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MIXED-MODE OSCILLATIONS IN THREE TIME-SCALE SYSTEMS: A

PROTOTYPICAL EXAMPLE

MARTIN KRUPA, NIKOLA POPOVIĆ, AND NANCY KOPELL

Abstract. Mixed-mode dynamics is a complex type of dynamical behavior that is characterized
by a combination of small-amplitude oscillations and large-amplitude excursions. Mixed-mode os-
cillations (MMOs) have been observed both experimentally and numerically in various prototypical
systems in the natural sciences. In the present article, we propose a mathematical model problem
which, though analytically simple, exhibits a wide variety of MMO patterns upon variation of a
control parameter. One characteristic feature of our model is the presence of three distinct time-
scales, provided a singular perturbation parameter is sufficiently small. Using geometric singular
perturbation theory and geometric desingularization, we show that the emergence of MMOs in this
context is caused by an underlying canard phenomenon. We derive asymptotic formulae for the
return map induced by the corresponding flow, which allows us to obtain precise results on the
bifurcation (Farey) sequences of the resulting MMO periodic orbits. We prove that the structure of
these sequences is determined by the presence of secondary canards. Finally, we perform numerical
simulations that show good quantitative agreement with the asymptotics in the relevant parameter
regime.

1. Introduction

Mixed-mode dynamics is a complex type of dynamical behavior that is characterized by a com-
bination of small-amplitude oscillations and large-amplitude excursions of relaxation type. Mixed-
mode oscillations (MMOs) are frequently encountered in multiscale dynamical systems, i.e., in
systems of differential equations in which the relevant variables evolve over several distinct scales.
Consequently, typical MMO patterns in such systems consist of oscillatory sequences in which am-
plitudes of different orders of magnitude alternate. Historically, MMOs were first observed in ex-
periments on the well-known Belousov-Zhabotinsky reaction [38]. They have since been found both
experimentally and numerically in numerous other contexts in the natural sciences. Examples in-
clude prototypical systems from chemical kinetics, electrocardiac dynamics, neuronal modeling, and
laser dynamics, as well as from a number of other disciplines, see, e.g., [10, 16, 23, 27, 29, 30, 31, 32]
for details and references.

Among the various mechanisms which have been proposed to explain the occurrence of MMOs
are the break-up of an invariant torus [21] and the loss of stability of a Shilnikov homoclinic orbit
[16]. MMOs have also been linked to slow passage through a delayed Hopf bifurcation, cf., e.g., [22],
as well as to the subcritical Hopf-homoclinic bifurcation [12, 13]. In the present article, we consider
another explanation for the emergence of MMOs, namely, the so-called canard mechanism. To the
best of our knowledge, this idea was first brought forward by Milik et. al. [27]. More recently, in
[2], it was extended to accommodate more general classes of systems that exhibit canard dynamics.

The classical canard phenomenon [1, 5, 8, 9] was first described in the framework of two-
dimensional fast-slow systems, i.e., of systems with one fast and one slow variable; a prototypical
example is the system of equations given by

v′ = −z + f2v
2 + f3v

3,(1.1a)

z′ = ε(v − λ).(1.1b)
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Figure 1. Nullcline movement leading to a canard explosion: as the slow nullcline
passes through the origin, one observes a transition from (a) a stable equilibrium
via a family of canard solutions ((b) “headless canard,” (c) “canard with head”) to
(d) a full-scale relaxation oscillation.

(Here, f2 > 0 and f3 < 0 are real constants, 0 < ε� 1 and λ are small parameters, and the prime
denotes differentiation with respect to time t.)

The term canard explosion [20] is customarily used to denote a transition in (1.1) from a stable
equilibrium through a family of small-amplitude cycles and subsequently to a large-amplitude
relaxation oscillation. Notably, this transition occurs within an exponentially small range (in ε) of
the relevant control parameter, λ. The basic mechanism of a canard explosion can be described
as follows: under the above assumptions, the “fast nullcline” S0 for (1.1), which is given by z =
f(v) := f2v

2 + f3v
3, is an S-shaped curve. Moreover, S0 is a curve of equilibria for the layer

problem obtained for ε = 0 in (1.1) and is (normally) hyperbolic away from the two fold points
where f ′(v) = 0; in particular, the origin is one such point. Rewriting (1.1) in terms of the slow
time τ = εt, one finds that the corresponding “slow nullcline” is given by v = λ. As λ passes
through 0, this slow nullcline moves through the lower fold point of S0 at the origin, which triggers
the onset of the canard explosion, see Figure 1. Finally, for λ > 0 sufficiently “large,” the dynamics
of (1.1) enters the relaxation regime.

One important notion that arises in the study of a canard explosion in (1.1) (as well as in other,
related systems) is that of a maximal canard. In general, a canard is a solution of (1.1) which
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originates in the attracting portion of the fast nullcline S0 and which then crosses over to the
repelling one; cf. again Figure 1. Maximal canards are canard trajectories that remain O(ε)-close
to the unstable part of S0 until they reach the upper fold; they mark the transition from small-
amplitude (non-relaxation) oscillations to large-amplitude oscillations of relaxation type during a
canard explosion.

One of the main goals in this article is to show how systems that exhibit mixed-mode-type behav-
ior can be constructed from systems that undergo a canard explosion by replacing the parameter
moving the slow nullcline with a dynamical variable. In other words, we will argue that the emer-
gence of MMOs in such systems is triggered by a “slow passage through a canard explosion.” More
specifically, consider a system of the form

v′ = −z + f2v
2 + f3v

3,(1.2a)

z′ = ε(v − w),(1.2b)

w′ = ε
(
µ+ φ(v, z, w)

)
,(1.2c)

where µ > 0 and φ = O(v, z, w) is a smooth function that will be specified in the following, and
note that the new slow variable w in (1.2) assumes the role of λ in (1.1). Let S0 denote the (two-
dimensional) critical manifold for (1.2), which is defined by the constraint z = f(v). Finally, let

`− = {(0, 0, w)} and `+ = {(−2f2

3f3
, 0, w)} denote the lower and upper fold lines for (1.2), respectively,

and note that `± are determined by imposing f ′(v) = 0, in addition to z = f(v). Away from these
fold lines, S0 is normally hyperbolic; it consists of the two attracting sheets

Sa−0 =
{

(v, z, w)
∣∣ v < 0, z < 0

}
and Sa+

0 =
{

(v, z, w)
∣∣ v > −2f2

3f3
, z >

4f3
2

27f2
3

}
,(1.3)

as well as of a repelling sheet which is given by

Sr0 =
{

(v, z, w)
∣∣ 0 < v < −2f2

3f3
, 0 < z <

4f3
2

27f2
3

}
;(1.4)

see Figure 2 for an illustration. (Note that, due to f2 > 0 and f3 < 0, there holds −2f2

3f3
> 0 in (1.3)

and (1.4).) The singular limit of ε = 0 in (1.2) is described by the dynamics of the reduced problem
on the critical manifold S0.

By standard Fenichel theory [11], for ε > 0 sufficiently small and (v, z, w) in some bounded
subset of R3, the critical manifold will perturb to a slow manifold Sε away from `±. We will denote
the sheets of Sε corresponding to Sa−0 , Sa+

0 , and Sr0 by Sa−ε , Sa+
ε , and Srε , respectively.

In analogy to the maximal canard encountered in (1.1), we define the so-called strong canard Γ0
ε

for (1.2) as follows: once the two sheets Sa−ε and Srε are chosen, they are unique up to exponentially
small terms in ε [11]. Then, Γ0

ε can be defined, for ε > 0 small, as the intersection of the continuation
of these two sheets into the fold region. Moreover, as we will show in Section 2, this intersection
is transverse, which implies that Γ0

ε is well-defined. It was postulated in [27] that the strong
canard forms the boundary between two regions of very different dynamical behavior, in that it
separates small-amplitude oscillations from large oscillations of relaxation type. We will confirm
this postulate in the context of (1.2); in that sense, Γ0

ε can be interpreted as the “organizing center”
for the emergence of MMOs in (1.2).

The detailed structure of the MMO trajectories that will be observed in (1.2) depends strongly
on certain features of the specific equations under consideration. One important aspect concerns
the properties of the global return mechanism, defined by the interplay of µ and φ in (1.2c), and
in particular how far back the value of w is reset by that return.

If, during the return phase, w becomes O(1) and negative (i.e., if µ+ φ is not close to zero), the
dynamics of (1.2) in the initial phase of the passage near the lower fold is of “node type,” which
means that there is strong contraction without any oscillatory behavior. That initial contractive
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Figure 2. The geometry of system (1.2): critical manifold S0 with sheets Sa±0 and
Sr0 , fold lines `±, and canard trajectories Γ0

ε and Γ1
ε.

phase is followed by oscillatory dynamics which can give rise to MMOs; however, most of the
resulting oscillations are of very small amplitude. The class of these so-called canards of folded-
node type is rather well understood and was analyzed in detail in [36].

By contrast, we will discuss a case where the global return mechanism is relatively weak, in
the sense that µ + φ is O(1). Note that this case differs from that of the so-called folded saddle-
node [31, 6] in that not only is µ assumed to be small, but φ is, too, and that the weakness of
the return mechanism introduces an additional, “super-slow” time-scale into the problem. In that
sense, the folded saddle-node can be regarded as an intermediate case between the folded node
and the situation in (1.2). (Note, however, that (1.2) could alternatively be classified as a “folded
saddle-node of type II with weak global return” [35].)

The basic dynamics of (1.2) can be characterized as follows: given (v, z, w) small, the system
will pass through the small-amplitude phase, where the variable w can grow slightly and become
positive. Then, during the subsequent relaxation phase, w is reset to a small (negative or positive)
value, and the cycle can start anew. Hence, the fact that w is always close to zero implies that there
is no non-oscillatory contraction, contrary to the case of a folded node. Moreover, due to the three
time-scale structure of (1.2), no slow passage through a Hopf bifurcation is observed, contrary to
the case of a folded saddle-node. This distinction will be made more precise in the following, see
also the discussion in Section 4 below.

As we will show in this article, it is the interplay between the two main ingredients of the
dynamics, the local flow close to the strong canard and the global return, that underlies the basic
canard mechanism for the emergence of MMOs in (1.2). This mechanism can be generalized to
other classes of systems, see, e.g., [17, 2] for details. In the following, we will refer to a combination
of local, dynamical passage through a canard point and a suitably defined global return as the
generalized canard mechanism. In other words, (1.2) represents only one specific realization of that
very general mechanism. Moreover, as will follow from our analysis, (1.2) is a normal form for this
class of three time-scale systems, in the sense that the addition of higher-order terms in (1.2) will
not fundamentally influence the resulting dynamics.

4



Another aspect of the mixed-mode dynamics in (1.2), in addition to the return mechanism, is
the family of so-called secondary canards. In the context of (1.2), we define the kth secondary
canard Γkε as a trajectory that undergoes k small (non-relaxation) rotations, or “loops,” during
its passage “near” the lower fold `− and that then remains O(ε)-close to the critical manifold S0

until it reaches the O(ε
1
3 )-vicinity of the upper fold `+ [34]. Note that the strong canard Γ0

ε passes
through the vicinity of `− without undergoing any rotation at all, which corresponds to k = 0. As
we will show, the existence of secondary canards in (1.2) is guaranteed by the fact that they can
be defined as trajectories lying in the intersection of Srε with subsequent iterates of Sa−ε under the
return map Π induced by the flow of (1.2), cf. Section 3 below. This will allow us to give a precise
asymptotic description of these canards; to the best of our knowledge, comparable results have so
far been obtained only in the folded-node case [36], via a combination of asymptotics and numerics.
For a qualitative illustration of the canard trajectories Γ0

ε and Γ1
ε in (1.2), cf. again Figure 2.

The notion of secondary canards leads to another important concept in this context, namely, that
of the corresponding sectors of rotation, which are defined as (two-dimensional) portions of Sa−ε
in the fold region that are bounded by the secondary canards. These sectors, which we denote by
RSk, have the following property: trajectories starting in the kth sector undergo k small rotations
near `−. Given that all MMO trajectories pass exponentially close to Sa−ε in their relaxation phase,
they must enter one of the sectors upon their return to the fold region. This fact can be exploited
to reduce the corresponding (two-dimensional) return map Π for (1.2), which is a priori defined
on an appropriate section for the corresponding flow, to a one-dimensional map Φ. Moreover, as

we will show, the width of RSk is O(ε
3
2

√
− ln ε), independent of k to leading order; see Section 3.

Hence, the canard phenomenon occurs rather “robustly” in the context of (1.2), in the sense that
the relevant parameter intervals are not exponentially small in ε, as in the classical two-dimensional
case [20].

