL1 DOA1 MDN1 KAP104
Λsu -0.50 -0.52 -0.09 -0.10 -0.11
Λsb 0.23 0.20 0.08 0.08 0.09
Λr -0.23 -0.15 -0.49 -0.48 -0.48
Λdm 0.50 0.47 0.50 0.50 0.50

time is exponentially distributed, corresponding to our model with L = 1, in which case the distribution
of total RNAP is identical to the one which is derived from the telegraph model [6, 25]. While one may
argue that the analytical distribution of RNAP for deterministic elongation times may well approximate
the stochastic (finite-L) case, the issue remains that the exact solution is not given in terms of simple
functions unless promoter switching is slow compared to initiation, elongation, and termination, in which
case the solution reduces to a weighted sum of two Poisson distributions [9]. Hence, it is generally very
difficult to apply in practice, such as to infer parameters from data using a Bayesian approach. Moreover,
to our knowledge, no exact solutions are known for the distribution of mature RNA in our model. In this
section, we aim to devise a simple approximation for the distribution of total RNAP numbers in terms
of the Negative Binomial (NB) distribution; these simple distributions have shown great flexibility in
describing complex gene expression models with a large number of parameters [10]. Finally, by means of
singular perturbation theory, we will obtain the distribution of mature RNA under the assumption that
RNA polymerase elongation is faster than degradation of mature RNA.

3.1 Approximation of total RNAP distribution

We approximate the distribution of total RNAP transcribing the gene via a Negative Binomial distri-
bution, as follows. The mean and variance of the Negative Binomial distribution NB(q, p) are given by
pq/(1−p) and pq/(1−p)2, respectively. By assuming that these are equal to the exact mean and variance,
respectively, of the total RNAP distribution, see Eq. (10), we obtain effective values for the parameters
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p and q:

ntot ∼ NB(q, p) ≡ NB

(
〈ntot〉2

Var(ntot)− 〈ntot〉
,

Var(ntot)− 〈ntot〉
Var(ntot)

)
. (20)

In Fig. 6, we show a comparison between the distributions of total RNAP obtained from SSA (dots)
and the Negative Binomial approximation in Eq. (20 (solid lines). Our results are presented for two
different values of the number of gene segments: L = 1 (exponentially distributed elongation time; left
column) and L = 50 (quasi-deterministic elongation time; right column). Additionally, we rescale our
gene inactivation rate as sb 7→ sbε, and we present results for three different values of the parameter ε:
10−3, the constitutive limit of the gene being mostly in the active state (top row); 10−1, where the gene
spends almost equal amounts of time in the active and inactive states, with sb ≈ su (middle row); and 1,
the bursty limit, where the gene spends most of its time in the inactive state (bottom row).

We can make several observations, as follows. For both L = 1 and L = 50, the Negative Binomial
approximation performs well for bursting and constitutive expression (top and bottom rows), whereas
it is appreciably poor when expression is in between those two limits (middle row). Intuitively, this
observation can be explained via the following reasoning. In the limits of the gene being mostly in the
active state (constitutive expression) or the inactive state (bursty expression), the distribution of total
RNAP is necessarily unimodal. However, when the gene spends a considerable amount of time in each
state, the distribution is the sum of two conditional distributions which can manifest either as bimodality
or as a wide unimodal distribution, neither of which can be captured by a Negative Binomial distribution.
Assuming bursty expression, the Negative Binomial distribution is a more accurate approximation to the
distribution obtained from SSA for L = 1 than it is for L = 50; the reason is that L = 1 corresponds to
the telegraph model [25], in which case it can be proven analytically that the distribution reduces to a
Negative Binomial in the limit of bursty expression. For constitutive expression, the Negative Binomial
approximation is equally good for L = 1 and L = 50, as the distribution is necessarily Poissonian then
and as it is well known that a Negative Binomial distribution can approximate a Poissonian to a high
degree of accuracy. In summary, our results hence indicate that Eq. (20) yields a good approximation for
the total RNAP distribution of bursty and constitutively expressed genes.

We also note from Fig. 6 that the comparison between the SSA distributions for L = 1 and L = 50,
with equal mean elongation times, highlights the importance of modelling elongation with the correct
distribution of elongation times for genes that are non-constitutive, i.e. for ε = 10−1 or ε = 1. In
particular, if the elongation time is quasi-deterministic (L = 50), there appears to be a significant increase
in the probability of observing zero total RNAP transcribing the gene compared to models with an
exponentially distributed elongation time (L = 1).

3.2 Approximation of mature RNA distribution

Next, we apply singular perturbation theory to formally derive the distribution of mature RNA when the
elongation rate is much larger than the degradation rate of mature RNA.

We start by defining Pj(~n; t) (j = 0, 1) as the probability of the state ~n = (n1, . . . , nL, n) at time t
while the gene is either active (0) or inactive (1). Note that ni is the number of RNAPs on gene segment
i for i = 1, . . . , L, while n is the number of mature RNAs. The time evolution of the probabilities Pj(~n; t)
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Figure 6: Steady-state distribution of total RNAP and its approximation by a Negative Binomial distri-
bution. We compare the approximation from Eq. (20) (blue lines) with the distribution of total RNAP
obtained from stochastic simulation (SSA; red dots). With the exception of sb, the parameters are for
the PDR5 gene in yeast, and are hence the same as in Fig. 2, with d = 0.01/min. Results are presented
for two different values of L, corresponding to an exponentially distributed elongation time (L = 1) and
a quasi-deterministic elongation time (L = 50); k is rescaled such that the two have the same mean
elongation time. Additionally, we rescale the gene inactivation rate via sb 7→ sbε, where ε = 10−3, 10−1, 1,
corresponding to constitutive, general, and bursty expression, respectively. (Here, general expression is
neither clearly constitutive nor bursty, since the gene spends roughly equal amounts of time in the inactive
and active states.) Note that ε = 1 results in a distribution of nascent RNA that is consistent with that
measured for PDR5; the experimental data from Fig. 6(b) of [4] is plotted for comparison. The Negative
Binomial approximation is found to be accurate in the limits of constitutive and bursty expression (top
and bottom rows), independently of L.

can be described by a system of coupled CMEs:

∂tP 0 = suP 1 − sbP 0 + r(E−1
n1
− 1)P0 + k

L−1∑
i=1

(
Eni

E−1
ni+1
− 1
)
niP0 + k

(
EnL

E−1
n − 1

)
nLP0

+ d

L∑
i=1

(Eni
− 1)niP0 + dm(En − 1)nP 0,

∂tP1 = sbP0 − suP1 + k

L−1∑
i=1

(
Eni

E−1
ni+1
− 1
)
niP1 + k

(
EnL

E−1
n − 1

)
nLP1

+ d

L∑
i=1

(Eni
− 1)niP1 + dm(En − 1)nP1,

(21)
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where Ecni
[f(~n)] = f(n1, n2, . . . , ni + c, . . . , nL, n), with c ∈ Z, denotes the standard step operator. We

assume that the elongation rate k is faster than the degradation rate dm of mature RNA, i.e. that
k/dm � 1. Since k = L/〈T 〉 − d, it follows that in the limit of deterministic elongation (k →∞), i.e. for
L→∞ at constant mean elongation time 〈T 〉, the condition k/dm � 1 is naturally satisfied.

In order to find an analytical expression for the propagator probabilities P (~n; t) which satisfies the
system of CMEs in Eq. (21), we define the probability-generating function as F =

∑
j Fj , with Fj(~z; t) =∑∞

~n=~0 Pj(~n; t)~z~n; here, ~z = (z1, . . . , zL, z) is a vector of variables corresponding to the state ~n. Given
the equations for Pj(~n; t) from Eq. (21), we obtain the following systems of PDEs for the corresponding
generating functions Fj(~z; t):

L[F0] = suF1 − sbF0 + r(z1 − 1)F0,

L[F1] = sbF0 − suF1,
(22)

where

L = ∂t + k

L−1∑
i=1

(zi − zi+1)∂zi + k(zL − z)∂zL + d

L∑
i=1

(zi − 1)∂zi + dm(z − 1)∂z (23)

is a differential operator acting on the generating functions F0 and F1. Eq. (22) represents a system of
coupled, linear, first-order partial differential equations (PDEs). Now, we introduce the new variables
ui = zi − 1 (i = 1, . . . , L) and u = z − 1 to rewrite Eq. (22) as

L[F0] = suF1 − sbF0 + ru1F0,

L[F1] = sbF0 − suF1;
(24)

here, the operator in Eq. (23) now takes the form

L = ∂t + k

L−1∑
i=1

(ui − ui+1)∂ui
+ k(uL − u)∂uL

+ d

L∑
i=1

ui∂ui
+ dmu∂u. (25)

In order to find an analytical solution to Eq. (24), we rescale all rates and the time variable by the
decay rate of mature RNA; then, we apply the method of characteristics, with s being the characteristic
variable. The first characteristic equation gives dm(dt/ds) = 1, with solution s ≡ t′ = dmt; hence, we can
use the variable t′ as the independent variable and thus convert the system of PDEs in Eq. (24) into a
characteristic system of ordinary differential equations (ODEs),

u̇i = (k/dm)[ui − ui+1 + (d/k)ui] for i = 1, . . . , L− 1, (26a)

u̇L = (k/dm)[uL − u+ (d/k)uL], (26b)

u̇ = u, (26c)

Ḟ0 = (su/dm)F1 − (sb/dm)F0 + (r/dm)u1F0, (26d)

Ḟ1 = (sb/dm)F0 − (su/dm)F1, (26e)

where the overdot denotes differentiation with respect to t′. The existence of an integral-form solution to
Eq. (26) follows from the fact that the reaction scheme in Fig. 1 contains first-order reactions only. Under
the assumption that k � dm, we define ε = dm/k; then, we apply Geometric Singular Perturbation
Theory (GSPT) [26, 27], with 0 < ε � 1 as the (small) singular perturbation parameter. We hence
separate the system in Eq. (26) into fast and slow dynamics, which will allow us to find an asymptotic
approximation for F0 and F1 in steady-state. A brief introduction to GSPT can be found in Appendix E.
Given the above definition of ε, Eqs. (26a) and (26b), the governing equations for ui in the ‘slow system’
become

εu̇i = ui − ui+1 + (d/k)ui for i = 1, . . . , L− 1,

εu̇L = uL − u+ (d/k)uL,
(27)

where ui (i, . . . , L) are the fast variables and u, F0, and F1 are the slow ones. Setting ε = 0 in Eq. (27),
we can express the variables ui as ui = µ ·ui+1, with µ = k/(k+ d) for i = 1, . . . , L. Finally, we write the
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variable u1 as u1 = µL · u. Next, given Eq. (26c), we apply the chain rule, with dt′ ≡ du · u, to rewrite
Eqs. (26d) and (26e) as

F ′0dmu = suF1 − sbF0 + rµLuF0, (28a)

F ′1dmu = sbF0 − suF1, (28b)

where the prime now denotes differentiation with respect to u. Solving Eq. (28a) for F1 and substituting
the result into Eq. (28b), we obtain the second-order ODE

d2
muF

′′
0 + dm(dm + sb + su − rµLu)F ′0 − rµL(dm + su)F0 = 0 (29)

for F0(u). Eq. (29) is a confluent hypergeometric differential equation (Kummer’s equation) [28] which
admits the solution

F0(u) = C · 1F1

(dm + su
dm

;
dm + sb + su

dm
;
r

dm
µLu

)
, (30)

where 1F1 denotes the confluent hypergeometric function; here, we consider only one of two independent
fundamental solutions of Kummer’s differential equation, as we are seeking a solution in steady-state where
the variable u is bounded. The constant C in Eq. (30) is a constant of integration that is determined
from the normalisation condition on the full generating function: F = F0 + F1. From Eq. (28), one finds
that F satisfies

F ′ =
r

dm
µLF0. (31)

Making use of Eq. (31) and applying the normalisation condition F |u=0 = 1, we find that the generating
function in steady-state reads

F (z) = 1F1

( su
dm

;
sb + su
dm

;
r

dm
µL(z − 1)

)
. (32)

The probability distribution P (n) of mature RNA can be found from the formula

P (n) =
1

n!

dn

dzn
F (z)|z=0,

which yields the analytical expression

P (n) =
1

n!

(su)n
(sb + su)n

( r

dm

)n
(µL)n1F1

(
su
dm

+ n; sb+su
dm

+ n;− r
dm
µL
)
, (33)

where (·)n is the Pochhammer symbol, as before. Note that the mean and variance of mature mRNA,
as calculated from the distribution in Eq. (33), agree exactly with Eqs. (2c) and (4f) in the limit of fast
elongation (k →∞). Note also that the solution in Eq. (33) depends on the parameter µL, which repre-
sents the survival probability of an RNAP molecule, i.e. the probability that RNAP will not prematurely
detach from the gene. Finally, we take the limit of deterministic elongation, letting L → ∞ at constant
〈T 〉, which leads to

P (n) =
1

n!

(su)n
(sb + su)n

( r

dm

)n
e−nd〈T 〉1F1

(
su
dm

+ n; sb+su
dm

+ n;− r
dm
e−d〈T 〉

)
. (34)

We note that in the limit of no premature detachment (d = 0), Eq. (34) is precisely equal to the dis-
tribution of mature RNA predicted by the telegraph model, which is in wide use in the literature [25].
Hence, our perturbative approach can be seen as a means to formally derive the conventional telegraph
model of gene expression starting from a more fundamental and microscopic model. In Fig. 7, we verify
our analytical solution with stochastic simulation for two different genes in yeast. We also note that,
for non-zero premature detachment rates (d 6= 0), Eq. (34) is the steady-state solution predicted by the
telegraph model, with parameter r renormalised to re−d〈T 〉; that is to be expected, as the latter is the
rate at which RNAPs undergo termination, leading to mature RNAs.
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Figure 7: Steady-state distribution of mature RNA for two different genes in yeast. We compare the
distribution obtained from SSA (dots) to the perturbative approximation in Eq. (33) (solid lines) for
two different genes. In panel (a), we consider the PDR5 gene, fixing the parameters as in Fig. 2: su =
0.44/min, sb = 4.7/min, r = 6.7/min, d = 0.01/min, and 〈T 〉 = 4.5 min. The degradation rate of mature
RNA takes the values dm = 0.04, 0.10, 0.40/min; note that the experimental value is dm = 0.04/min. In
panel (b), we consider the DOA1 gene, fixing the parameters as in Fig. 3: su = 0.7/min, sb = 0.12/min,
r = 0.14/min, d = 0.01/min, and 〈T 〉 = 2.9 min. The degradation rate of mature RNA again takes the
values dm = 0.04, 0.10, 0.40/min; the experimental value is dm = 0.05/min. For both genes, the agreement
between SSA and our perturbative approximation increases with k/dm, as expected, since Eq. (33) is
derived under the assumption that k � dm. Note that the distribution is practically independent of
L, since Eq. (33) depends on L only through µL, which for small premature detachment rates d implies
µL ≈ 1 for any L.

4 Statistics of fluorescent nascent RNA signal

Thus far, we have determined the statistics of the total number of RNAP transcribing the given gene;
these are also the statistics of the number of nascent RNA molecules. However, in experiments using
single-molecule fluorescence in situ hybridisation (smFISH [9]), molecule numbers of nascent RNA cannot
be directly determined. Rather, the experimentally measured RNA ‘abundance’ is the fluorescent signal
emitted by oligonucleotide probes bound to the RNA. Since the length of the nascent RNA grows as
RNAP moves away from the promoter, it follows that we must account for the increase in the fluorescent
signal as elongation proceeds.

In this section, we take into account these experimental details to obtain closed-form expressions for
the mean and variance of the fluorescent signal of local and total nascent RNA. We assume that the
signal from nascent RNA on the i-th gene segment is given by ri = (ν/L)ini for i = 1, . . . , L, where ν
is some experimental constant; the value of the parameter (ν/L)i is increasing with i, which models the
fact that the fluorescent signal becomes stronger as RNAP moves along the gene. The formula for the
mean fluorescent signal at gene segment i is then given by 〈ri〉 = (ν/L)i〈ni〉, where 〈ni〉 follows from
Eq. (2b); the covariance of two fluorescent signals along the gene, ri and rj (i, j = 1, . . . , L), is given by
Cov(ri, rj) = (ν/L)2ijCov(ni, nj), where Cov(ni, nj) is obtained from Eq. (4d). In Figs. 8(a) and (b), we
plot the mean and Fano factor of the local signal as a function of the gene segment i; note the contrast
between the statistics of the fluorescent signal and the corresponding statistics of local RNAP – which is
the statistics of nascent RNA – shown in Figs. 2(a) and (c).

Similarly, denoting by rtot =
∑L
i=1 ri the total fluorescent signal across the gene, we find the follow-

ing expressions for the steady-state mean 〈rtot〉 =
∑L
i=1〈ri〉 and the steady-state variance Var(rtot) =
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∑L
i,j=1 Cov(ri, rj):

〈rtot〉 = νηρkµ
µL[Lµ− (L+ 1)] + 1

L(µ− 1)2
,

Var(rtot) =
( ν
L

)2

ηρk

L∑
i=1

i2µi +
( ν
L

)2

αβ(ηρk)2
L∑

i,j=1

ij · µi+j · fij .
(35)

For a detailed derivation of the variance in Eq. (35), see Eq. (F.1) in Appendix F; see also Appendix G
for the corresponding expressions in the bursty, constitutive, and deterministic elongation limits. In
Figs. 8(c) and (d), we show the mean and Fano factor of the total signal as a function of the number
of gene segments (L); as above, note the contrasting difference between the statistics of the fluorescent
signal and the corresponding statistics of total RNAP – which is the statistics of total nascent RNA –
shown in Figs. 4(c) and (d).

Hence, the calculation of the statistics of the number of nascent RNAs from the raw signal intensity
presents a challenge and has to be approached carefully. The expressions presented above allow for the
inference of transcriptional parameters from the first two moments of the fluorescent signal by means
of moment-based inference techniques [29]. Quantitative information about nascent RNA can also be
obtained from electron micrograph images [30], which avoids the challenges presented by smFISH.

5 Model extension with pausing of RNAP

Thus far, we have studied a model where RNAPs do not pause as they move along the gene. A natural
extension is provided by a modified model in which RNAPs pause along the gene at random sites and
elongation is characterised by three processes: forward hopping, pausing, and unpausing of RNAP. The
motivation for studying this extended model, which has recently been considered via stochastic simulation
in [19], is that experiments have revealed that RNAP exhibits pauses of varying duration, typically on
the timescale of few seconds [31,32].

5.1 Closed-form expressions for moments of local RNAP fluctuations

We extend the model described in Fig. 1 by assuming that the RNAP on gene segment i can switch
between a non-paused (actively moving) state Pi and a paused state P̄i. The actively moving state Pi
switches to P̄i with rate rp, while the reverse reaction occurs with rate ra. Premature detachment from
the actively moving RNAP occurs with rate da, whereas it occurs with rate dp from the paused RNAP.
The resulting extended model is illustrated in Fig. 9(a). In Appendix A, we derive the mean and variance
of the corresponding elongation time, which is not Erlang distributed now, as was the case for the model
without pausing. Furthermore, we find two interesting properties of the coefficient of variation CV2

T of
the elongation time: (i) in the limit of large L at constant mean elongation time, CV2

T does not tend
to zero, which implies that elongation is not deterministic; (ii) for small rates of premature detachment,
CV2

T is at its maximum when rp ≈ ra, i.e. when RNAP spends roughly half of its time in the paused
state. See Appendix A for details and Fig. 9(b) for a confirmation through stochastic simulation.

Proposition 3. Let the number of RNAP molecules in the active state Pi be denoted by nai , let the
number of molecules in the paused state P̄i be npi , and let the number of molecules of mature RNA be
denoted by n. Let σ = rp/ra be the ratio of the pausing and activation rates, let πra = ra/(ra + dp) be the
probability of RNAP switching to the actively moving state from the paused state, and let πdp = dp/(ra+dp)
be the probability of premature RNAP detachment from the paused state. Furthermore, define the new
parameters µ̃ = k/(k + da + rpπdp) and λ = σπra .

Then, it follows that the steady-state mean number of RNAP molecules in the active and paused states
on gene segment i (i = 1, . . . L) is given by

〈nai 〉 = ηρkµ̃
i and 〈npi 〉 = 〈nai 〉λ. (36)
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Figure 8: First and second moments of the local and total fluorescent signal for the bursty gene PDR5 in
yeast. In panels (a) and (b), we show the dependence of the mean and the Fano factor of local fluorescent
signal fluctuations on the gene segment i, as predicted by our exact theory (solid lines) and SSA (dots),
respectively. The plots for CV 2(ri) and CC(ri, ri+1) are identical to those of CV 2(ni) and CC(ni, ni+1)
in Fig. 2. The number of gene segments is arbitrarily chosen to be L = 30. In panels (c) and (d), we show
the dependence of the mean and variance of total fluorescent signal fluctuations on the number of gene
segments L, as predicted by our exact theory (Eq. (35); solid lines) and SSA (dots). The parameters su,
sb, r, and 〈T 〉 are characteristic of the PDR5 gene and take the same values as in Fig. 2, as do the rates
of elongation and RNAP detachment. The value of the parameter ν is arbitrarily chosen to be ν = 10.

Hence, the total mean number of RNAP molecules on each gene segment i reads

〈ni〉 = 〈nai 〉+ 〈npi 〉 = 〈nai 〉(1 + λ). (37)

The proof of Prop. 3 can be found in Appendix H. Note that in the limit of no pausing, i.e. for rp = 0,
Eq. (37) reduces to the expression for the mean of RNAP reported in Eq. (2b).

Proposition 4. Let τra = 1/ra be the timescale of RNAP activation from the paused state, let τdp = 1/dp
be the timescale of premature termination of paused RNAP, let τp = 1/(k+da) be the typical time that an
actively moving RNAP spends on a gene segment, and let τpp = 1/(ra+dp) be the typical time spent in the
paused state. Furthermore, define the new parameters λrp = πrp/(1− πrp), where πrp = rp/(rp + k + da)
is the probability of the actively moving RNAP switching to the paused state, as well as

ωra =
πraτg

πraτra + τg
, α̃ =

τg + λrpπdpτg

τg + τp + λrpτg(1− ωra)
, and ω =

τg
τpp + τg

. (38)
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Figure 9: Model of transcription that includes RNAP pausing. In panel (a), we extend the model in
Fig. 1 so that it takes into account pausing of RNAP at random segments on the gene. Pausing on gene
segment i is modelled by the transition from the active state Pi to the paused state P̄i with rate rp, while
the reverse (‘unpausing’) transition occurs with rate ra. Premature termination of RNAP occurs with
rate da from the actively moving state, and with rate dp from the paused state. In panel (b), we show
the dependence of the coefficient of variation squared (CV2

T ) of the elongation time distribution on the
pausing rate (rp), as predicted from SSA (dots) and theory (Eq. (A.7); solid lines). Results are shown for
two different parameter regimes: D0 ≡ {da = 0/min = dp} (no premature polymerase detachment) and
D1 ≡ {da = 0.05/min = dp} (premature polymerase detachment). The remaining parameters are fixed
to L = 50, k = 10/min, and ra = 0.1/min.

Assume that the elongation rate is faster than the rates of RNAP pausing, activation, and premature
termination, i.e. that k � ra, rp, da, dp. Then, it follows that to leading order in 1/k, asymptotic
expressions for the variances and covariances of molecule number fluctuations of active and paused RNAP
are given by

Cov(nai , n
a
j ) = δij〈nai 〉+ 〈nai 〉〈naj 〉α̃β · gaaij , where gaaij = gaa(i, j) + gaa(j, i),

Cov(nai , n
p
j ) = 〈nai 〉〈n

p
j 〉α̃β · g

ap
ij , where gapij = ωα̃j−1,

Cov(npi , n
a
j ) = 〈npi 〉〈n

a
j 〉α̃β · g

pa
ij , where gpaij = ωα̃i−1,

Cov(npi , n
p
j ) = δij〈npi 〉+ 〈npi 〉〈n

p
j 〉α̃β · g

pp
ij , where gppij = (gapij + gpaij )/2;

(39)

here, i, j = 1, 2, . . . , L and

gaa(i, j) =
α̃i+j−1

(2α̃− 1)i
+

1

2i+j−1

(
i+ j − 1

i

)[
1− 2α̃− 1

2α̃
2F1

(
1, i+ j; j; 1

2α̃

)]
.

These results are proved in full in Appendix H. From Appendix A, we also have that the mean elon-
gation time in the pausing model is given by

〈T 〉 = L
(ra + dp)

2 + rarp
(ra + dp)[(k + da)(ra + dp) + dprp]

. (40)

Solving Eq. (40) for the elongation rate k, we find that in the limit of L → ∞ taken at constant mean
elongation time, k tends to infinity and hence is much larger than ra, rp, da, and dp, which implies that
the results of Prop. 4 hold naturally in that limit.