Finally, with each MMO trajectory one can associate a sequence Lk0
0 L

k1
1 . . . , called the Farey

sequence [4], which describes the succession of large relaxation excursions and small (non-relaxation)

oscillations (loops): the segment L
kj
j corresponds to Lj relaxation oscillations followed by kj small

loops. (In the following, we will focus primarily on the case when Lj = 1.) As we will show,
the Farey sequence of each trajectory is completely determined by the succession of the sectors of
rotation visited by the trajectory. A natural question that arises in this context is which Farey
sequences are admissible in a system of the form (1.2) and which µ-intervals they correspond to.
This question is intimately related to the size of the sectors RSk themselves, to the distance from the
return point on Sa−ε to the strong canard Γ0

ε after relaxation, and to the contractive (or expansive)
properties of the flow induced by Π. These and similar issues will be discussed in detail in Sections 3
and 4.

For the sake of definiteness, we will restrict ourselves to the more specific class of systems of the
form

v′ = −z + f2v
2 + f3v

3,(1.5a)

z′ = ε(v − w),(1.5b)

w′ = ε2(µ− g1z)(1.5c)

in the following, with g1 > 0 constant. Note that (1.5) can be understood as a special case of
(1.2), with µ rescaled by ε and φ(v, z, w) ≡ φ(z) = εg1z. (Other choices of φ can be treated in a
similar manner, see, e.g., [18].) This specific scaling of µ implies that the dynamics of (1.5) evolves
on three distinct time-scales, a fast scale, a slow scale, and a “super-slow” scale. Given that the
flow of (1.5c) is governed by that slowest scale, w cannot vary too much, implying that trajectories
cannot be reset very far back (in w) during the global return. Consequently, they will return close
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to the strong canard Γ0
ε of (1.5) after relaxation; equivalently, recalling the analogy between w

and the parameter λ in (1.1), one could say that the return is close to the maximal canard of the
(v, z)-subsystem in (1.5).

As we will show in Section 3, it is the “lowest” sectors of rotation that will be immediately
adjacent to the strong canard. Hence, only few successive small oscillations will be observed in a
typical time series of (1.5); moreover, these oscillations are relatively large in amplitude. Since the
relevant parameter intervals will turn out to be relatively small, the corresponding dynamics is very
sensitive to variations of µ. Also, since the stability intervals of “regular,” Lk-type orbits (i.e., of
MMO trajectories with Farey sequence {Lk}) are smaller still, the time series can be quite irregular;
furthermore, there can be many relaxation cycles occurring in succession before the system returns
to the small-oscillation phase. (By contrast, in the folded-node case, regular 1k-type orbits are
predicted to be stable for most µ-values; cf. [36].)

Moreover, as µ is varied in (1.5), one observes a passage through neighboring sectors of rotation:
for increasing µ, the dynamics of (1.5) will be restricted to lower and lower sectors, admitting fewer
and fewer small-amplitude oscillations, until eventually only relaxation cycles are seen. In other
words, one observes the unfolding of a family of MMOs, including trajectories that pass through all
sectors of rotation, on a fairly small parameter set. (In a folded-node system, on the other hand,
such an unfolding can be expected over a µ-interval whose length is bounded below by a constant
[36].) Also, numerical evidence suggests that only the Farey sequences predicted in Section 3 will
“generically” occur in a three time-scale system of the type of (1.5). Therefore, we conjecture that
(1.5) can be interpreted as a “canonical form” for this particular class of three-dimensional systems.
However, a rigorous, analytical justification of our claim is beyond the scope of this work.

In the remainder of this article, we analyze the “canonical” system (1.5) in detail, using a wide
range of techniques. One of our aims is to derive asymptotic formulae for the return map induced
by the flow of (1.5). To that end, we combine various methods from dynamical systems theory and,
in particular, from geometric singular perturbation theory. To approximate the flow away from the
fold lines `±, we employ standard results due to Fenichel [11]. Upon entry into the neighborhood
of `±, normal hyperbolicity breaks down, and Fenichel’s results are no longer applicable, which
necessitates a detailed analysis of the dynamics there. We are especially interested in the lower
fold `−, since it is there that the canard phenomenon occurs. To describe the dynamics close
to `−, we make use of the near-integrable structure of the equations in (1.5). To access that
structure, we introduce a rescaling that is akin to the blow-up transformation customarily used in
this context, see, e.g., [7, 19] for details. While each of the parts of our analysis taken by itself
is rather standard, the combination of the different approaches in the present context is new. In
particular, by combining the leading-order global dynamics with detailed local asymptotics, we are
able to obtain a closed-form description of the return map Π for (1.5) and, hence, to describe the
resulting mixed-mode dynamics in detail.

This article is organized as follows. In Section 2, we prove that the return map Π is well-defined
under an appropriate choice of sections for the flow of (1.5), and we derive precise asymptotic
estimates for Π by desingularizing the dynamics of (1.5) in the fold region and by making use of
the near-integrability of the resulting equations. Section 3 contains the centerpiece of our analysis,
in that we show how the “full,” two-dimensional map Π can be reduced to a simpler, one-dimensional
map Φ. This reduction is accurate with at most an exponentially small error (in ε) and is carried
out in two steps: in a first step, Π is restricted from a two-dimensional section to the union of
appropriately defined, one-dimensional curves, which allows us to describe the family of secondary
canards, as well as the corresponding sectors of rotation, for (1.5). Then, in a second step, the map
Π is further reduced and is restricted to a map Φ that is defined on a single curve. The dynamics of
this map is analyzed in detail to make quantitative predictions on the relevant parameter regimes
and the associated bifurcation (Farey) sequences in (1.5). In Section 4, we summarize our results,
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and we relate them to other mechanisms that have been proposed to explain MMOs. Moreover,
we illustrate various properties of the “reduced” flow under Φ, and we compare them numerically
to the “full” dynamics of (1.5). In sum, we thus obtain a fairly complete picture of the mixed-
mode dynamics of (1.5), both qualitatively and quantitatively. Moreover, in doing so, we provide
a framework for an even more detailed analysis of systems of the type of (1.5): once the dynamics
of such a system is accurately reduced to that of a one-dimensional map, the well-developed theory
of unimodal maps [25] can be applied. Our results on Φ are a first step in this direction, in that
there is potential for a more rigorous investigation along the lines of Section 3.

Finally, we note that our analysis of (1.5) was inspired by a more specific problem, a model for the
dynamics of the dopaminergic neuron that was proposed by Wilson and Callaway [37]. This model,
which consists of a system of N strongly electrically coupled oscillators, was analyzed in [24] as
well as in [23] (in a slightly different form) via a combination of asymptotic analysis and numerical
techniques. One salient feature of the Wilson-Callaway model is precisely the unfolding of a family
of MMO periodic orbits upon variation of one control parameter. In an upcoming companion paper
[18], we will show how the Wilson-Callaway model can be fitted into the framework of (1.5) and
how the results obtained here can be applied to study its dynamics.

2. The canonical system (1.5)

In this section, we discuss the system of equations (1.5) or, equivalently, the system obtained by
rewriting (1.5) in terms of the slow time τ = εt,

εv̇ = −z + f2v
2 + f3v

3,(2.1a)

ż = v − w,(2.1b)

ẇ = ε(µ− g1z).(2.1c)

Here, the overdot denotes differentiation with respect to τ , f2 > 0, f3 < 0, and g1 > 0 are O(1)
coefficients, 0 < ε � 1 is small, and µ is the “free” (bifurcation) parameter; note the presence of
three time-scales in (2.1).

Let S0 denote the critical manifold for (2.1), as before, and recall that S0 is given by z =
f(v) = f2v

2 + f3v
3, cf. Section 1. Moreover, recall the definition of Sa±0 and Sr0 in (1.3) and (1.4),

respectively, and let Sa±ε and Srε denote the corresponding sheets of the slow manifold, for ε > 0
sufficiently small. Finally, the upper and lower fold lines in (2.1) are again denoted by `±.

2.1. Sections for the flow of (1.5). To derive asymptotic formulae for the return of trajectories
under the flow of (1.5), we will define the corresponding return map on suitable sections for the
flow, which we introduce below. In the course of our analysis, we will show that the small-amplitude
oscillations observed in (1.5) are due to the fact that, in the parameter regime under consideration,
the system passes slowly through a canard explosion about the origin in (v, z, w)-space. The large-
amplitude components of the mixed-mode time series are generated by the global return mechanism,
which takes trajectories back to the fold line `− after the passage past the origin has been completed.
Combining these two aspects of the dynamics will allow us to describe in detail how MMOs can
arise in (1.5).

The dynamics of (1.5) can be broken down into the following four components:

(i) the flow in a neighborhood of the fold line `− (Section 2.2);
(ii) the entry into the fold region (Section 2.3);

(iii) the exit from the fold region (Section 2.4); and, finally,
(iv) the global return mechanism (Section 2.5).
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Figure 3. The sections Σin, ∆, and Σout for the flow of (1.5).

We will construct transition maps for each of the above components of the flow. The desired global
return map, which we denote by Π, will then be obtained via the composition of these individual
maps.

We begin by introducing sections for the flow of (1.5): we will require

(i) a section Σin across the attracting sheet Sa−0 of the critical manifold S0, which is given by
v = −ρ, with |z| and |w| bounded;

(ii) a section ∆, which is defined by v = 0, with |z| and |w| bounded, implying that ∆ lies in
the (z, w)-plane and that it bisects the critical manifold S0 along `− (the w-axis); and

(iii) a section Σout across the fast foliation of S0, with v = δ and |z| and |w| bounded.

Here, ρ, δ > 0 are small, but fixed (ε-independent) constants; see Figure 3 for an illustration. The
section ∆ will turn out to be especially important in the following, since the global return map
Π will be defined on ∆. (Note that this particular choice of Poincaré section has previously been
made by Dumortier and Roussarie in their analysis of canard cycles, see, e.g., [8].)

Next, we introduce two subsets of ∆ that will play a crucial role in the description of Π. We
first define C−ε as follows: a point P ∈ ∆ is an element of C−ε if P is the endpoint of a segment of
trajectory that originates in Sa−ε . The set C+

ε is defined analogously, with Sa−ε replaced by Srε and
the time reversed, see Figure 4. The sets C−ε and C+

ε have the following properties:

(i) If P ∈ ∆ is above C+
ε , the trajectory of P is blocked by Srε from entering relaxation.

Depending on the position of P , the initial motion may be toward Srε , but the trajectory
must eventually turn toward Sa−ε (under the fast flow) and return to ∆, having undergone
a small-amplitude oscillation (or loop), see Figure 4(a).

(ii) If P ∈ ∆ is below C+
ε , the trajectory of P must leave the vicinity of the fold in the direction of

the fast flow and may re-enter only through a global return mechanism, since no trajectories
can pass through Srε , see Figure 4(b).

(iii) Any trajectory that is attracted to Sa−ε will be exponentially close to C−ε when it hits ∆.
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(b) Trajectory of P ∈ ∆ below C+
ε .

Figure 4. The sets C−ε and C+
ε .
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Remark 1. Since Sa−ε and Srε are unique only up to exponentially small terms in ε, the sets C±ε
are, strictly speaking, “strips” rather than curves. However, since our construction of Π will rely
on leading-order ε-asymptotics throughout, this non-uniqueness will not influence our results. �

A proof of these claims will be given in Section 3 below. We now proceed with the derivation of
the four components of the return map, as outlined above. The description of the dynamics in the
fold region is the centerpiece of our analysis and will be discussed first.

2.2. Dynamics in the fold region. Our goal in this subsection is to analyze the flow in the
region of the phase space of (1.5) where small-amplitude oscillations (loops) can occur. To describe
these loops, we have to study the equations in (1.5) in an O(

√
ε)-vicinity of the fold line `− and,

specifically, of the origin in (u, v, w)-space. Recall that under our assumptions on (1.5), `− is given
by the w-axis.

To investigate the dynamics of (1.5) close to `−, we define the rescaling

v =
√
εv̄, z = εz̄, w =

√
εw̄, and t =

t̄√
ε
.(2.2)

In terms of the new “barred” variables in (2.2), (1.5) becomes

v̄′ = −z̄ + f2v̄
2 +
√
εf3v̄

3,(2.3a)

z̄′ = v̄ − w̄,(2.3b)

w̄′ = ε(µ− g1εz̄),(2.3c)

where the prime now denotes differentiation with regard to the new rescaled time t̄. Note that
(2.3) is a fast-slow system, with two fast variables v̄ and z̄ and one slow variable w̄. In other words,
the scale separation between v and z has vanished after the rescaling, whereas w̄ is still slow and
constant to leading order. Hence, we can interpret w̄ as a slowly varying parameter.