5.2 Approximate distributions of total RNAP and mature RNA

Negative Binomial approximation of total RNAP distribution. We define the total number of
RNAP molecules as ntot =

∑L
i=1 ni. It then immediately follows from Eq. (37) that the mean of the total

RNAP distribution in the pausing model is given by

〈ntot〉 = ηρk(1 + λ)µ̃
µ̃L − 1

µ̃− 1
. (41)
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Figure 10: Dependence of the steady-state probability distributions of total RNAP and mature RNA
on the RNAP pausing rate rp for two different genes in yeast. In panels (a) and (b), we compare the
distribution P (ntot) of the total number of RNAP molecules, as predicted by our model (solid lines),
with that obtained from SSA (dots) for yeast genes PDR5 and DOA1, respectively. The model prediction
involves fitting a Negative Binomial distribution with a mean and variance given by the closed-form
expressions in Eqs. (41) and (42). In panels (c) and (d), we compare the distribution P (n) of mature
RNA, as obtained from singular perturbation theory (Eq. (43); solid lines) with the SSA (dots) for yeast
genes PDR5 and DOA1, respectively. Note that for both genes, we keep all parameters fixed (including
the elongation rate k) while varying the pausing rate rp to simulate an experiment where the pausing
rate can be perturbed directly. The parameters for each gene can be found in Table 1a; we furthermore
used L = 50 and fixed k to L/〈T 〉, where 〈T 〉 is the mean elongation time measured experimentally
and reported in Table 1a. Note that the actual mean elongation time is not fixed, as it depends on the
pausing rate (rp) via Eq. (40). The remaining parameters are fixed to ra = 0.1/min, da = 0.01/min,
and dp = 0.03/min. The value of da is taken from Table 1 in [17], where it is reported as the premature
termination rate of polymerase in E. coli ; the value of dp was chosen to be larger than that of da to
simulate a scenario where premature detachment is enhanced in the paused state. Note that our theory is
less accurate for PDR5 than it is for DOA1, as all parameters are very small compared to the elongation
rate in the latter case, hence satisfying better the assumptions behind the theory.

It can also be shown that the variance of total RNAP fluctuations reads

Var(ntot) = 〈ntot〉+ (ηρk)2α̃β

[
2

L∑
i,j=1

gaa(i, j) + λ(2 + λ)ωL
α̃L − 1

α̃− 1

]
; (42)

see Appendix H. Next, we approximate the distribution of total RNAP by a Negative Binomial distri-
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bution whose mean and variance match those just derived, i.e. we consider Eq. (20) with the mean and
variance of the total RNAP distribution given by Eqs. (41) and (42) now, respectively. The resulting
approximate Negative Binomial distribution is compared with the distribution obtained from SSA in
Figs. 10(a) and (b) for two different yeast genes, PDR5 and DOA1. The results verify that our approx-
imation is accurate provided the elongation rate k is significantly larger than the other parameters, as
assumed in Prop. 4.

Perturbative approximation of mature RNA distribution. We can apply singular perturba-
tion theory to formally derive the distribution of mature RNA, assuming that k/dm � 1 and ra/dm � 1.
Following the derivation in Section 3.2, we find the following analytical expression for the steady-state
probability distribution of mature RNA:

P (n) =
1

n!

(su)n
(sb + su)n

( r

dm

)n(
µ̃L
)n

1F1

( su
dm

+ n;
sb + su
dm

+ n;− r

dm
µ̃L
)

; (43)

see Appendix I for details. Note that the solution in Eq. (43) is dependent on the parameter µ̃L, which
gives the probability that an RNAP molecule does not prematurely detach before termination; see Ap-
pendix A. Also, note that in the limit of zero premature termination, i.e. for da = 0 = dp, Eq. (43) is
identical to the distribution of mature RNA predicted by the telegraph model. Finally, by solving Eq. (40)
for k, then substituting the resulting expression into Eq. (43) and taking the long-gene limit of L→∞ at
constant 〈T 〉, we obtain that the probability distribution of mature RNA has the same functional form
as in Eq. (43), albeit with

lim
L→∞

µ̃L = e−ψ〈T 〉, where ψ =
da + rpπdp
1 + σπra

. (44)

Note that Eqs. (43) and (44) equal the steady-state solution predicted by the telegraph model, with the
initiation rate r renormalised to rµ̃L or re−ψ〈T 〉, respectively. In Figs. 10(c) and (d), we verify the accu-
racy of our analytical solution using stochastic simulation for two different genes in yeast. Note that a
change in the pausing rate rp has relatively little effect on the distribution of mature RNA, as compared
to the effect on the distribution of total RNAP; cf. panels (a) and (b) of Fig. 10 in comparison with panels
(c) and (d), respectively.

6 Summary and Conclusion

In this paper, we have analysed a detailed stochastic model of transcription. Our model extends previous
analytical work [7, 9] by (i) taking into account salient processes, such as premature detachment and
pausing of RNAP, that were previously not considered analytically; (ii) deriving explicit expressions for
the mean and variance of RNAP numbers (nascent RNA) on gene segments as well as on the entire gene;
(iii) deriving explicit expressions for the mean and variance of the fluorescent nascent RNA signal obtained
from smFISH, and identifying differences between the statistics thereof and those of direct measurements
of nascent RNA; (iv) finding approximate distributions of total nascent RNA fluctuations on a gene,
without assuming slow promoter switching. A number of interesting observations from our work include
the following.

(i) When the premature detachment rate of RNAP is non-zero and gene expression is bursty, the
coefficient of variation of local RNAP fluctuations can either decrease or increase with distance from
the promoter. By contrast, when expression is constitutive, the coefficient of variation increases
monotonically with distance from the promoter. Other statistical measures such as the mean, Fano
factor, and correlation coefficient of local RNAP numbers decrease monotonically with distance
from the promoter.

(ii) In the limits of bursty expression, deterministic elongation, and no premature detachment or paus-
ing, the Fano factor of total nascent RNA equals 1 + 2b, whereas that of mature RNA is 1 + b,
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where b denotes the mean burst size. An implication is that the telegraph model will result in an
overestimate of the mean burst size from nascent RNA data by a factor of 2. Another implication
is that deviations from Poisson fluctuations are more apparent in data for nascent RNA than they
are for mature RNA. One can further state the following relationship: the Fano factor of nascent
RNA equals twice the Fano factor of mature RNA, minus 1. If expression is non-bursty, then the
Fano factor of nascent RNA can be larger or smaller than that of mature RNA, as determined by
the condition in Eq. (19).

(iii) For genes characterised by bursty expression, the sensitivity of the noise in total RNAP fluctuations
is highest to perturbations in the gene activation rate and the mean elongation time; for constitutive
genes, the most sensitive parameters are the initiation rate and the mean elongation time.

(iv) A Negative Binomial distribution, parameterised with the expressions for the mean and variance
of total nascent RNA derived here, provides a good approximation to the true distribution of
total nascent RNA fluctuations on a gene when expression is either bursty or constitutive; the
approximation is not accurate when the gene spends roughly equal amounts of time in the active
and inactive states. We show that the distribution of nascent RNA is highly sensitive to the
distribution of elongation times. In particular, if the elongation time is assumed to be exponentially
distributed, as is implicitly assumed by telegraph models of nascent RNA, then the probability of
observing zero RNA is much lower than if the elongation time is assumed to be fixed.

(v) Using geometric singular perturbation theory (GSPT), we have rigorously proven that, in the limit
of deterministic elongation (or fast elongation), no pausing and premature detachment, the steady-
state distribution of mature RNA in our model is identical to that in the telegraph model [25].
Consideration of pausing and premature detachment leads to a distribution that can also be obtained
from a telegraph model with appropriately renormalised parameters.

A summary of the main theoretical results can be found in Table 2, with all requisite parameters
and functions defined in Table 3. The main limiting assumption of our theoretical approach is that the
initiation rate is slow enough such that RNAP molecules do not frequently collide with each other while
moving along the gene. Hence, the expressions we have derived are reasonable for all but the strongest
promoters which are characterised by very fast initiation rates. We anticipate that approximate closed-
form expressions for the corresponding moments can also be derived when volume exclusion between
RNAPs is taken into account by a modification of methods previously devised to understand molecular
movement and kinetics in crowded conditions [33,34]. It is also possible to extend our model by including
translation of mature RNA to protein; one can then again apply GSPT to derive distributions for protein
numbers in the limit of RNA decaying much faster than protein; however, given item (v) above, we
anticipate that the resulting protein distribution will be very similar to those derived from models that
do not explicitly take into account nascent RNA [35, 36]. Further research is required to develop simple
approximations of the nascent RNA distribution that are accurate independently of the ratio of gene
switching rates. Finally, given the strong recent interest in the development of statistical inference
techniques in molecular biology [29, 37, 38], we expect that our closed-form expressions for the moments
and distributions of nascent and mature RNA will be useful for developing computationally efficient and
accurate methods for estimating transcriptional parameters.
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Table 2: Summary of main results. The cartoon represents our model in various limits: no pausing
(rp = 0), pausing (rp 6= 0), stochastic elongation (T Erlang distributed), deterministic elongation (T
fixed), bursty limit (r, sb → ∞), and premature RNAP detachment (d, da, dp 6= 0). We summarize our
analytical expressions for the approximate distributions and moments of total RNAP and mature RNA.

Approximate total RNAP distribution for stochastic elongation

ntot ∼ NB

(
〈ntot〉2

Var(ntot)− 〈ntot〉
,

Var(ntot)− 〈ntot〉
Var(ntot)

)

No pausing
〈ntot〉 = ηρkµ

µL − 1

µ− 1

Var(ntot) = 〈ntot〉+ αβ(ηρk)2
∑L
i,j=1 µ

i+j · [f(i, j) + f(j, i)]

Pausing
〈ntot〉 = ηρk(1 + λ)µ̃

µ̃L − 1

µ̃− 1

Var(ntot) = 〈ntot〉+ α̃β(ηρk)2

[
2
∑L
i,j=1 g

aa(i, j) + λ(2 + λ)ωL
α̃L − 1

α̃− 1

]
Approximate mature RNA distribution (k/dm � 1) as the solution of the telegraph model with

renormalised transcription rate rPµ and RNAP survival probability Pµ

n ∼ P (n) =
1

n!

(su)n
(sb + su)n

( r

dm

)n
(Pµ)n1F1

( su
dm

+ n;
sb + su
dm

+ n;− r

dm
Pµ

)
Stochastic elongation Deterministic elongation

Detachment No detachment Detachment No detachment

No pausing d 6= 0 d = 0 d 6= 0 d = 0
Pausing da, dp 6= 0 da = dp = 0 da, dp 6= 0 da = dp = 0

No pausing Pµ = µL Pµ = 1 Pµ = e−d〈T 〉 Pµ = 1
Pausing Pµ = µ̃L Pµ = 1 Pµ = e−ψ〈T 〉 Pµ = 1

Ratio of Fano factors (FF) of total RNAP and mature RNA for
deterministic elongation without detachment (d = 0)

RFF = FFn/FFm

General Bursty (sb, r →∞)

No pausing RFF = 1 +
e−TgTrTsbΞ

T 2
g

[
TrTsb + Tg(Tg + Tm)

] RFF = 1 +
b

1 + b
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Table 3: Definition of parameters and functions.

f(i, j) =
αi+j−1

(2α− 1)i
+

1

2i+j−1

(
i+j−1
i

)[
1− 2α− 1

2α
2F1

(
1, i+ j; j; 1

2α

)]
,

gaa(i, j) =
α̃i+j−1

(2α̃− 1)i
+

1

2i+j−1

(
i+j−1
i

)[
1− 2α̃− 1

2α̃
2F1

(
1, i+ j; j; 1

2α̃

)]
,

Ξ = 2(Tg + Tm) + eTg [2(Tg − 1)Tm + (Tg − 2)Tg]

η = su/(su + sb) Fraction of time the gene spends in the active state.

ρk = r/k Mean number of bound RNAPs in the time 1/k.

ρ = r/dm Mean number of bound RNAPs in the time 1/dm.

µ = k/(k + d) Local RNAP survival probability (no-pausing case).

τp = 1/(d+ k) Timescale of fluctuations of RNAP.

τg = 1/(su + sb) Timescale of fluctuations of gene.

τd = 1/d Timescale of RNAP detachment.

τm = 1/dm Timescales of fluctuations of mature RNA.

α = 1/(1 + τp/τg) Non-dimensional parameter.

γ = 1/(1 + τp/τm) Non-dimensional parameter.

θ = 1/(1 + τm/τg) Non-dimensional parameter.

β = sb/su Ratio of gene inactivation and activation rates.

b = r/sb Mean burst size.

υk = su/k Ratio of gene activation and RNAP elongation rates.

υm = su/dm Ratio of gene activation and mature RNA degradation rates.

δg = τg/τd Ratio of gene timescale and RNAP detachment timescale.

Tg = 〈T 〉/τg Ratio of elongation timescale and gene timescale.

Td = 〈T 〉/τd Ratio of elongation timescale and RNAP detachment timescale.

Tr = r〈T 〉 Ratio of the mean elongation time to the timescale of initiation.

Tm = dm〈T 〉 Ratio of the mean elongation time to the timescale of decay of mature RNA.

Tsb = sb〈T 〉 Ratio of the mean elongation time to the timescale of gene deactivation.

σ = rp/ra Ratio of the pausing and activation rates.

πra = ra/(ra + dp) Probability of RNAP activation.

πdp = dp/(ra + dp) Probability of premature RNAP detachment from the paused state.

λ = σπra Probability of RNAP pausing from active state.

µ̃ = k/(k + da + rpπdp) Local RNAP survival probability (in pausing case).

τra = 1/ra Timescale of RNAP activation from the paused state.

τdp = 1/dp Timescale of premature termination of paused RNAP.

τp = 1/(k + da) Typical time that an actively moving RNAP spends on a gene segment.

τpp = 1/(ra + dp) Typical time spent in the paused state.