For ε = 0, the equations in (2.3) reduce to

v̄′ = −z̄ + f2v̄
2,(2.4a)

z̄′ = v̄ − w̄,(2.4b)

w̄′ = 0.(2.4c)

Note that, up to various rescalings, (2.4) is of the form

x′ = −y + x2,

y′ = x− λ,

which is a prototypical system for the occurrence of a canard explosion (at λ = 0) [20], see also (1.1).
In the following, we will describe how the equations in (2.3) fit into the framework of [20], where the
classical two-dimensional scenario is analyzed using geometric singular perturbation theory. The
role of the bifurcation parameter λ is taken by w̄ in our case. For w̄ = 0, (2.4) is an integrable
system, with constant of motion given by

H(v̄, z̄) =
1

2
e−2f2z̄

(
− v̄2 +

z̄

f2
+

1

2f2
2

)
.(2.5)

The equations in (2.4) have a continuous family of periodic orbits which are most conveniently
described via the level curves of H; these are defined by H(v̄, z̄) = h, for h constant. The corre-
sponding (time-parametrized) solution curves will be denoted by γ̄h0 (t) = (v̄h0 , z̄

h
0 )(t) in the following.

We first note that (v̄, z̄) = (0, 0) lies on the curve defined by H(v̄, z̄) = h0 := (4f2
2 )−1. For

h > h0, there exist no real solutions to H(v̄, z̄) = h. Hence, without loss of generality, we consider
10



z̄

v̄

∆+

∆−

γ̄0
0

γ̄h−
0

γ̄h+

0

Figure 5. Typical integral curves of H, with h− < 0 < h+. (The region where
h > 0 is shaded.)

h ≤ h0 now, and we note that h0 > 0. For h = 0 in (2.5), we obtain the special solution γ̄0
0 of (2.4),

with

γ̄0
0(t) = (v̄0

0, z̄
0
0)(t) =

( 1

2f2
t,

1

4f2
t2 − 1

2f2

)
.(2.6)

Note that (2.6) defines an invariant parabola that separates the closed level curves of H, which are
obtained for h > 0, from the open ones, with h < 0; see Figure 5 for an illustration. Since the two
branches of this parabola correspond to Sa−0 and Sr0 for w̄ = 0, after the rescaling in (2.2), γ̄0

0 is a
“singular canard solution,” i.e., a solution of (2.3) that connects Sa−ε and Srε in the singular limit
as ε→ 0. (In fact, as we will see in (2.16) below, the orbit determined by γ̄0

0 is precisely the strong
canard Γ0

ε in this singular limit.)
Let ∆ denote the section that corresponds to ∆ in the “barred” variables, i.e., let ∆ = {v̄ = 0},

with |z̄| and |w̄| bounded. For h fixed, let z̄h be the corresponding value of z̄ in ∆, with H(0, z̄h) = h.
(In particular, by (2.6), there holds z̄0 = −(2f2)−1.) Our first result is a direct consequence of the
above discussion; see [20] for details.

Proposition 2.1. To any h ≤ h0, with h0 = (4f2
2 )−1 > 0, there corresponds precisely one value

z̄h ≤ 0 of z̄ in ∆. Moreover, z̄h is an increasing function of h.

Since the limiting equations obtained for w̄ = 0 = ε in (2.3) are integrable, we will refer to
the original, “perturbed” dynamics as “near-integrable.” (A related treatment of a more general
family of near-integrable systems can be found in [15].) The near-integrability of (2.3) will allow
us to analyze the dynamics of the equations using a perturbation analysis and to approximate the
return map from ∆ to itself, which we refer to as Π, to leading order. Naturally, the closed level
curves of H will turn out to be the singular “templates” for the small-amplitude component of the
mixed-mode dynamics observed in (2.1). Moreover, as we will show, it is the bifurcation structure
of Π that is responsible for the emergence of secondary canards in (2.3); these canards, in turn,
determine the qualitative structure of the resulting MMO patterns. In that sense, the rescaling in
(2.2) will enable us to access the near-integrable structure of (1.5) close to `−.

We will define the return map Π on ∆− ⊂ ∆, which is the portion of ∆ where z̄ < 0. Although
Π is a priori a function of (z̄, w̄), it is more convenient to parametrize z̄ by h, and to describe the

11



z̄

v̄

γ̄h
ε (T

h
−(w̄)) = (0, z̄h, w̄)

γ̄h
ε (T

h
+(w̄)) = (0, z̄ĥ, ŵ)

γ̄h
ε

∆−

γ̄h
ε (0)

Figure 6. The geometry of system (2.3).

asymptotics of Π in terms of h and w̄ in the following. For h ≤ h0, with h0 as above, let z̄h again
denote the corresponding unique value of z̄ ∈ ∆−, and note that we will sometimes identify z̄h

with its associated h-value. Moreover, let γ̄hε (t) be the solution to (2.3) emanating from (0, z̄h, w̄),
where the time parametrization is chosen so that γ̄hε (0) is contained in ∆+ := ∆\∆−. Then, we
define T h−(w̄) < 0 and T h+(w̄) > 0 by requiring that γ̄hε (T h±(w̄)) ∈ ∆−. Moreover, we assume that

T h±(w̄) are the times of the first such intersection. Let T h : ∆− → ∆− denote the return time of

solutions under the flow of (2.3), and note that, by definition, T h(w̄) = T h+(w̄)− T h−(w̄). Let ĥ be

defined by the requirement that z̄ĥ is the z̄-coordinate of γ̄hε (T h(w̄)) ∈ ∆−; an illustration of these
definitions is given in Figure 6. Finally, for w̄ = 0, we write T h := T h+(0), which, together with

T h−(0) = −T h+(0), implies

T h(0) = T h+(0)− T h−(0) = 2T h.(2.7)

We now make the following assumption on w̄, which will be verified a posteriori for the parameter
regime we are interested in:

Assumption 1. For fixed, real f2 > 0, f3 < 0, µ > 0, and g1 > 0 and 0 < ε� 1 sufficiently small
in (2.3), w̄ = O(

√
ε) uniformly in t̄.

It will follow from our analysis that Assumption 1 defines an invariant region for the return map
Π which roughly corresponds to the regime where w̄ = O(

√
ε). More precisely, if an initial condition

for (2.3) satisfies the assumption, it will be satisfied along the entire corresponding trajectory of
(2.3). Finally, since w =

√
εw̄, Assumption 1 implies that w = O(ε) must hold in (2.1), uniformly

in τ .
We state our next result in a slightly more general context than that of (2.3). The reason for

this generalization is that we will modify (2.3) later to simplify our estimates of the return time
T h(w̄). Thus, instead of (2.3), we now consider the following generalized system of equations,

v̄′ = −z̄ + f2v̄
2 +
√
εf3v̄

3 +
√
εF (w̄,

√
ε) + w̄G(w̄,

√
ε),(2.8a)

z̄′ = v̄ − w̄ +O(ε),(2.8b)

w̄′ = ε
(
µ− g1εz̄ +O(ε)

)
,(2.8c)

12



where F and G are assumed to be Cn-smooth, for n ≥ 1 sufficiently large, in both w̄ and
√
ε. Note

that all the definitions and notation introduced in the context of (2.3) extend without modification
to (2.8).

Proposition 2.2. Let Π : ∆− → ∆− and γ̄hε be defined as above, and let (h, w̄) ∈ ∆−. Suppose
that h > 0, with h = O(εM ) for some M > 0 and ε > 0 sufficiently small, and that the trajectory
starting at (h, w̄) undergoes a small oscillation (“loop”) before returning to ∆−. Then,

(ĥ, ŵ) := Π(h, w̄) =
(
h+
√
εdh√ε + w̄dhw̄ +O

(
(
√
ε+ w̄)2

)
, w̄ + εµT h(w̄) +O(ε2)

)
,(2.9)

where the coefficients dh√
ε

and dhw̄ are defined as

dh√ε =

∫ Th

−Th
∇H(γ̄h0 (t)) ·

(
f3v̄

h
0 (t)3, 0

)T
dt(2.10)

and

dhw̄ =

∫ Th

−Th
∇H(γ̄h0 (t)) · (0,−1)T dt,(2.11)

respectively, and γ̄h0 (t) = (v̄h0 , z̄
h
0 )(t) denotes the solution to (2.4) with H(v̄h0 , z̄

h
0 ) = h.

Remark 2. Given Assumption 1, as well as the fact that T h+(w̄) ∼
√
−2 lnh by Lemma A.2,

h = O(εM ) implies εT h(w̄) = O(ε
√
− ln ε) in (2.9) for any M > 0. Moreover, the expansion for ĥ

remains valid even if M > 1
2 , i.e., when the leading-order term in ε is given by

√
εdh√

ε
. Hence, it

follows that (2.9) describes the map Π up to an O(ε)-error. �

Proof. We only sketch the proof here and refer the reader to [19] for details.
To derive the expression for ŵ, one makes use of the near-integrability of (2.8) as well as of

regular perturbation theory.
To prove the assertion for ĥ, we first note that

ĥ− h := H(0, ẑĥ)−H(0, z̄h) =

∫ Th+(w)

Th−(w)

d

dt
H(γ̄hε (t)) dt.(2.12)

Since, to lowest order,

d

dt
H(γ̄hε (t)) = ∇H(γ̄hε (t)) · (v̄′, z̄′)T

∣∣
γ̄hε

= ∇H(γ̄h0 (t)) · (v̄′, z̄′)T
∣∣
γ̄h0
,

and since H is a constant of motion, it follows with (2.8a) and (2.8b) that

(2.13) ĥ− h =

∫ Th

−Th
∇H(γ̄h0 (t)) ·

(
f3v̄

h
0 (t)3 + F (0, 0), 0

)T
dt
√
ε

+

∫ Th

−Th
∇H(γ̄h0 (t)) · (G(0, 0),−1)T dt w̄ +O(2),

see also [20]. (Here, O(2) denotes terms of at least second order in
√
ε and w̄.) Since, however,

(v̄h0 , z̄
h
0 )(−t) = (−v̄h0 , z̄h0 )(t) on γ̄h0 by symmetry, a change of variables via t 7→ −t in combination

with (2.5) shows∫ Th

−Th
∂H

∂v̄
(γ̄h0 (t)) dt = −

∫ Th

−Th
v̄h0 (t)e−2f2z̄h0 (t) dt = −

∫ −Th
Th

v̄h0 (−t)e−2f2z̄h0 (−t) d(−t)

= −
∫ Th

−Th
∂H

∂v̄
(γ̄h0 (t)) dt.
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Therefore, the latter integral must be zero, which implies∫ Th

−Th
∂H

∂v̄
(γ̄h0 (t))F (0, 0) dt = 0 and

∫ Th

−Th
∂H

∂v̄
(γ̄h0 (t))G(0, 0) dt = 0.

It follows that (2.13) reduces to

ĥ− h = dh√ε
√
ε+ dhw̄w̄ +O(2),

with the coefficients dh√
ε

and dhw̄ as defined in (2.10) and (2.11). This completes the proof. �

Remark 3. Note that the functions T h±(w̄) and T h(w̄) depend very sensitively on h, w̄, and
√
ε;

in fact, since lim(h,w̄,ε)→(0,0,0) T
h(w̄) =∞, T h(w̄) has a singularity at the origin. For this reason, it

is not immediately obvious that T h+(w̄) and T h−(w̄) can be replaced by T h and −T h, respectively,
in (2.12). However, the arguments in [19] can easily be extended to justify this point. �

Given Proposition 2.2, we make the following observations:

(i) Observe that for µ = 0, the equations in (2.3) have an equilibrium point at the origin. The
linearization of (2.3) about this equilibrium has a pair of purely imaginary eigenvalues, as
well as a simple eigenvalue 0. The corresponding steady-state Hopf-type interactions mark
the onset of small-amplitude oscillations in (2.3), see also [20, Theorem 3.1]. (Note that the
presence of the zero eigenvalue, which is due to the absence of a linear w̄-term in (2.3c),
introduces a degeneracy at the origin in (2.3).)

(ii) In order to obtain periodic orbits in (2.3), we have to require h = ĥ and w̄ = ŵ, see the
definition of Π in (2.9). Hence, to leading order, we must impose the condition

dh√ε
√
ε+ dhw̄w̄ = 0(2.14)

on (h, w̄). To show that (2.14) can be solved for h and w̄, we have to find the next-order
correction to ŵ in (2.9): integrating (2.3c), we obtain

ŵ = w̄ + 2εµT h − g1ε
2

∫ Th

−Th
z̄(t) dt,

to leading order. Using (2.3a) to express z̄ in terms of v̄, we find

ŵ ∼ w̄ + ε

(
2µT h − g1ε

∫ Th

−Th

(
− v̄′(t) + f2v̄(t)2

)
dt

)
.

(Here and in the following, the tilde indicates a leading-order asymptotic approximation.)
Since, moreover, v̄(−T h) = 0 = v̄(T h) by definition, and since (2.3b) implies dz̄

dt ∼ v̄ by
Assumption 1, it follows that

ŵ ∼ w̄ + 2ε

(
µT h − f2g1ε

∫ ζh

ξh
v̄(z̄) dz̄

)
.

Here, ξh = z̄(−T h) and ζh = z̄(0) denote the z̄-values in ∆ corresponding to γ̄hε (−T h)
and γ̄hε (0), respectively. In sum, the requirement that w̄ = ŵ gives

µT h − f2g1ε

∫ ζh

ξh
v̄(z̄) dz̄ = 0(2.15)

to lowest order. Since 1
Th

∫ ζh
ξh
v̄(z̄) dz̄ increases monotonically in h as h → 0, see [19], it

follows that for ε and µ small and fixed, one can find h such that (2.15) holds. Given that
h-value, one can use (2.14) to determine the associated value of w̄.

14



(iii) For µ and ε sufficiently small in (2.1), there exists a canard trajectory lying in the intersec-
tion of the manifolds Sa−ε and Srε ; this trajectory is the strong canard Γ0

ε. Since Sa−ε and Srε
intersect transversely, as we will show in Section 2.3 below, Γ0

ε is well-defined; moreover, it
is unique once specific sheets of Sε have been chosen. The associated canard critical value
w̄c, i.e., the value of w̄ in the rescaled system (2.3) that corresponds to Γ0

ε, is given by

w̄c = −
d0√

ε

d0
w̄

√
ε+O(ε),(2.16)

where d0√
ε

and d0
w̄ are obtained from (2.10) and (2.11) in the limit as h → 0 [19]. In

particular, since w̄c → 0 for ε→ 0, (2.16) yields precisely the singular canard solution γ̄0
0 in

this limit, cf. (2.6). Hence, as h→ 0, (2.3) undergoes a classical (two-dimensional) canard
explosion at w̄ = 0 = ε [20].

To evaluate (2.16), note that (2.5) implies

∂H

∂v̄
= −v̄e−2f2z̄ and

∂H

∂z̄
= (f2v̄

2 − z̄)e−2f2z̄.(2.17)

Using the parametrization of γ̄0
0 in (2.6) and taking into account that T 0 =∞, one finds as

in [19] that

d0√
ε = − 3f3

16f4
2

√
2πe and d0

w̄ = − 1

2f2

√
2πe,(2.18)

see Appendix A for details. Therefore, for given µ, the corresponding value of w̄c can be
obtained from

w̄c = − 3f3

8f3
2

√
ε+O(ε);(2.19)

note that w̄c > 0 due to f2 > 0 and f3 < 0.

These observations combined suggest the following: for ε > 0 fixed, system (2.3) undergoes a
Hopf bifurcation at the origin for µ = 0, by (i); this bifurcation gives rise to small-amplitude limit
cycles in (2.3). These cycles will persist as long as both (2.14) and (2.15) can be satisfied, as
shown in (ii). In that case, µ = O(ε) must hold, since T h = O(

√
− ln ε), ζh = O(

√
− ln ε), and

ξh = O(1) by Appendix A, while v̄, f2, and g1 are O(1) by assumption. Hence, for µ sufficiently
small, the dynamics of (2.3) will be dominated by 0k-type orbits, i.e., by MMO trajectories with
Farey sequence {0k}. As µ is increased, the evolution of w̄ in (2.3c) is governed by the positive,
µ-dependent drift, with w̄′ ∼ εµ. Since z̄ decreases with increasing w̄, see (2.3b), it follows that h
must also decrease, by Proposition 2.1. In other words, h → 0 with increasing µ, and the system
moves closer and closer toward a canard explosion, as discussed in (iii). Finally, for µ = µc large
enough, the w̄-drift is sufficiently strong for the dynamics of (2.3) to bypass the fold region and
enter the relaxation regime. (The corresponding “critical” µ-value µc will be discussed in detail in
Section 2.5 below.)

In our analysis, we will focus primarily on the regime where µ is sufficiently large for 0k-type
orbits not to dominate the dynamics of (2.3) anymore. Since these orbits can occur only when
(2.3) is close to Hopf bifurcation (i.e., as long as µ = O(ε) and, hence, w̄′ ∼ 0), the degeneracy of
the equations at the Hopf point will not be of relevance to us. On the other hand, we will assume
that µ < µc, i.e., that µ is not large enough for (2.3) to have entered the relaxation regime, which
is characterized by L0-type orbits (trajectories with Farey sequence {L0}).

As we will show, this “intermediate” regime corresponds precisely to the non-trivial mixed-

mode dynamics of (1.5), with orbits of the type {Lkjj }, for Lj , kj ≥ 1. Correspondingly, h will

have to be small, in the sense that |h| = O(εM ) for some M > 0 “large;” however, h cannot
15



be exponentially small in ε, since trajectories must stay away from the strong canard Γ0
ε. The

statement of Proposition 2.2 pertains exactly to that intermediate case.
Finally, we remark that we will restrict ourselves to a leading-order description of the return

map Π in the following, as we did in the proof of Proposition 2.2. The resulting approximation
will remain consistent as long as h = O(εM ) is not “too large,” i.e., if ε > 0 is sufficiently small or
if M > 0 is large enough: due to T h+(w̄) ∼

√
−2 lnh ∼

√
−2M ln ε, the εT h(w̄)-term in (2.9) will

dominate the neglected terms of order O(ε) in that case. These considerations will be made more
explicit in Proposition 3.4 below.

2.3. The transition from Σin to ∆−. Let Πin denote the transition map from Σin to ∆−; see
Sections 2.1 and 2.2 for the definitions of Σin and ∆−. Moreover, let us introduce an intermediate

section ∆
in

for the rescaled equations in (2.3), with ∆
in

=
{

(v̄, z̄, w̄)
∣∣ v̄ = −α

}
, and let ∆in denote

the corresponding section in (v, z, w)-space. (Here, 0 < α < ρ is some arbitrary constant.) Then,
we have the following result on the transition from Σin to ∆−:

Proposition 2.3. Let (zin, win) ∈ Σin. Then, for ε > 0 sufficiently small,

(2.20) (h−, w̄−) := Πin(zin, win)

=
(√

εd−√
ε

+
win

√
ε
d−w̄ +O

(
(
√
ε+ win)2

)
,
win

√
ε

+ winf2µ
√
ε ln ε+O(

√
ε)
)
,

where d−√
ε

and d−w̄ are defined by

d−√
ε

=

∫ 0

−∞
∇H(γ̄0

0(t)) ·
(
f3v̄

0
0(t)3, 0

)T
dt(2.21)

and

d−w̄ =

∫ 0

−∞
∇H(γ̄0

0(t)) · (0,−1)T dt,(2.22)

respectively (see (2.10) and (2.11)), and γ̄0
0(t) = (v̄0

0, z̄
0
0)(t), as in (2.6).

Remark 4. Since win = O(ε) by Assumption 1, it follows that win√
ε

in (2.20) remains bounded as

ε→ 0. �

Proof. We first analyze the transition from Σin to ∆in. To that end, we desingularize the reduced
problem associated with (1.5) following the ideas in [2], see also the derivation of (2.44) in Sec-
tion 2.4. First, we approximate z by f(v), i.e., we restrict ourselves to the critical manifold Sa−0
to leading order. The resulting “reduced” problem for (2.1) has the form

f ′(v)v̇ = v − w,(2.23a)

ẇ = ε
(
µ− g1f(v)

)
.(2.23b)

(Note that this approximation is reasonable due to the form of (2.23b): since ε multiplies the
entire right-hand side in (2.23b), the O(ε)-correction to z = f(v) will be O(ε2) for the dynamics.)
The desingularized version of (2.23) is obtained by multiplying the right-hand sides by −f ′(v) =
−(2f2v + 3f3v

2):

v̇ = −(v − w),(2.24a)

ẇ = −ε
(
µ− g1f(v)

)
f ′(v).(2.24b)

We now introduce a new variable

W =
w

v
16



in (2.24). (The introduction of W corresponds to a projectivization of the vector field in (2.24) that
desingularizes the dynamics close to the origin.) After the transformation to the variables (v,W ),
system (2.24) becomes

v̇ = −v(1−W ),(2.25a)

Ẇ = W (1−W )− ε
(
µ− g1(f2v

2 + f3v
3)
)
(2f2 + 3f3v).(2.25b)

Since we are not interested in the (time-parametrized) solutions of (2.25), but only in the corre-
sponding orbits, we can rescale time by dividing out a factor of 1−W from both right-hand sides
in (2.25). Moreover, since we consider v ∈ [−ρ,−α

√
ε] (by the definition of Σin and ∆in) and

w = O(ε) (see Assumption 1), W is small. Hence, we can expand (1 −W )−1 = 1 + W + O(W 2)
and neglect terms of second order and upward in (v,W ) in (2.25b), approximating the resulting
equations by

dv

dt̃
= −v,(2.26a)

dW

dt̃
= (1− 2f2µε)W − 2f2µε− 3f3µεv.(2.26b)

(Here, t̃ denotes the new rescaled time.)

Let T̃ be the transition time from Σin to ∆in under the flow of (2.26), and recall that v = −ρ in

Σin and v = −α
√
ε in ∆in, respectively. Then, a simple computation using (2.26a) shows that T̃

satisfies the identity

eT̃ =
ρ

α

1√
ε
.(2.27)

(In particular, (2.27) implies that T̃ depends only on α, ρ, and ε, but not on the specific choice of

trajectory in (2.26).) By a direct integration of (2.26b), it follows with εv(T̃ ) = −ερe−T̃ = O(ε
√
ε)

that

W (T̃ ) = (W in − 2f2µε)e
(1−2f2µε)T̃ + 2f2µε+O(ε

√
ε),(2.28)

where W in = −win

ρ is the value of W in Σin. The geometry of (2.26) is illustrated in Figure 7.

Now, note that w = −α
√
εW (T̃ ) holds in ∆in for the w-value corresponding to W (T̃ ). Hence,

expanding the exponential in (2.28), we obtain

w(T ) = win + winf2µε ln ε+O(ε),(2.29)

where T denotes the transition time from Σin to ∆in in the original system (2.24).
To complete the proof, we have to describe the second part of the transition, from ∆in to ∆−. To

that end, we slightly modify the ideas of Section 2.2. Recall the rescaled equations in (2.3), as well
as the singular version obtained for ε = 0, cf. (2.4), and the parametrization of the z̄-coordinate
therein by h. (For z̄ fixed, the corresponding (unique) value of h is determined from H(0, z̄) = h,
cf. (2.5).) Also, recall that for h = 0, there exists a parabolic level curve for H which corresponds
to the special (singular canard) solution γ̄0

0 to (2.4) and which acts as a separatrix between the
closed level curves (where h > 0) and the open ones (with h < 0).

Let Π
in

denote the transition map from ∆
in

to ∆−, and let (z̄, w̄) ∈ ∆
in

. Since we are interested in
describing the dynamics close to Sa−0 , we may assume that (−α, z̄, w̄) is the endpoint of a trajectory
originating in Sa−ε . We claim that

(h−, w̄−) = Π
in

(z̄, w̄) =
(√
εd−√

ε
+ w̄d−w̄ +O(2), w̄ + 2αf2µε+O(ε2)

)
,(2.30)
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W

0

Σin

∆in

(−α
√
ε,W (eT ))

(−ρ,W in)

Figure 7. The geometry of system (2.26).

where d−√
ε

and d−w̄ are defined as in (2.21) and (2.22), respectively, and O(2) = O((
√
ε + w̄)2), as

before.
To derive the expression for w̄− in (2.30), we simply integrate the w̄-equation in (2.3) to obtain

w̄− = w̄ + εµT
in

+O(ε2), where T
in

denotes the transition time from ∆
in

to ∆ in (2.4). Then, by

integrating (2.4) directly from v̄ = −α to v̄ = 0 along γ̄0
0 , we find T

in
= 2αf2.

The expression for h− is obtained from the near-integrability of (2.3) and from the analysis in
[20], see also the proof of Proposition 2.2. More specifically, the condition for (v̄, z̄, w̄) to be on a
trajectory originating in Sa−ε is

h− =
√
εd−√

ε
+ w̄d−w̄ +O(2),(2.31)

which proves (2.30). (Here, the limits of integration in the definition of d−√
ε

and d−w̄ follow from the

fact that T h+(0)→∞ as h→ 0.)
Finally, the assertion of the proposition follows by combining (2.29) and (2.30), taking into

account that w̄ = w√
ε
. �

Remark 5. Note that to the order considered here, the definition of the intermediate section ∆
in

does not influence the asymptotics of Π
in

, as expected. �

Proposition 2.3 has the following important implication: recall the set C−ε ⊂ ∆− consisting of the
endpoints of trajectories starting in Sa−ε . Then, it follows from (2.31) that C−ε can be represented
as the graph of a function h−(w̄,

√
ε) satisfying

h−(w̄,
√
ε) =

√
εd−√

ε
+ w̄d−w̄ +O(2).(2.32)

In analogy to (2.21) and (2.22), one can define the coefficients

d+√
ε

= −
∫ ∞

0
∇H(γ̄0

0(t)) ·
(
f3v̄

0
0(t)3, 0

)T
dt(2.33)

18



w̄

0 w̄c

C+
ε

C−
ε

h(w̄)

Figure 8. The curves C−ε and C+
ε .

and

d+
w̄ = −

∫ ∞
0
∇H(γ̄0

0(t)) · (0,−1)T dt(2.34)

to describe the leading-order dynamics on Srε . Hence, it follows that the set C+
ε can also be

represented as the graph of a function h+(w̄,
√
ε) satisfying

h+(w̄,
√
ε) =

√
εd+√

ε
+ w̄d+

w̄ +O(2).(2.35)

Note that d±√
ε

= ∓1
2d

0√
ε

and, similarly, d±w̄ = ∓1
2d

0
w̄ by symmetry, where d0√

ε
and d0

w̄ are defined in

(2.18).
Given the above representation of C∓ε , we make the following observations:

(i) Due to d−w̄ < 0 and d+
w̄ > 0, (2.32) and (2.35) imply that C−ε and C+

ε intersect transversely for
w̄ = w̄c, with w̄c as in (2.19). Hence, the strong canard Γ0

ε is indeed well-defined; recall the
discussion in Section 1. In particular, the resulting geometry justifies the heuristic picture
sketched in Figure 4, cf. Figure 8.