λrp = πrp/(1− πrp) Ratio of active RNAP timescale over RNAP pausing timescale.

πrp = rp/(rp + k + da) Probability of the actively moving RNAP switching to the paused state.

ωra = πraτg/(πraτra + τg) Non-dimensional parameter.

α̃ = (τg + λrpπdpτg)/[τg + τp + λrpτg(1− ωra)] Non-dimensional parameter.
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Appendix

A Distribution of elongation time

In this section, we answer the following question: what is the distribution of the elongation time, i.e. the
time between initiation and termination? In other words, with reference to Fig. 9 – which includes the
non-pausing model in Fig. 1 as a special case – we want to find the distribution of the time at which
RNAP leaves gene segment L (termination) if it was in the active state on gene segment 1 at time t = 0
(initiation).

Let zi(t) be the probability of an RNAP to be on gene segment i in the active state at time t, let z̃i(t)
be the probability of the RNAP to be on gene segment i in the paused state at time t, and let z∗i (t) be
the probability of the RNAP moving to gene segment i+ 1 at time t; note that z∗L(t) is the probability of
the RNAP falling off the gene and forming a mature RNA, since for i = L, gene segment L+ 1 does not
exist. Then, it follows from the reaction scheme illustrated in Fig. 9 that the master equations describing
the Markovian dynamics on gene segment i are given by

∂tzi(t) = −(rp + k + da)zi(t) + raz̃i(t), (A.1a)

∂tz̃i(t) = −(dp + ra)z̃i(t) + rpzi(t), (A.1b)

∂tz
∗
i (t) = kzi(t). (A.1c)

Now, we use these equations to find the distribution of the time when RNAP jumps to gene segment
i + 1, given that it is on gene segment i in the active state at t = 0, i.e. that zi(0) = 1 and z̃i(0) = 0.
Taking the Laplace transform of Eqs. (A.1a) and (A.1b), we find

sẑi(s)− 1 = −(rp + k + da)ẑi(s) + ra ˆ̃zi(s), (A.2a)

sˆ̃zi(s) = −(dp + ra)ˆ̃zi(s) + rpẑi(s), (A.2b)

where f̂(s) =
∫∞

0
e−stf(t) dt. Solving these equations simultaneously, we obtain

ẑi(s) =
s+ dp + ra

(s+ k + da)(s+ dp + ra) + rp(s+ dp)
. (A.3)

Let w(t)dt be the probability that the RNAP moves from segment i to i+1 in the time interval (t, t+dt).
Then, it follows from Eq. (A.1c) that w(t) = ∂tz

∗
i (t) = kzi(t). Integrating w(t) over all times gives us the

probability that the RNAP ultimately moves to the next segment i+ 1,∫ ∞
0

w(t) dt = ŵ(0) = kẑi(0) =
k (ra + dp)

(da + k) (ra + dp) + dprp
. (A.4)

Note that ŵ(0) is identical to the parameter µ̃, as defined in Prop. 3. Let y(t)dt be the probability that
the RNAP moves from gene segment i to segment i+1 in the time interval (t, t+dt), conditioned on those
realisations that lead to an RNAP moving to the next gene segment i + 1. (In other words, we exclude
those realisations that lead to premature detachment.) Then, it follows by the definition of conditional
probabilities that y(t) = w(t)/ŵ(0), which implies

ŷ(s) =
ŵ(s)

ŵ(0)
=

[(da + k)(ra + dp) + dprp](ra + dp + s)

(ra + dp)[(da + k + s)(ra + dp + s) + rp(dp + s)]
. (A.5)

It follows that the mean 〈t〉 and variance Var(t) of the time t it takes RNAP to move to the next gene
segment are given by

〈t〉 = −dŷ(s)

ds

∣∣∣∣
s=0

=
(ra + dp)

2 + rarp
(ra + dp)[(da + k)(ra + dp) + dprp]

, (A.6a)

Var(t) =
d2ŷ(s)

ds2

∣∣∣∣
s=0

−
(
dŷ(s)

ds

∣∣∣∣
s=0

)2

=
2rarp(ra + dp)(da + ra + dp + k) + (ra + dp)

4 + rar
2
p(ra + 2dp)

(ra + dp)2[(da + k)(ra + dp) + dprp]2
,

(A.6b)
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respectively. Since RNAP can only move forwards in our model (irreversible motion), it follows that the
time it takes an RNAP to move from the i-th to the (i+ 1)-th gene segment is independent of the time
taken to move from another, j-th segment to the (j + 1)-th segment. Hence, the time required for an
RNAP to move across the entire gene from the first to the L-th segment, i.e. the ‘elongation’ time T
from initiation to termination, is a sum of L independent and identical random variables. Thus, we can
immediately state that the mean elongation time is 〈T 〉 = L〈t〉, whereas the variance of the elongation
time is Var(T ) = LVar(t). The coefficient of variation squared takes the form

CV2
T =

Var(T )

〈T 〉2
= 1 +

2rarp[(da + k)(ra + dp) + dprp]

[(ra + dp)2 + rarp]2
. (A.7)

From Eq. (A.7), it can be shown that for small premature detachment rates, the coefficient of variation
of the elongation time is maximised when rp ≈ ra. Taking the limit of infinitely many gene segments at
constant mean elongation time, i.e. solving for k from the expression for the mean elongation time in
Eq. (A.6), substituting into Eq. (A.7), and taking the limit of L→∞, we obtain

lim
L→∞

CV2
T =

2rarp
〈T 〉(ra + dp)[(ra + dp)2 + rarp]

. (A.8)

For the non-pausing model shown in Fig. 1, the above results simplify considerably due to rp = 0 = dp
and da = d; in that case, the inverse Laplace transform of Eq. (A.5) implies that y(t) is an exponential
distribution with parameter k + d. Hence, the total time it takes an RNAP to move across the entire
gene is the sum of L independent and identically distributed exponential random variables, i.e. an Erlang
distribution with shape parameter L and rate k + d, which implies that the mean elongation time is
L/(k+d), with coefficient of variation 1/

√
L. It can be seen from Eq. (A.8) that deterministic elongation

can only be observed when there is no pausing, i.e. when rp = 0.

B Solution of Lyapunov equation

Proof of Proposition 2. We start by defining the symmetric functions fij = fji for i, j = 1, . . . , L as

f00 = 1, f0j = αj−1, f0M = θαL−1,

fij = (fi−1,j + fi,j−1)/2, fiM = γfi−1,M + (1− γ)fiL, fMM = fLM ,
(B.1)

where the non-dimensional parameters α, γ, and θ are defined in Prop. 2. The elements of the Lyapunov
equation given by Eq. (5) can be written explicitly as a set of simultaneous equations:

C11 · 2J11 = −D11, (B.2a)

C12 · (J11 + J22) = −J21C11, (B.2b)

C1j · (J11 + Jjj) = −Jj,j−1C1,j−1 for j = 3, . . . , L+ 1, (B.2c)

C1,L+2 · (J11 + JL+2,L+2) = −JL+2,L+1C1,L+1, (B.2d)

C22 · 2J22 = −2J21C12 −D22, (B.2e)

C23 · (J22 + J33) = −J21C13 − J32C22 −D23, (B.2f)

C2j · (J22 + Jjj) = −J21C1j − Jj,j−1C2,j−1 for j = 4, . . . , L+ 1, (B.2g)

C2,L+2 · (J22 + JL+2,L+2) = −J21C1,L+2 − JL+2,L+1C2,L+1, (B.2h)

Cii · 2Jii = −2Ji,i−1Ci−1,i −Dii for i = 3, . . . , L+ 1, (B.2i)

Ci,i+1 · (Jii + Ji+1,i+1) = −Ji,i−1Ci−1,i+1 − Ji+1,iCii −Di,i+1 for i = 3, . . . , L, (B.2j)

Cij · (Jii + Jjj) = −Ji,i−1Ci−1,j − Jj,j−1Ci,j−1 for i = 3, . . . , L+ 1

and j = i+ 2, . . . , L+ 1, (B.2k)

Ci,L+2 · (Jii + JL+2,L+2) = −Ji,i−1Ci−1,L+2 − JL+2,L+1Ci,L+1 for i = 3, . . . , L+ 1, (B.2l)

CL+2,L+2 · 2JL+2,L+2 = −2JL+2,L+1CL+1,L+2 −DL+2,L+2. (B.2m)
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Now, we substitute the elements of the Jacobian matrix J and the diffusion matrix D from Eqs. (6) and
(7), respectively, into the above system of algebraic equations, which we then solve to find the elements
of the covariance matrix C. Note that, for the following mathematical derivation, we take into account
the expressions for the steady-state mean numbers of species given in Eq. (2), as well as the definition of
the functions fij in Eq. (B.1).
From Eq. (B.2a), one easily obtains C11 = η2β. Then, it follows from Eq. (B.2b) that

C12 =
r

su + sb + k + d
C11 = ρkµα(η2β) = η(ηρkµ)αβ = η〈n1〉αβ · f01. (B.3)

Eq. (B.2c) implies that, for j = 3, . . . , L+ 1:

C1j =
k

su + sb + k + d
C1,j−1 = µα ·C1,j−1 = (µα)j−2C12 = (µα)j−2(η〈n1〉αβ) = η〈nj−1〉αβ · f0,j−1.

(B.4)
From Eq. (B.2d), we have that

C1,L+2 =
k

su + sb + dm
C1,L+1 =

k

dm
θ(〈nL〉αβ · f0L) = η(

k

dm
〈nL〉)(αβ)(θ · f0L) = η〈n〉 · f0M ; (B.5)

from Eq. (B.2e), we find

C22 =
r〈n0〉+ (k + d)〈n1〉

2(k + d)
+

r

k + d
C12 =

ρkµη + 〈n1〉
2

+ (ρkµ)(η〈n1〉αβ · f01) = 〈n1〉+ 〈n1〉2αβ · f11,

(B.6)
since f11 = (f01 + f10)/2 = f01 from the definition in Eq. (B.1).

From Eq. (B.2f), we obtain

C23 = − k

2(d+ k)
〈n1〉+

r

2(k + d)
C13 +

k

2(d+ k)
C22

= −〈n2〉
2

+
1

2
(ρkµη)〈n2〉αβ · f02 +

1

2
µ[〈n1〉+ 〈n1〉2αβ · f11]

= −〈n2〉
2

+
1

2
〈n1〉〈n2〉αβ · f02 +

〈n2〉
2

+
1

2
(µ〈n1〉)〈n1〉αβ · f11

=
1

2
〈n1〉〈n2〉αβ · f02 +

1

2
〈n2〉〈n1〉αβ · f11 = 〈n1〉〈n2〉αβ

1

2
(f02 + f11) = 〈n1〉〈n2〉αβ · f12,

(B.7)

since f12 = (f02 + f11)/2 from the definition in Eq. (B.1).

From Eq. (B.2g), we have that, for j = 4, . . . , L+ 1,

C2j =
r

2(k + d)
C1j +

k

2(k + d)
C2,j−1 =

ρkµ

2
C1j +

µ

2
C2,j−1 =

ρkµ

2

j−4∑
q=0

(µ
2

)q
C1,j−q +

(µ
2

)j−3

C23.

(B.8)
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The proof of Eq. (B.8) is given in Lemma B.1. The above expression for C2j can be further simplified to

C2j =
ρkµ

2

j−4∑
q=0

(µ
2

)q
η〈nj−q−1〉αβ · f0,j−q−1 +

(µ
2

)j−3

〈n1〉〈n2〉αβ · f12

=

j−4∑
q=0

(1

2

)q+1

(ρkµη)(µq〈nj−q−1〉)αβ · f0,j−q−1 +
(1

2

)j−3

〈n1〉(µj−3〈n2〉)αβ · f12

=

j−4∑
q=0

(1

2

)q+1

〈n1〉〈nj−1〉αβ · f1,j−q−1 +
(1

2

)j−3

〈n1〉〈nj−1〉αβ · f12

= 〈n1〉〈nj−1〉αβ
[ j−4∑
q=0

(1

2

)q+1

f1,j−q−1 +
(1

2

)j−3

f12

]
= 〈n1〉〈nj−1〉αβ · f1,j−1.

(B.9)

For the proof of the last equality in Eq. (B.9), see Lemma B.2.

From Eq. (B.2h), we have that

C2,L+2 =
r

k + d+ dm
C1,L+2 +

k

k + d+ dm
C2,L+1 = ρkµγC1,L+2 + µγC2,L+1

= (ρkµγ)(η〈n〉αβ · f0M ) + (µγ)(〈n1〉〈nL〉αβ · f1L)

= (ρkηµ)〈n〉αβ · γf0M + µ
dm
k
〈n1〉

k

dm
〈nL〉αβ · γf1L = 〈n1〉〈n〉αβ ·

[
γf0M + µ

dm
k
γf1L

]
= 〈n1〉〈n〉αβ · [γf0M + (1− γ) · f1L] = 〈n1〉〈n〉αβ · f1M ,

(B.10)

where f1M is defined in Eq. (B.1).

Eqs. (B.2i) through (B.2k) yield the system

Cii =
k〈ni−2〉+ (k + d)〈ni−1〉

2(k + d)
+

k

k + d
Ci−1,i = 〈ni−1〉+ µCi−1,i,

Ci,i+1 =
µ

2
Ci−1,i+1 +

µ

2
Cii −

µ

2
〈ni−1〉 =

µ

2
(Ci−1,i+1 + µCi−1,i),

Cij =
µ

2
(Ci−1,j + Ci,j−1),

(B.11)

which can be rewritten more compactly as

Cij = δij〈ni−1〉+ 〈ni−1〉〈nj−1〉αβ · fi−1,j−1 for i, j = 3, . . . , L+ 1, (B.12)

where δij is the Kronecker delta. A detailed derivation is given in Lemma B.3.

From Eq. (B.2l), we have that for i = 3, . . . , L+ 1,

Ci,L+2 =
k

k + d+ dm
Ci−1,L+2 +

k

k + d+ dm
Ci,L+2 = µγCi−1,L+2 + (k/dm)(1− γ)Ci,L+1

= γ(µ〈ni−2〉)〈n〉αβ · fi−2,M + (1− γ)〈ni−1〉(k/dm〈nL〉)αβ · fi−1,L

= 〈ni−1〉〈n〉αβ · [γfi−2,M + (1− γ)fi−1,L] = 〈ni−1〉〈n〉αβ · fi−1,M ,

(B.13)

where fiM is defined in Eq. (B.1).
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Finally, Eq. (B.2m) yields

CL+2,L+2 =
k〈nL〉+ dm〈n〉

2dm
+

k

dm
CL+1,L+2 = 〈n〉+ (k/dm)〈nL〉〈n〉αβ · fLM = 〈n〉+ 〈n〉2αβ · fMM ,

(B.14)
where fMM = fLM is defined in Eq. (B.1).

Summarising the above results, we conclude that the solution for the symmetric covariance matrix C
is given by the system in Eq. (4), where we have that Cov(ni, nj) = Ci+1,j+1, Cov(ni, n) = Ci+1,L+2

for i, j = 0, . . . , L, and Var(n, n) = CL+2,L+2. Here, the functions fij are defined as in Eq. (B.1). Now,
the recurrence relation fij = (fi−1,j + fi,j−1)/2 in Eq. (B.1) can be solved for i, j = 1, 2, . . . , L via the
method of generating functions, which gives the following analytical expression:

fij = f(i, j) + f(j, i), (B.15)

where

f(i, j) =
αi+j−1

(2α− 1)i
+

1

2i+j−1

(
i+ j − 1

i

)[
1− 2α− 1

2α
2F1

(
1, i+ j; j; 1

2α

)]
;

see Lemma B.5 for a detailed derivation. Additionally, we can easily prove that the function fiM in
Eq. (B.1) can be rewritten as

fiM = γif0M + (1− γ)

i∑
q=1

γi−qfqL, (B.16)

as shown in Lemma B.4. �

Lemma B.1. For j = 4, . . . , L+ 1, we have the identity

C2j =
ρkµ

2
C1j +

µ

2
C2,j−1 =

ρkµ

2

j−4∑
q=0

(µ
2

)q
C1,j−q +

(µ
2

)j−3

C23, (B.17)

as stated in Eq. (B.8).

Proof. The identity in Eq. (B.17) will be proved by induction: one can easily show that it holds for j = 4.
Now, we assume that Eq. (B.17) is true for some j ≥ 5; hence, for j + 1, we have

C2,j+1 =

j−3∑
q=0

(µ
2

)q ρkµ
2

C1,j+1−q +
(µ

2

)j−2

C23

=
ρkµ

2
C1,j+1 +

j−3∑
q=1

(µ
2

)q ρkµ
2

C1,j+1−q +
(µ

2

)j−2

C23

=
ρkµ

2
C1,j+1 +

µ

2

[ j−3∑
q=1

(µ
2

)q−1 ρkµ

2
C1,j+1−q +

(µ
2

)j−3

C23

]

=
ρkµ

2
C1,j+1 +

µ

2

[ j−4∑
q=0

(µ
2

)q ρkµ
2

C1,j−q +
(µ

2

)j−3

C23

]

=
ρkµ

2
C1,j+1 +

µ

2
C2j ,

(B.18)

as claimed, which implies that the identity in Eq. (B.17) holds for all j = 4, . . . , L+ 1. �
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Lemma B.2. The function f1j, which is defined by the recurrence relation f1j = (f0j + f1,j−1)/2 in
Eq. (B.1), satisfies the identity

f1j =

j−3∑
q=0

(1

2

)q+1

f0,j−q +
(1

2

)j−2

f12 for j = 3, . . . , L, (B.19)

as stated in Eq. (B.9).

Proof. We will again prove Eq. (B.19) by induction. For j = 3, we have from Eq. (B.19) that f13 =
(f03 + f12)/2, which is true by the definition of f13. We assume that the identity in Eq. (B.19) is correct
for some j ≥ 4; then, for j + 1, the definition of f1,j+1, in combination with our assumption, implies

f1,j+1 =
1

2
f0,j+1 +

1

2
f1j =

1

2
f0,j+1 +

1

2

[ j−3∑
q=0

(1

2

)q+1

f0,j−q +
(1

2

)j−2

f12

]

=
1

2
f0,j+1 +

1

2

[ j−2∑
q=1

(1

2

)q
f0,j+1−q +

(1

2

)j−2

f12

]

=

j−2∑
q=0

(1

2

)q+1

f1,j+1−q +
(1

2

)j−1

f12,

as claimed. Hence, the equality in Eq. (B.19) is true for all j = 3, . . . , L. �

Lemma B.3. The system in Eq. (B.11), which is given by

Cii = 〈ni−1〉+ µCi−1,i for i = 3, . . . , L,

Ci,i+1 =
µ

2
(Ci−1,i+1 + µCi−1,i) for i = 3, . . . , L,

Cij =
µ

2
(Ci−1,j + Ci,j−1) for i = 3, . . . , L+ 1 and j = i+ 1, . . . , L+ 1,

(B.20)

is equivalent to the system

Cij = δij〈ni−1〉+ 〈ni−1〉〈nj−1〉αβ · fi−1,j−1 for i, j = 3, . . . , L+ 1, (B.21)

as stated in Eq. (B.12). Here, the functions fij are defined as in Eq. (B.1).

Proof. We again use the method of induction. For i = 3, we have

C33 = 〈n2〉+ 〈n2〉2αβ · f22 = 〈n2〉+ µ〈n1〉〈n2〉αβ · f12 = 〈n2〉+ µC23,

C34 = 〈n2〉〈n3〉(βα) · f34 = 〈n2〉〈n3〉αβ(f22 + f13)/2 = [〈n2〉〈n3〉αβ · f22 + 〈n2〉〈n3〉αβ · f13]/2

= [µ〈n1〉〈n3〉αβ · f13 + µ2〈n1〉〈n2〉αβ · f12]/2 =
µ

2
[〈n1〉〈n3〉αβ · f13 + µ〈n1〉〈n2〉αβ · f12]

=
µ

2
(C24 + µC23),

C3j = 〈n2〉〈nj−1〉αβ · f2,j−1 = 〈n2〉〈nj−1〉αβ(f2,j−2 + f1,j−1)/2

= [〈n2〉〈nj−1〉αβ · f2,j−2 + 〈n2〉〈nj−1〉αβ · f1,j−1]/2

= [〈n2〉µ〈nj−2〉αβ · f2,j−2 + µ〈n1〉〈nj−1〉αβ · f1,j−1]/2

=
µ

2
[〈n2〉〈nj−2〉αβ · f2,j−2 + 〈n1〉〈nj−1〉αβ · f1,j−1]

=
µ

2
(C3,j−1 + C2j).

(B.22)
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Now, we assume that the statement is true for some i ≥ 4; then, for i+ 1, we have

Ci+1,i+1 = 〈ni〉+ 〈ni〉2αβ · fii = 〈ni〉+ µ〈ni−1〉〈ni〉αβ · fi−1,i = 〈ni〉+ µCi,i+1,

Ci+1,i+2 = 〈ni〉〈ni+1〉αβ · fi,i+1 = 〈ni〉〈ni+1〉αβ(fi−1,i+1 + fii)/2

= [〈ni〉〈ni+1〉αβ · fi−1,i+1 + 〈ni〉〈ni+1〉αβ · fii]/2
= [µ〈ni−1〉〈ni+1〉αβ · fi−1,i+1 + µ2〈ni−1〉〈ni〉αβ · fi−1,i]/2

=
µ

2
[〈ni−1〉〈ni+1〉αβ · fi−1,i+1 + µ〈ni−1〉〈ni〉αβ · fi−1,i]

=
µ

2
(Ci,i+2 + µCi,i+1),

Ci+1,j = 〈ni〉〈nj−1〉αβ · fi,j−1 = 〈ni〉〈nj−1〉αβ(fi−1,j−1 + fi,j−2)/2

= [〈ni〉〈nj−1〉αβ · fi−1,j−1 + 〈ni〉〈nj−1〉αβ · fi,j−2]/2

= [µ〈ni−1〉〈nj−1〉αβ · fi−1,j−1 + µ〈ni〉〈nj−2〉αβ · fi,j−2]/2

=
µ

2
[〈ni−1〉〈nj−1〉αβ · fi−1,j−1 + 〈ni〉〈nj−2〉αβ · fi,j−2]

=
µ

2
(Cij + Ci+1,j−1),

(B.23)

which is also correct. Hence, the statement of the lemma is true for all i and j, as stated. �

Lemma B.4. For i = 1, . . . , L, the function fiM defined in Eq. (B.1) can be simplified as in Eq. (B.16);
specifically, we have the identity

fiM = γfi−1,M + (1− γ)fi,L = γi · f0M + (1− γ)

i∑
q=1

γi−q · fqL. (B.24)

Proof. The proof is by induction: for i = 1, the identity is obvious. We now suppose that Eq. (B.24) is
true for some i ≥ 2; hence, for i+ 1, we have

fi+1,M = γi+1 · f0M + (1− γ)

i+1∑
q=1

γi+1−q · fqL

= γ

[
γi · f0M + (1− γ)

i∑
q=1

γi−q · fqL
]

+ (1− γ)fi+1,L = γfiM + (1− γ)fi+1,L,

(B.25)

which is correct. Hence, Eq. (B.24) is true for all i, as stated. �

Lemma B.5. For i, j = 1, . . . , L, the solution of the recurrence relation fij = (fi,j−1 + fi−1,j)/2 in
Eq. (B.1) is given by fij = f(i, j) + f(j, i), where

f(i, j) =
αi+j−1

(2α− 1)i
+

1

2i+j−1

(
i+ j − 1

i

)[
1− 2α− 1

2α
2F1

(
1, i+ j; j; 1

2α

)]
. (B.26)

Proof. In order to solve the recurrence relation for the function fij , we take into account the initial
conditions f00 = 1 and f0j = fj0 = αj−1. Then, we define a generating function g(x, y) via

g(x, y) =
∑
i,j≥0

fijx
iyj = f00 +

∑
j≥1

f0jy
j +

∑
i≥1

fi0x
i +

∑
i,j≥1

fijx
iyj , (B.27)
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where the last term can be rewritten as∑
i,j≥1

fijx
iyj =

∑
i,j≥1

1

2
(fi−1,j + fi,j−1)xiyj

=
1

2
x
∑
i,j≥1

fi−1,jx
i−1yj +

1

2
y
∑
i,j≥1

fi,j−1x
iyj−1

=
1

2
x
∑
i≥0

∑
j≥1

fijx
iyj +

1

2
y
∑
i≥1

∑
j≥0

fijx
iyj

=
1

2
x

( ∑
i,j≥0

fijx
iyj −

∑
i≥0

fi0x
i

)
+

1

2
y

( ∑
i,j≥0

fijx
iyj −

∑
j≥0

f0jy
j

)

=
1

2
x

(
g(x, y)−

∑
i≥0

fi0x
i

)
+

1

2
y

(
g(x, y)−

∑
j≥0

f0jy
j

)
.