(ii) Similarly, the representations in (2.32) and (2.35) will be used in the definition of secondary

canards Γjε, for j ≥ 1, as the transverse intersection of subsequent iterates of C−ε under Π
with C+

ε , see Section 3.3 for details.

2.4. The transition from ∆− to Σout. We now discuss the behavior of trajectories that exit the
fold region in the direction of positive v and that then undergo relaxation. We begin by making
a change of coordinates which transforms C+

ε to the plane z̄ = z̄0, where z̄0 denotes the z̄-value
corresponding to h = 0 in (2.3). To that end, we define

∆z̄(w̄,
√
ε) = z̄0 − z̄h+(w̄,

√
ε),(2.36)

where h+ is as in (2.35), and we let

z̃ = z̄ + ∆z̄(w̄,
√
ε).(2.37)

The transformation in (2.37) is introduced to “flatten” the repelling sheet Srε of Sε in ∆, for ε > 0

sufficiently small: by (2.36), the z̄-value corresponding to h+, z̄h
+

is transformed into z̄h
+

+ z̄0 −
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Figure 9. The curves C−ε and C+
ε after the transformation in (2.35).

z̄h
+

= z̄0; hence, C+
ε is represented as the graph of the zero function after the transformation:

C+
ε =

{
(0, w̄)

∣∣ w̄ = O(
√
ε)
}
.(2.38)

Recall that in the singular limit of ε = 0 = w̄, h = 0 separates the small-oscillation regime in
(2.3), where h > 0, from the relaxation regime (with h < 0), see Proposition 2.1. By introducing
z̃, as defined in (2.37), we extend this characterization to the case where ε (and, hence, also w̄) is
positive but small: given (2.38), trajectories with h < 0 will end up “below” Srε in ∆−, implying
that they will leave the fold region and undergo relaxation; trajectories with h > 0, on the other
hand, will remain trapped “above” Srε and will therefore stay in the small-oscillation regime close
to `−. (This fact will simplify the following analysis and, in particular, the study of secondary
canards in Section 3.3, since it will facilitate the evaluation of the conditions that define these
canard trajectories.)

In analogy to h+, the function h− in (2.32) is mapped to

h0(w̄) ≡ h0(w̄,
√
ε) = h−(w̄,

√
ε)− h+(w̄,

√
ε)

=
√
ε
(
d−√

ε
− d+√

ε

)
+ w̄(d−w̄ − d+

w̄) +O(2)

=
√
εd0√

ε + w̄d0
w̄ +O(2)

(2.39)

by (2.37), where we suppress the
√
ε-dependence of h0 for brevity. Hence, after performing the

coordinate transformation in (2.37), we find that C−ε is given by

C−ε =
{

(h0(w̄), w̄)
∣∣ w̄ = O(

√
ε)
}
.(2.40)

The situation is illustrated in Figure 9; note the change from Figure 4, in that C+
ε is now parallel

to the w-axis, with C−ε “tilted” accordingly.
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Figure 10. The definition of T h,out(w̄) for h < 0.

Next, we note that the higher-order terms that are introduced into (2.3) by the transformation
in (2.37) are precisely of the form O(w̄,

√
ε). Hence, the resulting, transformed system is of the

form (2.8), and the results of Proposition 2.2 can be applied directly to it.
Finally, in analogy to the transition times T h(w̄) defined for h > 0 above, we now define

T h,out(w̄) = −T−h− (w̄)(2.41)

for h < 0. We have the following result on the transition from ∆− to Σout:

Proposition 2.4. Let (h, w̄) ∈ ∆−, with h < 0 and h = O(εM ) for some M > 0 and ε > 0
sufficiently small. Then,

(zout, wout) := Πout(h, w̄) =
(
εz̃out +O(ε ln ε),

√
εw̄ + ε

√
εµT h,out(w̄) +O(ε

√
ε)
)
,(2.42)

where z̃out is the z̃-value corresponding to hout = h+
√
εdout√

ε
+ w̄dout

w̄ , with dout√
ε

and dout
w̄ defined by

dout√
ε = −

∫ Th,out(w̄)

0
∇H(γ̄h0 (t)) ·

(
f3v̄

h
0 (t)3, 0

)T
dt

and

dout
w̄ = −

∫ Th,out(w̄)

0
∇H(γ̄h0 (t)) · (0,−1)T dt,

respectively (see (2.10) and (2.11)).

Proof. For (h, w̄) ∈ ∆− with h < 0 and h = O(εM ), let Π
out

denote the time-T h,out(w̄) transition
map for (2.8), i.e., for the system obtained from (2.3) after the transformation to z̃. Moreover,

let ∆
out

:= Π
out

(∆−), which implies that the definition of the intermediate section ∆
out

is now
“implicit” (w̄-dependent); cf. Figure 10. Then, it follows as in the proof of Proposition 2.2 that

(hout, w̄out) := Π
out

(h, w̄) =
(
h+
√
εdout√

ε + w̄dout
w̄ +O(2), w̄ + εµT h,out(w̄) +O(ε

√
ε)
)
,(2.43)

where again O(2) = O((
√
ε+ w̄)2), T h,out(w̄) is, by the definition of ∆

out
, the transition time from

∆ to ∆
out

in (2.8), and dout√
ε

and dout
w̄ are defined as above.
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Figure 11. The geometry of system (2.46).

To study the second part of the transition, from ∆
out

to Σout, we introduce a new variable Z
in the original (unmodified) system (1.5), where Z is defined by z = v2Z. This transformation
serves to desingularize (1.5) close to the origin, for v positive and small: in terms of (v, Z,w), (1.5)
becomes

v′ = v2(−Z + f2 + f3v),(2.44a)

Z ′ = −2Zv(−Z + f2 + f3v) +
ε

v

(
1− w

v

)
,(2.44b)

w′ = ε2(µ− g1v
2Z).(2.44c)

Now, let Ψ(v, Z) = v2(−Z + f2 + f3v); then, dividing the right-hand sides of (2.44) by Ψ(v, Z), we
find

dv

dt̂
= 1,(2.45a)

dZ

dt̂
= −2

v
Z +

ε

vΨ(v, Z)

(
1− w

v

)
,(2.45b)

dw

dt̂
=

ε2

Ψ(v, Z)
(µ− g1v

2Z);(2.45c)

here, t̂ denotes the new, rescaled time.
We first investigate the dynamics of Z in the transition. Let ∆out denote the section in (v, Z,w)-

space corresponding to ∆
out

. Given an initial v-value vout for (1.5) in ∆out, it then follows that
vout = O(

√
εT h,out(w̄)) = O(

√
−ε ln ε) must hold, which, together with (2.45a) and w = O(ε) (see

Assumption 1), implies that w
v is small throughout. Since, moreover, dw

dt̂
= O(ε(ln ε)−1) by (2.45c),

w remains almost constant, and we can neglect its evolution.
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Hence, expanding Ψ in (2.45b) and truncating the resulting equation, we find that to leading
order,

dv

dt̂
= 1,

dZ

dt̂
= −2

v
Z +

ε

f2v3

(
1 +O(v, Z)

)
.

(2.46)

The transition from ∆out to Σout under the flow of (2.46) is illustrated in Figure 11. Now, for
(vout, Zout) ∈ ∆out, we can solve (2.46) explicitly to leading order by variation of constants, which
gives

Z(v) =
(vout)2Zout

v2
+

ε

f2v2
ln

v

vout
+O(ε).(2.47)

Here, we have neglected the effect of the inhomogeneous O(v, Z)-terms in (2.46), since it can be
shown that these contribute only terms of order O(ε) in (2.47). The corresponding expression in
the original variable z is then given by

z(v) = εz̃out +
ε

f2
ln

v

vout
+O(ε)

for z̃out in ∆
out

, where we have used v2Z = z = εz̃. Recalling that vout = O(
√
−ε ln ε) as well as

that v = δ in Σout, we find

z(T ) = εz̃out +O(ε ln ε);(2.48)

here, T denotes the transition time from ∆out to Σout.
We now use the estimate for z(T ) in (2.48) to derive an estimate for w(T ). Since dv = Ψ(v, Z) dt,

see (2.44a), and since, moreover, Z = O(1), there certainly holds 1
2Ψ(v, 0) ≤ Ψ(v, Z). Hence, it

follows that T satisfies the inequality

T ≤ 2

∫ δ

vout

dv

Ψ(v, 0)
,(2.49)

to leading order. The integral on the right-hand side of (2.49) can be evaluated explicitly, giving

T ≤ 2

f2vout
− f3

f2
2

ln ε+O(1).

Integrating the w-equation (2.44c) directly and taking into account (2.43) as well as vout =
O(
√
−ε ln ε) and w =

√
εw̄, we obtain

w(T ) =
√
εw̄out + ε2

(
µT − g1

∫ δ

vout

z(v)

Ψ(v, 0)
dv

)
+O(ε3)

=
√
εw̄ + ε

√
εµT h,out(w̄) +O(ε

√
ε).

(2.50)

To complete the proof, it remains to collect the above estimates: with z̃out the z̃-value corresponding
to hout (see (2.43)), we find the desired expression for zout in (2.42) from (2.48). The estimate for
the wout-component of Πout follows directly from (2.50). �

2.5. The global return mechanism. In this subsection, we describe the global mechanism that
determines the return of trajectories of (1.5) from Σout back to Σin. The corresponding return
map will be denoted by Πret. Since the necessary analysis is largely based on standard geometric
singular perturbation (Fenichel) theory [11], we do not discuss it in full detail here; moreover, for
the sake of exposition, we will make a number of additional, simplifying assumptions throughout
this subsection. As it turns out, the resulting leading-order asymptotics of Πret will still give an
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approximation for the composite return map Π that is consistent to the order considered here;
cf. Section 4 below.

In a first approximation, we may assume that z = f(v) is satisfied, i.e., for ε > 0 sufficiently
small, we may restrict ourselves to the singular dynamics of (1.5) on S0. We recall the definition
of the corresponding reduced system from (2.24):

v̇ = −(v − w),(2.51a)

ẇ = −ε
(
µ− g1f(v)

)
f ′(v).(2.51b)

Moreover, we can safely neglect the w-term on the right-hand side of (2.51a), since this term
is assumed to be small throughout, see Assumption 1. Then, we rewrite (2.51) with v as the
independent variable, i.e., we divide (2.51b) by (2.51a), which gives

dw

dv
= ε
(
µ− g1f(v)

)f ′(v)

v
.(2.52)

Given an initial v-value v∗ on S0, (2.52) can be integrated explicitly as follows:

w(v)− w(v∗) = εG(v∗, v, µ) := ε

∫ v

v∗

(
µ− g1f(σ)

)f ′(σ)

σ
dσ.(2.53)

To describe the return of trajectories from Σout to Σin under the flow of (2.52) on S0, we need
to consider two separate parts of the transition, namely, the parts where v evolves along Sa+

0 and
Sa−0 , respectively. (Note that by restricting ourselves to the slow flow on S0, we are implicitly
neglecting the transition from `− to Sa+

0 and from `+ to Sa−0 , respectively, under the fast flow of
(1.5), since, by standard Fenichel theory [11], the corresponding contributions to Πret are of higher
order; cf. Figure 12.) The relevant integrals in (2.53) are given by

G(v0, vmax, µ) =

∫ vmax

v0

(
µ− g1f(σ)

)f ′(σ)

σ
dσ

and

G(v∗max,−ρ, µ) =

∫ −ρ
v∗max

(
µ− g1f(σ)

)f ′(σ)

σ
dσ,

respectively. Here, vmax is the value of v for which f attains its local maximum, v∗max < 0 is
defined by the requirement that f(v∗max) = f(vmax), and v0 > 0 is the second (non-trivial) zero
of f , with f(v0) = 0; see again Figure 12. To facilitate further the evaluation of these integrals,
we will approximate G(v∗max,−ρ, µ) by G(v∗max, 0, µ), i.e., we will evaluate the integral over Sa−0
down to and including `−. (In fact, a straightforward though lengthy computation shows that this
approximation will offset precisely the part of the O(

√
ε)-error term in Πin that is independent of

win, cf. Proposition 2.3.)
Hence, in sum, it follows that the w-component ŵ of Πret : Σout → Σin is given by

ŵ = w + ε
(
G(v0, vmax, µ) + G(v∗max, 0, µ)

)
,(2.54)

to lowest order. In particular, note that (2.54) determines the global “amount of return” of w after
one relaxation cycle, expressed as a function of the parameter µ. (This fact will prove especially
useful in Section 3 below.) Let

Dµ =
d

dµ

(
G(v0, vmax, µ) + G(v∗max, 0, µ)

)
,

and observe that the rate of change of the return point with respect to µ is given by Dµε. From
the above, it follows that Dµ can easily be approximated to lowest order in terms of the function
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Figure 12. The geometry of the global return mechanism.