(B.28)

Hence, Eq. (B.27) becomes

g(x, y) = f00 +
∑
j≥1

f0jy
j +

∑
i≥1

fi0x
i +

1

2
x

(
g(x, y)−

∑
i≥0

fi0x
i

)
+

1

2
y

(
g(x, y)−

∑
j≥0

f0jy
j

)
,

which is equivalent to

g(x, y)
(

1− 1

2
x− 1

2
y
)

= f00

(
1− 1

2
x− 1

2
y
)

+
(

1− 1

2
y
)∑
j≥1

f0jy
j +

(
1− 1

2
x
)∑
i≥1

fi0x
i

or

g(x, y) = f00 +
(

1− 1

2
y
) 1

1− 1

2
x− 1

2
y

∑
j≥1

f0jy
j +

(
1− 1

2
x
)

1− 1

2
x− 1

2
y

∑
i≥1

fi0x
i. (B.29)

Taking into account the initial conditions, we find that∑
j≥1

f0jy
j =

∑
j≥1

αj−1yj =
1

α

∑
j≥1

(αy)j and
∑
i≥1

fi0x
i =

1

α

∑
i≥1

(αx)i, (B.30)

which we substitute into Eq. (B.29) to obtain

g(x, y) = 1 +
(

1− 1

2
y
) 1

1− 1
2x−

1
2y

1

α

∑
j≥1

(αy)j +
(

1− 1

2
x
) 1

1− 1
2x−

1
2y

1

α

∑
i≥1

(αx)i. (B.31)

Making use of the well-known symmetric, bivariate generating function of the binomial coefficients

1

1− s− t
=
∑
i,j≥0

(
i+ j

i

)
sitj , (B.32)

we can rewrite Eq. (B.31) as

g(x, y) = 1 +
(

1− 1

2
y
) 1

α

∑
j≥1

(αy)j
∑
i,j≥0

(
i+ j

i

)
xiyj

2i+j
+
(

1− 1

2
x
) 1

α

∑
i≥1

(αx)i
∑
i,j≥0

(
i+ j

i

)
xiyj

2i+j

=
(

1− 1

2
y
) ∑
i,j≥0

j−1∑
q=0

(
i+ q

i

)
αj−q−1

2i+q
xiyj +

(
1− 1

2
x
) ∑
i,j≥0

i−1∑
q=0

(
j + q

q

)
αi−q−1

2j+q
xiyj .
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Rearranging sums in the above expression, we find

g(x, y) =
∑
i,j≥0

[ j−1∑
q=0

(
i+ q

i

)
αj−q−1

2i+q
−
j−2∑
q=0

(
i+ q

i

)
αj−q−2

2i+q+1

+

i−1∑
q=0

(
j + q

q

)
αi−q−1

2j+q
−

i−2∑
q=0

(
j + q

q

)
αi−q−2

2j+q+1

]
xiyj .

Hence, we obtain the following exact expression for the function fij ,

fij =

j−1∑
q=0

(
i+ q

q

)
αj−q−1

2i+q
−
j−2∑
q=0

(
i+ q

q

)
αj−q−2

2i+q+1
+

i−1∑
q=0

(
j + q

q

)
αi−q−1

2j+q
−

i−2∑
q=0

(
j + q

q

)
αi−q−2

2j+q+1
. (B.33)

The expression in Eq. (B.33) can be simplified further due to its symmetry with respect to the indices i
and j: we write fij = f(i, j) + f(j, i), where f(i, j) is defined as

f(i, j) =

j−1∑
q=0

(
i+ q

q

)
αj−q−1

2i+q
−
j−2∑
q=0

(
i+ q

q

)
αj−q−2

2i+q+1
. (B.34)

The function f(i, j) can be further simplified as

f(i, j) =

(
i+ j − 1

j − 1

)
1

2i+j−1
+ 2α

j−2∑
q=0

(
i+ q

q

)
αj−q−2

2i+q+1
−
j−2∑
q=0

(
i+ q

q

)
αj−q−2

2i+q+1

=

(
i+ j − 1

j − 1

)
1

2i+j−1
+ (2α− 1)

αj−2

2i+1

j−2∑
q=0

(
i+ q

q

)( 1

2α

)q
;

(B.35)

next, we use the identity

j∑
q=0

(
i+ q

i

)
xq =

1

(1− x)i+1
− xj+1

(
j + 1 + i

j + 1

)
2F1(1, j + i+ 2; j + 2;x), (B.36)

where 2F1 is again the generalised hypergeometric function of the second kind [21]. Note that the above
identity can be used only when |x| < 1, as the hypergeometric function 2F1 is not defined otherwise.

Hence, Eq. (B.35) becomes

f(i, j) =

(
i+ j − 1

j − 1

)
1

2i+j−1
+ (2α− 1)

αj−2

2i+1

[( 2α

2α− 1

)i+1

− 1

(2α)j−1

(
j + i− 1

j − 1

)
2F1

(
1, j + i; j; 1

2α

)]

=
αi+j−1

(2α− 1)i
+

1

2i+j−1

(
i+ j − 1

i

)[
1− 2α− 1

2α
2F1

(
1, j + i; j; 1

2α

)]
(B.37)

Given the expression for f(i, j) in Eq. (B.37), one can find the corresponding expression for f(j, i) by
exchanging the indexes i↔ j. �

C Variance of total RNAP distribution

In this section, we derive the exact expression for the variance of the total RNAP distribution, as stated
in Eq. (10), which is given by the sum over the covariances Cov(xi, xj) (i, j = 1, . . . , L), as defined in
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Eq. (4d). Hence, we have

Var(ntot) =

L∑
i,j=1

Cov(ni, nj) =

L∑
i=1

Var(ni) +
∑
i6=j

Cov(ni, nj)

=

L∑
i=1

[
〈ni〉+ 〈ni〉2αβ · fii

]
+
∑
i6=j

〈ni〉〈nj〉αβ · fij

=

L∑
i=1

〈ni〉+ αβ

( L∑
i=1

〈ni〉2 · fii +
∑
i 6=j

〈ni〉〈nj〉 · fij
)

=

L∑
i=1

〈ni〉+ αβ

L∑
i,j=1

〈ni〉〈nj〉 · fij ,

(C.1)

where the function fij is given in Eq. (10). The first term in Eq. (C.1) equals 〈ntot〉, the mean of the
total RNAP distribution, as stated in Eq. (10); substituting in the expressions for the means 〈ni〉 from
Eq. (2b), as well, we obtain

Var(ntot) = 〈ntot〉+ αβ(ηρk)2
L∑

i,j=1

µi+j · fij . (C.2)

Lemma C.1. In the limit of deterministic elongation, i.e. for L → ∞, the expression for Var(ntot) in
Eq. (10) simplifies to

Var(ntot)∞ = 〈ntot〉∞ + β(ηr)2 (sb + su − d)− (sb + su + d)e−2d〈T 〉 + 2de−(sb+su+d)〈T 〉

d(sb + su + d)(sb + su − d)
, (C.3)

which can be further simplified to the expression in Eq. (11).

Proof. In order to find the limit of L → ∞ in Eq. (10) (or Eq. (C.2)), we have to evaluate the term∑L
i,j=1 µ

i+j ·fij in that limit. For the following derivation, we consider the function fij = f(i, j)+f(j, i),
where f(i, j) is defined in in terms of sums in Eq. (B.34). Hence, we have

L∑
i,j=1

µi+j · fij =

L∑
i,j=1

µi+jf(i, j) +

L∑
i,j=1

µi+jf(j, i) = 2

L∑
i,j=1

µi+jf(i, j)

= 2

[ L∑
i,j=1

j−1∑
q=0

µi+j
(
i+ q

q

)
αj−q−1

2i+q
−

L∑
i,j=1

j−2∑
q=0

µi+j
(
i+ q

q

)
αj−q−2

2i+q+1

]

= 2

L∑
i,j=1

µi+j
(
i+ j − 1

i

)
1

2i+j−1︸ ︷︷ ︸
G1

+ 2(2α− 1)

L∑
i,j=1

j−2∑
q=0

µi+j
(
i+ q

q

)
αj−q−2

2i+q+1︸ ︷︷ ︸
G2

.

(C.4)

Substituting k → L/〈T 〉 − d in Eq. (C.4) and taking the limit of L→∞, we have that G1 −→
L→∞

0; hence,

Var(ntot) evaluates to

Var(ntot)∞ = 〈ntot〉∞ + lim
L→∞

[αβ(ηρk)2G2] (C.5)

in that limit, which yields the expression in Eq. (C.3), as can easily be verified with the computer algebra
package Mathematica. Hence, in the limit of deterministic elongation, the expression for the variance of
the RNAP distribution in Eq. (10) reduces to the one in Eq. (11), as claimed.

�

37



D Moments of total RNAP and mature RNA in bursty and constitutive
limits

Moments of total RNAP in the bursty limit. In the bursty limit, the expressions for the mean and
variance of the total RNAP distribution given in Eq. (10) simplify to

〈ntot〉b = b
su
k
µ
µL − 1

µ− 1
and Var(ntot)b = 〈ntot〉b + b2

su
k

L∑
i,j=1

µi+j · hij . (D.1)

If, furthermore, we take the limit of deterministic elongation, with L → ∞ at constant 〈T 〉, Eq. (D.1)
simplifies to

〈ntot〉(b;∞) = b
su
d

(1− e−Td) and Var(ntot)(b;∞) = 〈ntot〉(b;∞) + 〈ntot〉2(b;∞)

d

su

1 + e−Td

1− e−Td
, (D.2)

where the subscript (b;∞) denotes the bursty limit with infinite L. In the limit of zero RNAP detachment,
Eq. (D.2) further simplifies to

〈ntot〉(b;∞;0) = bsu〈T 〉 and Var(ntot)(b;∞;0) = 〈ntot〉(b;∞;0)(1 + 2b), (D.3)

where the subscript (b;∞; 0) denotes the bursty limit, with L→∞ and d→ 0.

Moments of total RNAP in the constitutive limit. In the constitutive limit, Eq. (10) simplifies to

〈ntot〉c =
r

k
µ
µL − 1

µ− 1
= Var(ntot)c. (D.4)

If, furthermore, we take the limit of deterministic elongation, i.e. L → ∞ at constant 〈T 〉, Eq. (D.4)
simplifies to

〈ntot〉(c;∞) =
r

d
(1− e−Td) = Var(ntot)(c;∞); (D.5)

finally, in the limit of zero RNAP detachment, Eq. (D.5) further simplifies to

〈ntot〉(c;∞;0) = r〈T 〉 = Var(ntot)(c;∞;0). (D.6)

Moments of mature RNA distribution in the bursty limit. In that limit, the closed-form expres-
sions in Eq. (8) are given by

〈n〉b = bυmµ
L and Var(n)b = 〈n〉b + 〈n〉2b(υkµ)−1 · hMM , (D.7)

which in the limit of deterministic elongation simplify to

〈n〉(b;∞) = bυme
−Td and Var(n)(b;∞) = 〈n〉(b;∞) + 〈n〉2(b;∞)υ

−1
m . (D.8)

In the limit of zero RNAP detachment, these expressions further simplify to

〈n〉(b;∞;0) = bυm and Var(n)(b;∞;0) = 〈n〉(b;∞;0) + 〈n〉2(b;∞;0)υ
−1
m . (D.9)

E Introduction to Geometric Singular Perturbation Theory (GSPT)

We consider a system of first-order autonomous ordinary differential equations in the general (‘standard’)
form

εẋ = f(x,y, ε), (E.1a)

ẏ = g(x,y, ε), (E.1b)

38



where (x,y) ∈ Rm × Rl, with m, l ∈ N. Here, 0 < ε � 1 is a (real) singular perturbation parameter,
and the overdot denotes differentiation with respect to the ‘slow’ time t. (Correspondingly, Eq. (E.1) is
referred to as the ‘slow’ system.) The variable x is referred to as the ‘fast variable’, while y is the ‘slow
variable’. For simplicity, the functions f : Rm ×Rl ×R+ → Rm and g : Rm ×Rl ×R+ → Rl are assumed
to be C∞-smooth in all their arguments. In the context of our analysis of the characteristic system in
Eq. (26), we have the ‘slow system’

εu̇i = ui − ui+1 + (d/k)ui for i = 1, . . . , L− 1, (E.2a)

εu̇L = uL − u+ (d/k)uL, (E.2b)

u̇ = u, (E.2c)

Ḟ0 = (su/dm)F1 − (sb/dm)F0 + (r/dm)u1F0, (E.2d)

Ḟ1 = (sb/dm)F0 − (su/dm)F1. (E.2e)

By comparing the system of equations in Eq. (E.2) with the general form in Eq. (E.1), we see that ui
(i = 1, . . . , L) are the fast variables, while u, F0, and F1 are slow. Correspondingly, we have m = L
and l = 3 in the above notation, which implies f = (f1, f2, . . . , fL), with fi = fi(ui, ui+1) = ui − ui+1 +
(d/k)ui for i = 1, . . . , L − 1, fL = fL(uL, u) = uL − u + (d/k)uL, and g = (g1, g2, g3)(u1, u, F0, F1) =
(u, (su/dm)F1 − (sb/dm)F0 + (r/dm)u1F0, (sb/dm)F0 − (su/dm)F1).

Now, we introduce a new ‘fast’ time τ = t/ε, which we substitute into Eq. (E.1) to find the ‘fast
system’

x′ = f(x,y, ε), (E.3a)

y′ = εg(x,y, ε) (E.3b)

corresponding to Eq. (E.1); here, the prime denotes the derivative with respect to τ . Hence, rewriting
Eq. (E.2) in the fast formulation, we find

u′i = ui − ui+1 + (d/k)ui for i = 1, . . . , L− 1, (E.4a)

u′L = uL − u+ (d/k)uL, (E.4b)

u′ = εu, (E.4c)

F ′0 = ε[(su/dm)F1 − (sb/dm)F0 + (r/dm)u1F0], (E.4d)

F ′1 = ε[(sb/dm)F0 − (su/dm)F1]. (E.4e)

For positive ε, the systems in Eqs. (E.1) and (E.3) – and, correspondingly, the systems in Eqs. (E.2) and
(E.4) – are equivalent; however, in the singular limit of ε → 0, we obtain two different systems: setting
ε = 0 in Eq. (E.1), we have the ‘reduced problem’

0 = f(x,y, 0), (E.5a)

ẏ = g(x,y, 0), (E.5b)

while we obtain the ‘layer problem’

x′ = f(x,y, 0), (E.6a)

y′ = 0 (E.6b)

for ε = 0 in Eq. (E.3). The ‘reduced problem’ for the system in Eq. (E.2) implies that the flow of
(u, F0, F1) is constrained to lie on the (l = 3)-dimensional ‘critical manifold’ S0 that is defined by f = 0:

ui = µ · ui+1 = µi+L−1 · u for i = 1, . . . , L, (E.7)

where uL+1 ≡ u and (F0, F1) are assumed to vary in an appropriately chosen subset of R2.
From the ‘layer problem’ of the system in Eq. (E.2), we conclude that y = (u, F0, F1) is a parameter

which parameterises the (m = L)-dimensional flow of u′i = fi (i = 1, . . . , L), the equilibria of which are
located on S0.
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The Jacobian matrix Dxf(x,y, 0) of the ’layer problem’ corresponding to Eq. (E.4) about S0 has the
eigenvalues

λi = k(1 + (d/k)− ui+1) = (k + d)(1− µi+L+1u) for i = 1, . . . , L. (E.8)

Since our definition of the generating function F (z, τ) in Section 3.2 assumed z ∈ [−1, 1], we may restrict
to u ∈ [−2, 0] which, by Eq. (E.8), implies that λi > 0. Hence, the critical manifold S0 is ‘normally
hyperbolic’ – and, in fact, normally repelling – with an (m + l = L + 3)-dimensional unstable manifold
Wu(S0).

The geometric singular perturbation theory due to Fenichel [26] thus implies that S0 will persist, for ε
positive and sufficiently small, as a ‘slow manifold’ Sε that is (locally) invariant, smooth, and O(ε)-close
to S0. (As the unstable manifoldWu(S0) equals the entire phase space of Eq. (E.2), it trivially persists as
the unstable manifoldWu(Sε) for Sε.) In particular, as S0 is repelling in forward time, it follows that the
inverse characteristic transformation corresponding to Eq. (26) is well-defined in backward time; details
can be found in [36,39].

F Variance of fluctuating total fluorescent signal

By definition, the variance of the total fluorescent signal is given by the sum over all elements Cov(ri, rj)
for i, j = 1, . . . , L, where ri = (ν/L)ini; the corresponding definitions can be found in Section 4 of the
main text. Hence, we have that

Var(rtot) =

L∑
i,j=1

Cov(ri, rj) =

L∑
i,j=1

Cov
( ν
L
ini,

ν

L
jnj

)
=
( ν
L

)2 L∑
i,j=1

ij · Cov(ni, nj)

=
( ν
L

)2( L∑
i=1

i2Var(ni) +
∑
i 6=j

ij · Cov(ni, nj)

)

=
( ν
L

)2
( L∑
i=1

i2[〈ni〉+ 〈ni〉2αβ · fii] +
∑
i 6=j

ij〈ni〉〈nj〉αβ · fij
)

=
( ν
L

)2 L∑
i=1

i2〈ni〉+
( ν
L

)2

αβ

( L∑
i=1

i2〈ni〉2 · fii +
∑
i 6=j

ij〈ni〉〈nj〉 · fij
)

=
( ν
L

)2 L∑
i=1

i2〈ni〉+
( ν
L

)2

αβ

L∑
i,j=1

ij〈ni〉〈nj〉 · fij .

(F.1)

Substituting the expressions for the means 〈ni〉 from Eq. (2b) into Eq. (F.1), we obtain

Var(rtot) =
( ν
L

)2

ηρk

L∑
i=1

i2µi +
( ν
L

)2

αβ(ηρk)2
L∑

i,j=1

ij · µi+j · fij , (F.2)

which is the expression stated in Eq. (35).

G Moments of fluctuations in total fluorescent signal in various limits

Deterministic elongation. Substituting k 7→ L/〈T 〉 − d and taking the long-gene limit of L → ∞ in
Eq. (35), we obtain the simplified expressions

〈rtot〉∞ =
νηr

dTd
[1− (1 + Td)e

−Td ],

Var(rtot)∞ = 〈rtot〉∞ · F0 + 〈rtot〉2∞ · βδg
F1 + F2 + F3

2(δg − 1)2(δg + 1)2[1− (1 + Td)e−Td ]2
,

(G.1)
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where

F0 = ν

[
2

Td
− Tde

−Td

1− (1 + Td)e−Td

]
,

F1 = (δg − 1)2(2δg + 1),

F2 = (δg + 1)2[2δg(1 + Td)(1 + Td − Tg)− 1]e−2Td ,

F3 = −4δ3
g(1 + Td + Tg)e

−Tge−Td ;

(G.2)

the expression for the variance in Eq. (G.1) is found via the same method as is used in Lemma C.1 of
Appendix C. When there is no detachment of RNAP from the gene, i.e. when d = 0, Eq. (G.1) simplifies
to

〈rtot〉(∞;0) =
1

2
νηr〈T 〉,

Var(rtot)(∞;0) = 〈rtot〉(∞;0)
2ν

3
+ 〈rtot〉2(∞;0) · 8βT

−1
g

[1

3
− 1

2
T−1
g + T−3

g − T−3
g

(
1 + Tg

)
e−Tg

]
.

(G.3)

Bursty limit. In the limit when the rates sb and r are large, the expressions for the mean and variance
of the total fluorescent signal given in Eq. (35) become

〈rtot〉b = νb
su
d

(k
d

(1− µL)

µL
− µL

)
,

Var(rtot)b =
( ν
L

)2

b
su
k

L∑
i=1

i2µi +
( ν
L

)2

b2
su
k

L∑
i,j=1

ij · µi+j · fij .
(G.4)

Constitutive limit. When the gene spends most of its time in the active state, Eq. (35) simplifies to

〈rtot〉c =
ν

L
ρkµ

1 + µL[L(µ− 1)− 1]

(µ− 1)2
,

Var(rtot)c =
( ν
L

)2

ρkµ
1 + µ− µL[L2µ2 + (1 + L)2µ− (2L2 + 2L− 1)]

(1− µ)3
.

(G.5)

Bursty expression with deterministic elongation. In this case, Eq. (G.4) simplifies to

〈rtot〉(b;∞) =
νbsu
dTd

[
1− (1 + Td)e

−Td
]
,

Var(rtot)(b;∞) = 〈rtot〉(b;∞) · F0 + 〈rtot〉2(b;∞) ·
d

2su

1− (1 + 2Td + 2T 2
d )e−2Td[

1− (1 + Td)e−Td

]2 ,
(G.6)

where F0 is given by Eq. (G.2). In the special case of no premature RNAP detachment from the gene
(d→ 0), Eq. (G.6) can be further simplified to

〈rtot〉(b;∞;0) =
1

2
νbsu〈T 〉,

Var(rtot)(b;∞;0) = 〈rtot〉(b;∞;0) ·
2ν

3
+ 〈rtot〉2(b;∞;0) ·

8

3su〈T 〉
.

(G.7)

Constitutive expression with deterministic elongation. In this case, Eq. (G.5) simplifies to

〈rtot〉(c;∞) =
ν

Td

r

d

[
1− (1 + Td)e

−Td
]

and Var(rtot)(c;∞) =
ν2

T 2
d

r

d

[
2− (2 + 2Td + T 2

d )e−Td
]
, (G.8)

which reduces to

〈rtot〉(c;∞;0) =
1

2
νr〈T 〉 and Var(rtot)(c;∞;0) =

1

3
ν2r〈T 〉 (G.9)

for the special case of zero RNAP detachment from the gene.
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H Extended model with RNAP pausing

Proof of Proposition 3. The new pausing model presented in Fig. 9 can be conveniently described by
2L + 2 species interacting via an effective set of 5L + 4 reactions. The vector ~m of the number of
molecules of the respective species is given by ~m = (n0, n

a
1 , . . . , n

a
L, n

p
1, . . . , n

p
L, n); in the table below, we

summarize the respective positions of each entry in ~m, as well as the definition of the rate functions fj ,
for j = 1, . . . , 5L+ 4.

Species Molecule numbers Position (in ~m)
Gon n0 1
Pi, i ∈ {1, . . . , L} nai i+ 1
P̄i, i ∈ {1, . . . , L} npi i+ L+ 1
M n 2L+ 2

Reaction Rate function fj
Gon

sb−→ Goff f1 = sb〈n0〉
Goff

su−→ Gon f2 = su(1− 〈n0〉)
Gon

r−→ Gon + P1 f3 = r〈n0〉
Pi

k−→ Pi+1, i ∈ {1, . . . , L− 1} fi+3 = k〈nai 〉
PL

k−→M fL+3 = k〈naL〉
Pi

da−→ ∅, i ∈ {1, . . . , L} fi+L+3 = da〈nai 〉
Pi

rp−→ P̄i, i ∈ {1, . . . , L} fi+2L+3 = rp〈nai 〉
P̄i

ra−→ Pi, i ∈ {1, . . . , L} fi+3L+3 = ra〈npi 〉
P̄i

dp−→ ∅, i ∈ {1, . . . , L} fi+4L+3 = dp〈npi 〉
M

dm−→ ∅ f5L+4 = dm〈n〉

Note that we do not consider Goff as an independent species, as a conservation law implies 〈Goff〉 =
1 − 〈n0〉. Given the ordering of species and reactions as described in above tables, we can define the
(2L+ 2)× (5L+ 4)-dimensional stoichiometry matrix S, with non-zero elements given by

S11 = −1, S12 = 1,

Si,i+1 = 1, Si,i+2 = −1, Si,i+L+2 = −1,

Si,i+2L+2 = −1, Si,i+3L+2 = 1,

Si+L,i+2L+2 = 1, Si+L,i+3L+2 = −1, Si+L,i+4L+2 = −1,

S2L+2,L+3 = 1, S2L+2,5L+4 = −1,

(H.1)

where i = 2, . . . , L + 1. From the associated CME, it can be shown via the moment equations that the

time evolution of the vector ~〈m〉 of mean molecule numbers in a system of reactions with propensities

that are linear in the number of molecules is determined by d ~〈m〉/dt = S · ~f . Given the form of the
stoichiometric matrix S and of the rate functions fj , it follows that the mean numbers of molecules of
active gene, active and paused RNAP, and mature RNA in steady state can be obtained by solving the
following system of 2L+ 2 algebraic equations:

0 = su(1− 〈n0〉)− sb〈n0〉,
0 = r〈n0〉 − (k + da + rp)〈na1〉+ ra〈np1〉,
0 = k〈nai−1〉 − (k + da + rp)〈nai 〉+ ra〈npi 〉 for i = 2, . . . , L,

0 = rp〈nai 〉 − (ra + dp)〈npi 〉 for i = 1, . . . , L,

0 = k〈naL〉 − dm〈n〉.

(H.2)

Here, we recall the definition of the following parameters from the main text: η = suτg, where τg =
1/(su + sb) is the gene switching timescale, ρk = r/k, and ρ = r/dm. Also, we define several new
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parameters: σ = rp/ra as the ratio of the pausing and activation rates; πra = ra/(ra + dp), which is
the probability of RNAP switching to the active state; πdp = dp/(ra + dp), which is the probability of
premature termination from the paused RNAP state; µ̃ = k/(k + da + rpπdp); and λ = σπra . It follows
that the solution of Eq. (H.2) can be written as

〈n0〉 = η, 〈nai 〉 = ηρkµ̃
i, 〈npi 〉 = 〈nai 〉λ, and 〈n〉 = ηρµ̃L. (H.3)

�

Proof of Proposition 4. In order to solve the Lyapunov equation J ·C+C ·JT +D = 0 for the symmetric
elements Cij = Cji of the (2L+ 2)× (2L+ 2)-dimensional covariance matrix C, we will follow the same
approach as in Appendix B. First, we define the (2L+ 2)× (2L+ 2)-dimensional Jacobian and diffusion
matrices for our system. The Jacobian matrix J has the following non-zero elements,

J11 = −(su + sb),

J21 = r, J22 = −(k + da + rp), J2,2+L = ra,

Ji,i−1 = k, Jii = −(k + da + rp), Ji,i+L = ra for i = 3, . . . , L+ 1,

Ji+L,i = rp, Ji+L,i+L = −(ra + dp) for i = 2, . . . , L+ 1,

J2L+2,L+1 = k, J2L+2,2L+2 = −dm,
(H.4)

while the non-zero elements of the symmetric diffusion matrix D are given by

D11 = su(1− 〈n0〉) + sb〈n0〉,
D22 = r〈n0〉+ (k + da + rp)〈na1〉+ ra〈np1〉, D23 = −k〈na1〉, D2,2+L = −rp〈na1〉 − ra〈n

p
1〉;

for i = 3, . . . , L+ 1 :

Dii = k〈nai−2〉+ (k + da + rp)〈nai−1〉+ ra〈npi−1〉, Di,i+1[i≤L] = −k〈nai−1〉, DL+1,2L+2 = −k〈naL〉,
Di,i+L = −rp〈nai−1〉 − ra〈n

p
i−1〉;

for i = 2, . . . , L+ 1 :

Di+L,i+L = rp〈nai−1〉+ (ra + dp)〈npi−1〉,

D2L+2,2L+2 = k〈naL〉+ dm〈n〉.
(H.5)

Next, using the definition of J and D from Eqs. (H.4) and(H.5), respectively, we solve the Lyapunov
equation. Here, we note that we are only interested in expressions for the covariances of fluctuations in
active and paused RNAP, but not of mature RNA fluctuations; hence, we require closed-form expressions
for the elements Cij with i, j 6= 2L+2, which we derive by following the same procedure as in Appendix B.