G: by the definition of G and making use of the fact that

vmax = −2f2

3f3
, v∗max =

f2

3f3
, and v0 = −f2

f3
,

we obtain

G(v0, vmax, µ) + G(v∗max, 0, µ) =
g1

18

f5
2

f3
3

− µf
2
2

f3
.(2.55)

Differentiating (2.55) with respect to µ, we find Dµ = −f2
2
f3

.

Similarly, the critical value µc of µ for which MMOs cease to exist in (1.5) is to leading order
determined by requiring ŵ = w in (2.54) or, alternatively, by finding µ such that (2.55) equals zero;
again, a simple computation shows

µc =
g1

18

f3
2

f2
3

.(2.56)

For µ > µc, the dynamics of (1.5) is in the pure relaxation regime, in the sense that the only
admissible periodic trajectories are those with Farey sequence {L0}.

Remark 6. Note that the fold line `+ will in general contribute logarithmic terms (in ε) to (2.56);
see, e.g., [34]. In our case, however, these terms can be shown to be of higher order and are hence
negligible. �

2.6. Summary: the return map Π : ∆− → ∆−. Given the analysis of the previous subsections,
we can now define the composite return map Π : ∆− → ∆−. We note that the definition of Π will
depend on the sign of h: if h > 0, the corresponding trajectory of (1.5) will remain in the fold
region, i.e., in the small-oscillation regime, and undergo another “loop.” Hence, the return to ∆−
is described by Π in that case, cf. Proposition 2.2. If, on the other hand, h < 0, the trajectory
will exit the fold region and undergo relaxation, i.e., it will leave ∆− in the direction of the fast
flow of (1.5), move “up” the slow manifold Sa+

ε under the slow flow until it reaches `+, “jump” to
Sa−ε , and move “down” that manifold until it re-enters a neighborhood of `−, cf., e.g., Figure 12.
Therefore, the return to ∆− is described by the composition of Πout, Πret, and Πin in that case,
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see Propositions 2.3 and 2.4 as well as the discussion in Section 2.5. Hence, in sum, the desired
expression for Π is given as follows:

Π(h, w̄) =

{
Π(h, w̄) if h > 0,

Πin ◦Πret ◦Πout(h, w̄) if h < 0.
(2.57)

3. Partial dimension reduction for the map Π

In this section, we show how the two-dimensional return map Π formulated in Section 2.6 can
be accurately approximated by an appropriately defined one-dimensional map, which we denote by
Φ. More precisely, we will prove that the resulting approximation error will be exponentially small
in ε. The reduction itself is carried out in two steps: first, the map Π is restricted from the two-

dimensional section ∆− to a union of one-dimensional curves ∪Cjε , to be specified in Section 3.1. In
the second step, this restricted map is reduced further, in Section 3.4, to a map Φ that is defined
on the single curve C−ε . For a detailed study of the dynamics of Φ, we require some preparatory
analysis: in Section 3.2, we approximate the derivative dΠ

dw̄ , which, in turn, allows us to derive

estimates for dΦ
dw̄ in Section 3.5. The latter are needed for analyzing the contractive (or expansive)

properties of the reduced flow under Φ. In Section 3.3, we characterize the secondary canards
introduced in Section 1 above: we derive the defining conditions for these trajectories, and we use
those conditions to describe the family of the associated sectors of rotation. Finally, in Section 3.6,
we study the dynamics of Φ on these sectors by combining the results of Sections 3.3 and 3.5, and
we derive precise asymptotic estimates for the bifurcation structure of the resulting mixed-mode
dynamics in (1.5).

3.1. The curves Cjε . In this subsection, we perform the first step in our exponentially accurate
reduction of Π to a one-dimensional map Φ. More precisely, we show how Π can be restricted from

∆− to a union of one-dimensional curves ∪Cjε that will be defined below.
Recall the definition of the curves C−ε and C+

ε from Section 2.1, as well as the fact that C−ε can
be represented as the graph of the function h0(w̄) defined in (2.39), see (2.40). For j ≥ 1, we now
make the inductive definition

Cjε = Π
({

(h, w̄) ∈ Cj−1
ε

∣∣h > 0
})
,

where we define C0
ε ≡ C−ε for the zeroth iterate of C−ε under Π. Next, we show that for j ≥ 1, each

set Cjε can be written as the graph of a function hj(w̄), in analogy to the representation of C−ε given
in (2.40). We first consider the case when j = 1. Note that by Proposition 2.2,

(h1, w̄1) = Π(h0(w̄), w̄) =
(
h0(w̄) +

√
εd
h0(w̄)√
ε

+ w̄d
h0(w̄)
w̄ +O(2), w̄ + εµT h

0(w̄) +O(ε2)
)
,

where O(2) = O((
√
ε + w̄)2), as before. Since h0 =

√
εd0√

ε
+ w̄d0

w̄ + O(2) by (2.39) and since

dh
0√
ε
∼ d0√

ε
and dh

0

w̄ ∼ d0
w̄, respectively, it follows that

h1(w̄) = 2
√
εd0√

ε + 2w̄d0
w̄ +O(2).(3.1)

Similarly, for higher iterates of Π, there holds

(3.2) (hj , w̄j) = Π
j
(h0(w̄), w̄)

=

(
h0(w̄) +

√
ε

j∑
i=0

d
hi(w̄)√
ε

+ w̄

j∑
i=0

d
hi(w̄)
w̄ +O(ε), w̄ + 2εµ

j∑
i=0

T h
i(w̄) +O(ε2)

)
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Figure 13. The curves Cjε for j ≥ 0, where C−ε ≡ C0
ε .

and, therefore,

hj(w̄) = (j + 1)
√
εd0√

ε + (j + 1)w̄d0
w̄ +O(2).(3.3)

This gives the desired representation of Cjε as the graph of the function hj(w̄) in (3.3), with

Cjε =
{

(hj(w̄), w̄)
∣∣ w̄ = O(

√
ε)
}

(3.4)

for j ≥ 1; cf. Figure 13.

Finally, we prove that the map Π can be restricted from ∆− to the union of the set of curves Cjε
with an only exponentially small error; here, Πj denotes the jth iterate of the map Π defined in
(2.57).

Proposition 3.1. Let (h, w̄) ∈ ∆−, and fix ε > 0 sufficiently small. Then, there exists k > 0 such

that for 1 ≤ j ≤ k, Πj(h, w̄) is exponentially close (in ε) to ∪kj=1C
j
ε .

Proof. First, observe that all trajectories must become exponentially close to Sa−ε after relaxation;
consequently, they must return to ∆− exponentially close to C−ε . This is equivalent to saying that
for any (h, w̄) with h < 0, Π(h, w̄) is exponentially close to C−ε .

We now prove that Π2(h, w̄) must be exponentially close to C−ε ∪ C1
ε . Let (h1, w̄1) = Π(h, w̄),

and note that if h1 < 0, the forward trajectory of (h1, w̄1) must undergo relaxation. Hence, by the
above argument, Π(h1, w̄1) = Π2(h, w̄) is exponentially close to C−ε in that case. Let us suppose that
h1 ≥ 0 now and consider h1 = O(ε) first, which is in the domain of Π. Since the map Π is induced

by the flow of (2.8) and since T h
1
(w̄1) = O(

√
− ln ε) for the return time to ∆ (cf. Appendix A), the

expansion that can be incurred during that return is of at most algebraic order in ε. Consequently,
Π(h1, w̄1) must be exponentially close to C1

ε . If, on the other hand, h1 is exponentially small, i.e.,

O(e−
κ
ε ) for some κ > 0, the argument from the first part of the proof can be applied to show that

Π(h1, w̄1) is again exponentially close to C−ε .
The transitional regime between h1 = O(ε) and exponentially small h1 is more difficult to

describe. This issue is addressed in detail in [20], where it is shown, roughly speaking, that the
contraction and expansion in the z-direction cancel each other out to leading order near the fold.
An analogous property can be proven to hold in our case, which allows us to conclude that Π(h1, w̄1)
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is exponentially close to C1
ε even in that transitional regime. Finally, by an iteration of the above

argument, it follows that Π3(h, w̄) must be exponentially close to C−ε ∪ C1
ε ∪ C2

ε , and so on.
To conclude the proof, we note that there exists a finite number k such that for any point (h, w̄)

with h > 0, there is 1 ≤ j ≤ k such that the h-coordinate of Πj(h, w̄) is negative, so that Πj+1(h, w̄)
must again be close to C−ε . (Note that k gives the maximum possible number of small oscillations
a trajectory can undergo.) It follows that for any (h, w̄) ∈ ∆−, the trajectory of (h, w̄) under Π

must be exponentially close to the union of the sets Cjε , j = 1, . . . , k. �

In the following, we will assume that the points on a trajectory of Π are on C−ε or on one of

the curves Cjε . By Proposition 3.1, this assumption incurs at most an exponentially small error.

To find the restriction of Π to Cjε , we recall that Cjε can be represented as the graph of a function
hj(w̄), see (3.4). In analogy to the definition of Π in (2.42), we again have to distinguish between
hj > 0 and hj < 0 here. In the former case, Π reduces to Π, whereas in the latter case, we have

to take the composition of Πout, Πret, and Πin to describe the return to ∪Cjε ; see the discussion in

Section 2.6 for details. Moreover, since Cjε is parametrized by w̄, cf. (3.4), it is natural to consider
Π as a function of w̄. Hence, combining the definition of Π in (2.42) with (2.9) for hj > 0 and with
the estimates in (2.20), (2.42), and (2.54) for hj < 0, respectively, we finally obtain

Π(w̄) ≡ Π(hj(w̄), w̄) =


w̄ + εµT h

j(w̄)(w̄) +O(ε2) if hj(w̄) > 0,

w̄ + εµT h
j(w̄),out(w̄) + w̄f2µε ln ε

+
√
ε
(
G(0, vmax, µ) + G(v∗max, v0, µ)

)
+O(ε) if hj(w̄) < 0.

(3.5)

3.2. The derivative of Π. To estimate the contractive (or expansive) properties of the flow

induced by Π on ∪Cjε , we need to estimate the derivative dΠ
dw̄ of Π. Given (3.5), it follows that the

following approximation holds to leading order, i.e., up to an O(ε)-error:

dΠ

dw̄
∼


1 + εµ

dT h
j(w̄)(w̄)

dw̄
if hj(w̄) > 0,

1 + εµ
dT h

j(w̄),out(w̄)

dw̄
+ f2µε ln ε if hj(w̄) < 0.

(3.6)

(Here, we have used the fact that the function G is independent of w̄, see (2.53).) Now, recall that
T h(0) = 2T h by (2.7), and note that for (h, w̄) small, T h(w̄) depends much more sensitively on h
than on w̄. Therefore, to evaluate (3.6), we can in a first approximation neglect the w̄-dependence
of T h(w̄) and write

dT h
j(w̄)(w̄)

dw̄
∼ 2

dT h
j(w̄)

dw̄
.

Due to T h ∼ (−2 lnh)
1
2 (see Appendix A), it follows that

dT h
j(w̄)(w̄)

dw̄
∼ − 2

hj(w̄)

1√
−2 lnhj(w̄)

(hj)′(w̄);(3.7)

similarly, we can use the definition of T h,out(w̄) in (2.41) to conclude

dT h
j(w̄),out(w̄)

dw̄
∼ − 1

hj(w̄)

1√
−2 lnhj(w̄)

(hj)′(w̄).(3.8)

To complete the computation of the derivative of Π, we require approximate formulae for the
derivatives of hj with respect to w̄: by (3.3), it follows that

(hj)′(w̄) = (j + 1)d0
w̄ +O(

√
ε, w̄).(3.9)
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Combining (3.7) and (3.9), we finally obtain

dT h
j(w̄)(w̄)

dw̄
∼ − 2

hj(w̄)

1√
−2 lnhj(w̄)

(j + 1)d0
w̄(3.10)

as well as

dT h
j(w̄),out(w̄)

dw̄
∼ − 1

hj(w̄)

1√
−2 lnhj(w̄)

(j + 1)d0
w̄,(3.11)

which can be substituted into (3.6) to obtain a more explicit expression for dΠ
dw̄ .