Now, we recall that β = sb/su is the ratio of gene deactivation and activation rates, while τp =
1/(k+da) is the typical time that an actively moving RNAP spends on a gene segment. Additionally, let
τra = 1/ra be the timescale of RNAP activation from the paused state, let τdp = 1/dp be the timescale of
premature termination of paused RNAP, and let τpp = 1/(ra+dp) be the typical time spent in the paused
state. Finally, we define the following new parameters: λrp = πrp/(1−πrp), where πrp = rp/(rp +k+da)
is the probability of actively moving RNAP switching to the paused state, as well as

ωra =
πraτg

πraτra + τg
, α̃ =

τg + λrpπdpτg

τg + τp + λrpτg(1− ωra)
, and ω =

τg
τpp + τg

; (H.6)

then, closed-form expressions for the covariances of the active gene with itself and the remaining species
are given by

Var(n0) = η2β · gaa00 , where gaa00 = 1,

Cov(n0, n
a
j ) = η〈naj 〉α̃β · gaa0j , where gaa0j = α̃j−1,

Cov(n0, n
p
j ) = η〈npj 〉α̃β · g

ap
0j , where gap0j = ωα̃j−1.

(H.7)
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Similarly, closed-form expressions for the covariances between all RNAP species read

Cov(nai , n
a
j ) = δij〈nai 〉+ 〈nai 〉〈naj 〉α̃β · gaaij ,

Cov(nai , n
p
j ) = 〈nai 〉〈n

p
j 〉α̃β · g

ap
ij ,

Cov(npi , n
a
j ) = 〈npi 〉〈n

a
j 〉α̃β · g

pa
ij ,

Cov(npi , n
p
j ) = δij〈npi 〉+ 〈npi 〉〈n

p
j 〉α̃β · g

pp
ij ,

(H.8)

where the functions gaaij = gaaji , gapij = gpaji , and gppij = gppji satisfy the following recurrence relations:

gaaij =
[(k + da)(ra + dp) + rpdp](g

aa
i−1,j + gaai,j−1) + rarp(g

ap
ij + gpaij )

2(k + da + rp)(ra + dp)
,

gapij =
[(k + da)(ra + dp) + rpdp]g

ap
i−1,j + (ra + dp)

2gaaij + rarpg
pp
ij

(k + da + ra + rp + dp)(ra + dp)
,

gppij =
gapij + gpaij

2
.

(H.9)

Now, we assume that the elongation rate is faster than the rates of RNAP pausing, activation, and
premature termination, i.e. that k � ra, rp, da, dp in Eq. (H.9). Taking the limit of k →∞, we find that
the expressions in Eqs. (H.7) and (H.8) remain unchanged, while Eq. (H.9) simplifies to

gaaij = (gaai−1,j + gaai,j−1)/2, (H.10a)

gapij = gapi−1,j , (H.10b)

gppij = (gapij + gpaij )/2; (H.10c)

in particular, to leading order in 1/k, the functions gaaij , gapij , gpaij , and gppij hence do not depend on k.
Eq. (H.10a) defines a recurrence relation for the symmetric function gaaij = gaaji with initial conditions
gaa00 and gaa0j from Eq. (H.7). Using the same mathematical technique as in Lemma B.5, we find that the
solution for the function gaaij is given by gaaij = gaa(i, j) + gaa(j, i), where

gaa(i, j) =
α̃i+j−1

(2α̃− 1)i
+

1

2i+j−1

(
i+ j − 1

i

)[
1− 2α̃− 1

2α̃
2F1

(
1, i+ j; j; 1

2α̃

)]
. (H.11)

Eq. (H.10b) is a recurrence relation for the function gapij with initial conditions gap0j from Eq. (H.7); the

corresponding solution is then given by gapij = ωα̃j−1. Finally, the solution of the recurrence relation in

Eq. (H.10c) for gppij is given by gppij = ω(α̃j−1 + α̃i−1)/2. In sum, the leading-order asymptotics (in 1/k)
of the covariances between the various RNAP species for k large is hence given by Eq. (H.8), with gaaij ,
gapij = gpaij , and gppij as stated above. �

Asymptotics of variance of total RNAP distribution. The variance of the total RNAP distri-
bution for the pausing model is given by

Var(ntot) =

L∑
i,j=1

(
Cov(nai , n

a
j ) + Cov(nai , n

p
j ) + Cov(npi , n

a
j ) + Cov(npi , n

p
j )
)
, (H.12)

where the expressions for the corresponding covariances are given in Eq. (39). In order to simplify the
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above expression, we consider each term on the right-hand side in Eq. (H.12) separately, as follows:

L∑
i,j=1

Cov(nai , n
a
j ) =

L∑
i,j=1

δij〈nai 〉+ (ηρk)2α̃β

L∑
i,j=1

gaaij ,

L∑
i,j=1

Cov(nai , n
p
j ) = (ηρk)2α̃βλ

L∑
i,j=1

gapij ,

L∑
i,j=1

Cov(npi , n
a
j ) = (ηρk)2α̃βλ

L∑
i,j=1

gpaij ,

L∑
i,j=1

Cov(npi , n
p
j ) =

L∑
i,j=1

δij〈npi 〉+ (ηρk)2α̃βλ2
L∑

i,j=1

gppij .

(H.13)

Since
∑L
i,j=1

(
δij〈nai 〉+ δij〈npi 〉

)
=
∑L
i=1〈ni〉 = 〈ntot〉, Eq. (H.12) becomes

Var(ntot) = 〈ntot〉+ (ηρk)2α̃β

L∑
i,j=1

(
gaaij + λgapij + λgpaij + λ2gppij

)
. (H.14)

Using the expressions for the functions gaaij , gapij , gpaij , and gppij from Eq. (39), we conclude that Eq. (H.14)
further simplifies to

Var(ntot) = 〈ntot〉+ (ηρk)2α̃β

[
2

L∑
i,j=1

gaa(i, j) + λ(2 + λ)ωL
α̃L − 1

α̃− 1

]
. (H.15)

I Approximation of mature RNA distribution in extended model

Similarly to Section 3.2, we apply geometric singular perturbation theory (GSPT) to formally derive
the distribution of mature RNA for the extended pausing model. As was done there, we define Pj(~n; t)
(j = 0, 1) as the probability of the state ~n = (na1 , . . . , n

a
L, n

p
1, . . . , n

p
L, n) at time t while the gene is either

active (0) or inactive (1); then, the time evolution of these probabilities can be described by a system of
coupled CMEs:

∂tP 0 = suP 1 − sbP 0 + r(E−1
n1
− 1)P0 + k

L−1∑
i=1

(Ena
i
E−1
na
i+1
− 1)nai P0 + k(Ena

L
E−1
n − 1)naLP0

+ da

L∑
i=1

(Ena
i
− 1)nai P0 + rp

L∑
i=1

(Ena
i
E−1
np
i
− 1)nai P0 + ra

L∑
i=1

(Enp
i
E−1
na
i
− 1)npiP0

+ dp

L∑
i=1

(Enp
i
− 1)npiP0 + dm(En − 1)nP 0,

∂tP1 = sbP0 − suP1 + k

L−1∑
i=1

(Ena
i
E−1
na
i+1
− 1)nai P1 + k(Ena

L
E−1
n − 1)naLP1

+ da

L∑
i=1

(Ena
i
− 1)nai P1 + rp

L∑
i=1

(Ena
i
E−1
np
i
− 1)nai P1 + ra

L∑
i=1

(Enp
i
E−1
na
i
− 1)npiP1

+ dp

L∑
i=1

(Enp
i
− 1)npiP1 + dm(En − 1)nP 1.

(I.1)

In order to find analytical expressions for the propagator probabilities P (~n; t) which satisfy the system of
CMEs in Eq. (I.1), we define the probability-generating functions Fj(~z; t), where ~z = (za1 , . . . , z

a
L, z

p
1 , . . . , z

p
L, z)
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is a vector of variables corresponding to the state ~n. Given the equations for Pj(~n; t) from Eq. (I.1), we
obtain the following system of PDEs for the corresponding generating functions Fj(~z; t):

L[F0] = suF1 − sbF0 + r(za1 − 1)F0,

L[F1] = sbF0 − suF1;
(I.2)

here,

L = ∂t + dm(z − 1)∂z + k

L−1∑
i=1

(zai − zai+1)∂zai + k(zaL − z)∂zaL + da

L∑
i=1

(zai − 1)∂zai

+rp

L∑
i=1

(zai − z
p
i )∂zai + ra

L∑
i=1

(zpi − z
a
i )∂zpi + dp

L∑
i=1

(zpi − 1)∂zpi

(I.3)

is a differential operator acting on the functions F0 and F1. Eq. (I.2) represents a system of coupled,
linear, first-order PDEs. Now, we introduce new variables uai = zai −1, upi = zpi −1, and u = z−1; we also
rescale all rates and the time variable with the degradation rate dm of mature RNA. Next, we apply the
method of characteristics, with s being the characteristic variable. The first characteristic equation will
give us dm(dt/ds) = 1, with solution s ≡ dmt; hence, we can use the variable t′ = dmt as the independent
characteristic variable and thus convert the system of PDEs in Eq. (I.2) into a characteristic system of
ODEs:

u̇ai = (k/dm)[(uai − uai+1) + (da/k)uai + (rp/k)(uai − u
p
i )] for i = 1, . . . , L− 1, (I.4a)

u̇aL = (k/dm)[(uaL − u) + (da/k)uaL + (rp/k)(uaL − u
p
L)], (I.4b)

u̇pi = (ra/dm)[(upi − u
a
i ) + (dp/ra)upi ] for i = 1, . . . , L, (I.4c)

u̇ = u, (I.4d)

Ḟ0 = (su/dm)F1 − (sb/dm)F0 + (r/dm)ua1F0, (I.4e)

Ḟ1 = (sb/dm)F0 − (su/dm)F1, (I.4f)

where the overdot denotes differentiation with respect to t. Here, we assume that k/dm � 1 and
ra/dm � 1; hence, we define ε = dm/k as the singular perturbation parameter, and we write dm/ra = εδ,
where δ = k/ra = O(1) by assumption. Since 0 < ε � 1 is small, we can apply GSPT in order to
separate the system in Eq. (I.4) into fast and slow dynamics, which will allow us to find an asymptotic
approximation for F0 and F1 in steady-state. With the above definitions, the governing equations for uai
and upi in the ‘slow system’ in Eqs. (I.4a) through (I.4c) become

εu̇ai = (uai − uai+1) + (da/k)uai + (rp/k)(uai − u
p
i ) for i = 1, . . . , L− 1, (I.5a)

εu̇aL = (uaL − u) + (da/k)uaL + (rp/k)(uaL − u
p
L), (I.5b)

εu̇pi = [(upi − u
a
i ) + (dp/ra)upi ]/δ for i = 1, . . . , L. (I.5c)

It follows that uai and upi (i = 1, . . . , L) are the fast variables in our system, while u, F0, and F1 are the
slow ones; see Appendix E. Setting ε = 0 and solving the system in Eq. (I.5), we find ua1 = µ̃L · u, where
µ̃ = k/(k+ da + rpπdp) has previously been defined in Prop. 3. Now, given Eq. (I.4d), we apply the chain
rule, dt′ ≡ du · u, to rewrite Eqs. (I.4e) and (I.4f) as

F ′0dmu = suF1 − sbF0 + rµ̃LuF0, (I.6a)

F ′1dmu = sbF0 − suF1, (I.6b)

where the prime now denotes differentiation with respect to u. The system in Eq. (I.6) is the same as
that in Eq. (28), with the substitution µ 7→ µ̃; hence, following the same derivation as in Section 3.2, we
conclude that the steady-state analytical expression for the probability distribution of mature RNA is
given by

P (n) =
1

n!

(su)n
(sb + su)n

( r

dm

)n
(µ̃L)n1F1

( su
dm

+ n;
sb + su
dm

+ n;− r

dm
µ̃L
)
. (I.7)
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