3.3. Secondary canards and sectors of rotation. Recall the definition of the jth secondary

canard Γjε as a trajectory of (1.2) that undergoes j small oscillations (loops) during its passage
through the fold region. In this subsection, we derive the conditions on the rescaled equations
(2.8) by which these trajectories are defined. The corresponding analysis will require us to refine
the results of Proposition 2.2, see Proposition 3.2 below. Given the family of secondary canards

{Γjε}, for j = 0, . . . , k, we will define the corresponding family of sectors of rotation, {RSj}. We
will then analyze the geometry of these sectors; in particular, we will estimate the sector width
(Proposition 3.3), and we will show that it is independent of j to lowest order. Here, we note
that the family {RSj} will be crucial for the reduction of the (two-dimensional) map Π to the
(one-dimensional) map Φ in Section 3.4 below. Finally, in Proposition 3.4, we discuss the uniform
validity of our asymptotic estimates.

Let (h0(w̄), w̄) ∈ C−ε , as before, and recall the definition of the transition map Π for (2.8), see
Proposition 2.2. Moreover, let Ph and Pw̄ denote the projections onto the h-coordinate and the
w̄-coordinate, respectively. Then, the defining condition for the jth secondary canard is given by

PhΠ
j
(h0(w̄), w̄) = 0,(3.12)

i.e., the h-coordinate of the jth iterate of (h0(w̄), w̄) under Π has to be zero. In other words, we

are interested in finding the points of intersection of subsequent iterates of C−ε under Π (i.e., of Cjε)
with C+

ε . For j ≥ 1 fixed, let w̄c
j denote the corresponding solution of (3.12). Then, w̄c

j fixes a

point in C−ε that will determine the location of the jth secondary canard Γjε; see Figure 13 for an
illustration. In particular, for the first secondary canard, we have the requirement that

PhΠ(h0(w̄c
1), w̄c

1) = 0.

Remark 7. Recall that C−ε corresponds to the intersection of the locally invariant slow manifold
Sa−ε in (1.5) with ∆, before the rescaling. Since the critical manifold S0 for (1.5) is normally
hyperbolic away from `±, it follows that the slow manifold Sε is unique up to exponentially small
terms [11, 14]. Once the corresponding sheets of Sa−ε and Srε are chosen, the strong canard Γ0

ε is

uniquely determined. Similarly, since the jth secondary canard Γjε, with j ≥ 1, is defined as the
trajectory lying in the intersection of the jth iterate of Sa−ε under Π with Srε , all secondary canards
will originate in the same sheet of Sa−ε . Thus, we can restrict ourselves to C−ε when studying
secondary canards. �

Given the asymptotics of the return map Π : ∆− → ∆−, as derived in Proposition 2.2 (cf. (2.9)),
we can write

Π(h, w̄) = Π0(h, w̄) +O(ε),(3.13)
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where Π0(h, w̄) denotes the return map for the system

v̄′ = −z̄ + f2v̄
2 +
√
εf3v̄

3 +
√
εF (0, 0) + w̄G(0, 0),

z̄′ = v̄ − w̄,
w̄′ = 0.

(3.14)

We begin by showing that the leading-order approximation Π0, which is obtained by omitting the
O(ε)-terms in (3.13), is not sufficiently accurate to give non-trivial solutions of (3.12), i.e., solutions
that are not exponentially close (in ε) to the canard critical value w̄c for (3.14). (Recall that w̄c is
the w̄-value corresponding to the strong canard Γ0

ε, after the rescaling in (2.2), with

w̄c =
d0√

ε

d0
w̄

√
ε+O(ε)

by (2.16).) Since Γ0
ε itself is only unique up to exponentially small terms, we conclude that the

map Π0 will admit no secondary canards.
The argument goes as follows: to determine the w̄-value corresponding to the first secondary

canard Γ1
ε from Π0, one would have to solve PhΠ0(h0(w̄), w̄) = 0. Solutions of this equation are

obtained by applying the Implicit Function Theorem about (0, w̄c). (Here, we have taken into
account that h0(w̄c) = 0, by the definition of w̄c, cf. again (2.16).) However, since w̄c corresponds
precisely to the critical value of the canard parameter w̄ in the classical (two-dimensional) scenario,
it can be shown [20] that PhΠ0(0, w̄c

0) is exponentially small. By the Implicit Function Theorem,
it follows that any solution w̄∗ of the equation PhΠ0(h0(w̄), w̄) = 0 close to w̄c must be such
that |w̄∗ − w̄c| is exponentially small. (Note that this is exactly the situation encountered in a
two-dimensional canard explosion, see again [20].)

Hence, in order to find secondary canards, we must refine our analysis and include additional
terms in the description of the “local” return map Π. In the following, we will use the partially
decoupled truncated system

v̄′ = −z̄ + f2v̄
2 +
√
εf3v̄

3 +
√
εF (0, 0) + w̄G(0, 0),(3.15a)

z̄′ = v̄ − w̄,(3.15b)

w̄′ = εµ(3.15c)

as the basis for our computation. As it turns out, this refinement will suffice to solve (3.12) for w̄, in
a non-trivial fashion, to leading order. Note that the only difference between (3.14) and (3.15) lies in
the w̄-equation: instead of keeping w̄ constant to lowest order, we let it evolve in (3.15c), according
to the leading-order approximation obtained for w̄′ from (2.8c), w̄′ = ε(µ− g1εz̄ +O(ε)) ∼ εµ.

The relevant result on the refined asymptotics of Π is obtained as follows:

Proposition 3.2. Let Π : ∆
− → ∆− denote the return map for (3.15), and fix ε > 0 sufficiently

small. Then,

Π(h, w̄) =

(
PhΠ0(h, w̄) + εµK(h) +O(ε2)

w̄ + 2εµT h +O(ε2)

)
,(3.16)

where Π0 denotes the return map for (3.14) and K is defined via

K(h) =

∫ Th

−Th
∇H(γ̄h0 (t)) · (G(0, 0),−1)T (t+ T h) dt.

Proof. Let w̄c
0 denote the critical w̄-value for the “refined” system (3.15). We begin by showing

that, to leading order, w̄c
0 equals w̄c, which is again the corresponding w̄-value determined from
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Π0, cf. (2.16). Suppose that w̄ is given and that we wish to find h− such that (h−, w̄) ∈ C−ε holds.
Solving (3.15c), we obtain w̄(t) = w̄ + εµt, which we then substitute into (3.15a) and (3.15b):

v̄′ = −z̄ + f2v̄
2 +
√
εf3v̄

3 +
√
εF (0, 0) + (w̄ + εµt)G(0, 0),

z̄′ = v̄ − w̄ − εµt.
(3.17)

Fix w̄, and suppose that h−0 is the h-value obtained from (3.14) such that (h−0 , w̄) ∈ C−ε , see the
proof of Proposition 2.2. Then, it follows that

h− = h−0 − εµ
∫ 0

−∞

∂H

∂z̄
(γ̄0

0(t))G(0, 0)t dt,(3.18)

again by the proof of Proposition 2.2. A similar computation shows that

h+ = h+
0 + εµ

∫ ∞
0

∂H

∂z̄
(γ̄0

0(t))G(0, 0)t dt,(3.19)

where h+ and h+
0 are defined by the requirement that (h+, w̄) ∈ C+

ε and (h+
0 , w̄) ∈ C+

ε in (3.15) and
(3.14), respectively. By symmetry, we find that∫ 0

−∞
−∂H
∂z

(γ̄0
0(t))t dt =

∫ ∞
0

∂H

∂z
(γ̄0

0(t))t dt.(3.20)

It follows that the defining condition for the strong canard in (3.15), which, for (2.8), is given by
h− = h+, reduces to h−0 = h+

0 +O(ε2) and, hence, that the corresponding critical values of w̄ are
indeed the same to leading order.

Finally, the approximation for Π in (3.16) is derived as in the proof of Proposition 2.2, where
we note that the additional K-term is due to the fact that h 7→ h+ − h− = h0 + εµK(h), by (3.18),
(3.19), and (3.20). �

Remark 8. It can be shown that the inclusion of additional (higher-order) terms in (3.15) will
not alter the result of Proposition 3.2, since these terms will either drop out by symmetry, as in
the proof of Proposition 2.2, or contribute only terms of higher order in (3.16). �

The asymptotics of K are studied in Appendix A, where we show that K(h) = 2d0
w̄T

h+O(1); see
Lemma A.5. Therefore, the defining condition for the first secondary canard, PhΠ(h0(w̄), w̄) = 0,
can be written as

PhΠ0(h0(w̄), w̄) = −εµK(h0(w̄)) +O(ε2),(3.21)

to leading order. Moreover, recalling that w̄c
1 denotes the value of w̄ that solves (3.21), we write

w̄c
1 = w̄c

0 + ∆w̄. Then, we have the following estimate for the width ∆w̄ of the first sector of
rotation:

Proposition 3.3. With ∆w̄ defined as above, there holds

∆w̄ = −2εµ
√
−2 ln ε+O(ε)(3.22)

for ε > 0 sufficiently small.

Proof. Making use of the definition of Π0, see Proposition 2.2, we first rewrite PhΠ0(h0(w̄), w̄) as

PhΠ0(h0(w̄), w̄) = PhΠ0(0, w̄c
0) + PhΠ0(h0(w̄), w̄)− PhΠ0(0, w̄c

0)

= PhΠ0(0, w̄c
0) + d

h0(w̄)
w̄ w̄ − d0

w̄w̄
c
0 +
√
ε
(
d
h0(w̄)√
ε
− d0√

ε

)
+O(ε,

√
ε∆w̄,∆w̄2)

= PhΠ0(0, w̄c
0) +

(
d
h0(w̄)
w̄ − d0

w̄

)
w̄ + d0

w̄∆w̄ +
√
ε
(
d
h0(w̄)√
ε
− d0√

ε

)
+O(ε,

√
ε∆w̄,∆w̄2),
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see the discussion in Section 3.1 as well as (2.39). Now, recall that w̄ = O(
√
ε) by Assumption 1, and

note that one can estimate d
h0(w̄)
w̄ − d0

w̄ = O(h0(w̄) ln(−h0(w̄))
3
2 ), cf. (A.9). Also, since h0(w̄c

0) = 0
by (2.16) and (2.39), a Taylor expansion shows

h0(w̄) = d0
w̄∆w̄ + O(∆w̄),(3.23)

which implies in sum

PhΠ0(h0(w̄), w̄) = PhΠ0(0, w̄c
0) + d0

w̄∆w̄ +
√
ε
(
d
h0(w̄)√
ε
− d0√

ε

)
+O

(
ε,
√
ε(− ln ε)

3
2 ∆w̄,∆w̄2

)
.

Using the fact that PhΠ0(0, w̄c
0) = O(e−

κ
ε ) for some κ > 0 as well as the estimates from (A.9)

and Lemma A.5, we conclude that the w̄-value corresponding to the first secondary canard, w̄c
1, is

determined from d0
w̄∆w̄ = −2εµd0

w̄T
h0(w̄) +O((

√
ε+ ∆w̄)2). Hence, we obtain

w̄c
1 = w̄c

0 − 2εµT h
0(w̄c

1) +O(ε),(3.24)

which implies in particular |w̄c
1 − w̄c

0| & ε, i.e., |w̄c
1 − w̄c

0| > ε as well as |w̄c
1 − w̄c

0| ∼ ε. Due to

h0(w̄c
0) = 0 and dh0

dw̄ ∼ d
0
w̄, it follows from the Intermediate Value Theorem that h0(w̄c

1) & ε, which,
together with Lemma A.2, shows that the desired estimate for the size of the first sector of rotation
is given by

w̄c
1 − w̄c

0 = ∆w̄ = −2εµ
√
−2 ln ε+O(ε).(3.25)

This completes the proof. �

Let k > 1, and consider j = 0, . . . , k. We now set out to find an analogue of condition (3.21) for
the kth secondary canard Γkε . Let w̄c

k again denote the corresponding w̄-value, consider an initial
condition (h0(w̄), w̄) ∈ C−ε , and let

w̄j = Pw̄Π
j
(h0(w̄), w̄),

as before. Note that w̄c
k must be a solution of the equation

PhΠ(hk−1(w̄k−1), w̄k−1) = 0

or, equivalently, of

PhΠ0(hk−1(w̄k−1), w̄k−1) = −εµK(hk−1(w̄k−1)) +O(ε2).(3.26)

Observe that the condition in (3.26) is analogous to (3.21), with h0 replaced by hk−1; hence,
the structure of (3.21) is replicated at higher orders. Note also that it follows from (3.24) that

w̄c,1
1 = w̄c

0 + O(ε), where w̄c,1
1 is the first iterate of w̄c

1 under Π. This estimate, in turn, implies
that h1(w̄c

0) = O(ε), see (3.1). An argument analogous to the derivation of (3.24) now leads to the
estimate

w̄c,1
2 = w̄c

0 − 2εµT h(w̄c,1
2 ) +O(ε)

or, equivalently, to

w̄c
2 = w̄c

0 − 2εµ
(
T h(w̄c

2) + T h(w̄c,1
2 )
)

+O(ε).(3.27)

Proceeding inductively, we obtain hk−1(w̄c
0) = O(ε) and

w̄c
k = w̄c

0 − 2εµ

( k−1∑
j=0

T h(w̄c,j
k )

)
+O(ε),(3.28)
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Figure 14. The sectors of rotation, RSj .

where we define w̄c,0
k ≡ w̄

c
k. Finally, using Lemma A.2 to again approximate T h(w̄c,j

k ) by
√
−2 ln ε+

O(1) (non-uniformly in k), we obtain in analogy to (3.25) that

w̄c
k = w̄c

k−1 − 2εµ
√
−2 ln ε+O(ε),(3.29)

which, in conjunction with (2.19), verifies Assumption 1 above.
One question that naturally arises in this context is whether k > 1 can be chosen arbitrarily

large. Here, we show that our analysis, and, in particular, the estimate in (3.28), does not hold
uniformly in k with respect to ε; rather, (3.28) is valid for k fixed and ε sufficiently small. This

is due to the fact that the contributions coming from T h(w̄c,j
k ) become increasingly smaller with k:

since w̄c
k decreases with k and since h(w̄) ∼

√
εd0√

ε
+ w̄d0

w̄ with d0
w̄ < 0, see (2.18), it follows that h

increases with k. Therefore, T h ∼
√
−2 lnh decreases, and the O(ε)-terms can come to dominate

the 2εµ(· · · )-terms in (3.28) if k is sufficiently large. However, in our analysis, we had to assume
that these terms are uniformly of lower order than ε, starting with the leading-order approximation
for Π in Proposition 2.2. In summary, for k “large,” ε thus has to be chosen small enough to ensure
that the estimate in (3.28) remains consistent:

Proposition 3.4. Fix any integer K > 0. Then, there exists an ε > 0 sufficiently small such that
the estimate in (3.28) holds for k ≤ K.

For j = 1, . . . , k, we now define the jth sector of rotation RSj as follows:

RSj =
{

(h0(w̄), w̄) ∈ C−ε
∣∣ w̄c

j ≤ w̄ < w̄c
j−1

}
.

This definition provides a connection between the family of secondary canards {Γjε} and the corre-

sponding sectors of rotation: the jth sector, RSj , is bounded by the secondary canards Γj−1
ε and

Γjε, in that the corresponding points w̄c
j−1 and w̄c

j on C−ε define the boundaries of RSj .

For notational purposes, we also introduce the zeroth sector RS0 via

RS0 =
{

(h, w̄) ∈ C−ε
∣∣ w̄c

0 ≤ w̄
}
,

and we note that this definition is equivalent to requiring that h < 0, see (2.37). An illustration of
these sectors of rotation is given in Figure 14. In particular, since w̄c

j < w̄c
j−1 for any j ≥ 1, the

sector RSj lies further “to the left” of RS0 with increasing j.
It follows from the preceding analysis that all of the sectors RSj are of equal size to leading

order, cf. (3.29). (However, we conjecture that due to higher-order corrections, the sector size
actually decreases as j increases.) Moreover, for ε and µ fixed, the number of sectors of rotation

RSj and, hence, also the number of corresponding secondary canards Γjε, has to be finite: note
that the frequency of the small-oscillation component in any mixed-mode time series in (1.5) is
globally bounded, with the bound given approximately by the frequency determined by the Hopf
bifurcation around the origin in (1.5). Additionally, the speed of the drift in w̄ in (2.3c) is always
positive for non-zero ε and µ, which implies that w̄ > w̄c

0 in finite time. Hence, trajectories of (1.5)
can undergo only a finite number of small-amplitude oscillations before entering the relaxation
regime, which implies that there can be only a finite number of sectors of rotation lying in (0, w̄c

0);
see again Figure 14.
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Remark 9. It follows from Proposition 3.4 that both the number of secondary canards and that
of the corresponding sectors of rotation must go to infinity as ε → 0. However, it is important
to note that Proposition 3.4 gives no bound on the total number of secondary canards for ε > 0.
Rather, the integer K can be chosen arbitrarily large provided ε is small enough, implying that our
analysis is then valid for all k ≤ K. �

Finally, we observe that the definition of RSj can be extended to a small neighborhood of C−ε
by the flow of (2.8) and, hence, that the sectors of rotation can be interpreted as two-dimensional
subsets of Sa−ε .

3.4. The return map Φ to C−ε . To show how the “full” map Π (which a priori has to be

interpreted as a map that is defined on
⋃
Cjε) can be approximated accurately by a “simplified”

map, we introduce Φ : C−ε → C−ε as follows. Let k ≥ 0, and recall the definition of the kth sector
of rotation, RSk, from the previous subsection. Then, we define Φ via

Φ(w̄) = Pw̄
(
Πin ◦Πret ◦Πout ◦Π

k
(h0(w̄), w̄)

)
if (h0(w̄), w̄) ∈ RSk.(3.30)

Note that Φ is a reinterpretation of Π, in that it is a composition of the same components that
were used in the definition of Π in (3.5). However, it is defined on a different domain: the definition
in (3.30) reduces the analysis of the flow induced by (1.5) to that of a one-dimensional map that
is defined on the single curve C−ε , which will allow us to study the recurrent dynamics on RSk in
considerable detail. Moreover, we note that Φ is still an exponentially accurate approximation for
the full, two-dimensional return map Π, which is again due to the fact that all trajectories must
return exponentially close to C−ε after relaxation, i.e., after application of Πret; cf. the proof of
Proposition 3.1. One drawback of this simplification, however, lies in the fact that the defining
formula (3.30) for Φ is k-dependent; in other words, the definition of Φ changes with the sector
of rotation under consideration. This k-dependence will have to be taken into account throughout
the subsequent analysis.

Finally, we remark that the map Φ is smooth on each of the sectors RSk, but that it has
discontinuities at the points w̄c

k and w̄c
k−1. We will not study the nature of these discontinuities

in detail, since we are not attempting to analyze the dynamics of Φ “very close” to the secondary
canards. Rather, we will restrict ourselves to describing Φ on the interior of the individual sectors
RSk.

3.5. The derivative of Φ. In this subsection, we derive estimates for the derivative Φ′(w̄) := dΦ
dw̄

of Φ on the kth sector of rotation, RSk. We then investigate some of the properties of Φ′. The
resulting estimates are needed for the analysis of the dynamics of Φ in Section 3.6 below and
will allow us to characterize the admissible Farey sequences in (1.5), as well as to describe the
corresponding parameter intervals.

Let w̄ be such that (h0(w̄), w̄) ∈ RSk, and let w̄j = Pw̄Π
j
(h0(w̄0), w̄0), where we set w̄0 ≡ w̄.

Given the definition of Φ in (3.30), we have the following result:

Lemma 3.5. To leading order, there holds

(3.31)
dΦ(w̄)

dw̄
= 1− εµd0

w̄

( k−1∑
j=0

2(j + 1)
1

hj(w̄j)

1√
−2 lnhj(w̄j)

+ (k + 1)
1

hk(w̄k)

1√
−2 lnhk(w̄k)

)
+O(ε ln ε)

for the derivative of Φ on RSk.
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Proof. By the Chain Rule and taking into account the definitions of Π, Πin, and Πout, as well as of
Πret in Propositions 2.2, 2.3, and 2.4 as well as in (2.54), respectively, we have

dΦ(w̄)

dw̄
=

k−1∏
j=0

(
1 + 2εµ

dT h
j(w̄)

dw̄

)(
1 + εµ

dT h
k(w̄),out

dw̄

)
+O(ε ln ε)

= 1 + εµ
k−1∑
j=0

2
dT h

j(w̄)

dw̄
+ εµ

dT h
k(w̄),out

dw̄
+O(ε ln ε)

= 1− εµd0
w̄

( k−1∑
j=0

2(j + 1)
1

hj(w̄j)

1√
−2 lnhj(w̄j)

+ (k + 1)
1

hk(w̄k)

1√
−2 lnhk(w̄k)

)
+O(ε ln ε),

where the last step follows from (3.10) and (3.11). �

Since we assume that hj(w̄j) = O(ε
√
− ln ε) (see the proof of Proposition 3.3 above), we can

write

1√
−2 lnhj(w̄j)

=
1√
−2 ln ε

(
1 + O(1)

)
.

This gives a somewhat less accurate but more concise estimate for the derivative of Φ:

dΦ(w̄)

dw̄
∼ 1− εµd0

w̄

1√
−2 ln ε

( k−1∑
j=0

2(j + 1)

hj(w̄j)
+

k + 1

hk(w̄k)

)
.(3.32)

(Note that again due to hj(w̄j) = O(ε
√
− ln ε), the O(ε)-correction in (3.32) will actually be of the

order (ln ε)−1, and that we can therefore neglect the O(ε ln ε)-terms in (3.31).)
To simplify this estimate further, we have to distinguish between different k-values in (3.32). We

first focus on the case where k > 0; the case when k = 0 will be discussed separately.
Given k > 0, fix an initial condition w̄0 ∈ RSk, and let w̄1, w̄2, . . . , w̄k be defined as in Section 3.4

above, i.e., let w̄j be the jth iterate of w̄0 under Π. Then, it follows directly from (3.32) that Φ′ < 1 if
w̄0 ≈ w̄c

k, respectively, that Φ′ > 1 if w̄0 ≈ w̄c
k−1. We are interested in approximating more precisely

the size of the w̄-intervals where Φ′ is less than 1 and greater than 1, respectively.
To that end, let ∆w̄j = w̄c

j−1− w̄c
j be the width of the jth sector of rotation RSj , and recall that

we have the estimate

∆w̄j ∼ 2εµ
√
−2 ln ε,

independent of j to leading order. Given any w̄0 ∈ RSk, we can write w̄0 = w̄c
k + ν∆w̄k for some

ν ∈ [0, 1], i.e., the sector RSk will be parametrized by the variable ν in the following. Moreover,
for any j ≥ 0, we have the following estimates:

w̄c
j ∼ w̄c

0 − 2jεµ
√
−2 ln ε,

w̄j ∼ w̄c
0 − 2

(
(k − j)− ν

)
εµ
√
−2 ln ε,

hj(w̄j) ∼ −2d0
w̄(j + 1)

(
(k − j)− ν

)
εµ
√
−2 ln ε,

where the last expression is a consequence of (3.3). Using (3.32), we obtain

dΦ(w̄)

dw̄
∼ 1− ωk(ν)

4 ln ε
,(3.33)
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Figure 15. The function ωk on [0, 1] for k = 0, . . . , 3.

where the function ωk is defined via

ωk(ν) =
k−1∑
j=0

1

(k − j)− ν
− 1

2ν
.(3.34)

Finally, we consider the case where k = 0. For any initial condition w̄0 ∈ RS0, we can write
w̄0 = w̄0

c + 2νεµ
√
−2 ln ε, where ν is now some positive number. Then,

dΦ(w̄)

dw̄
∼ 1− ω0(ν)

4 ln ε
,(3.35)

with ω0(ν) = − 1
2ν . Observe that, clearly, Φ′(w̄) < 1 for any w̄ ∈ RS0.

Remark 10. Note that for k ≥ 0, the function ωk(ν) defined in (3.34) is increasing on [0, 1] and
that ωk changes sign exactly once if k > 0, see Figure 15. �

The zeros of ωk(ν), k > 0, give the approximate sizes of the subintervals of RSk where Φ′ is
greater than 1 and less than 1, respectively. More precisely, we have proven the following result.

Proposition 3.6. For k > 0 and ε > 0 sufficiently small, the subinterval of RSk on which Φ′(w̄) <
1 is approximately given by (w̄c

k, w̄
c
k + 2νk0µε

√
−2 ln ε), where νk0 denotes the unique zero of ωk on

RSk.

3.6. The dynamics of Φ. In this subsection, we analyze the dynamics of the reduced map Φ in
more detail, combining the results obtained so far in Section 3. The aim of our analysis is to relate
the properties of Φ to the resulting mixed-mode dynamics in (1.5) and to estimate the relevant
parameter (µ-)range corresponding to this dynamics. Our first result (Theorem 3.7) concerns the
existence and stability of 1k-type orbits, i.e., of periodic orbits with symbolic (Farey) sequence
{1k}; these orbits correspond to the recurrent dynamics of (1.5) on the kth sector of rotation,
RSk. Then, in Theorem 3.9, we derive conditions for when a given orbit will pass through RSk.
In Theorem 3.10, Proposition 3.11, and Corollary 3.12, we apply these conditions to classify the

periodic orbits of the more general type {Lkjj }, with Lj , kj ≥ 1, that can “typically” occur in (1.5).
We start by summarizing some of the features of Φ which follow directly from the results of

Sections 3.3 and 3.5; see Figure 16 for a qualitative illustration.
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Figure 16. A qualitative illustration of the map Φ.

(i) Φ must be decreasing close to the left boundary of RSk and increasing on most of RSk, with
w̄c
k + νk0 ∆w̄k giving an estimate of the point where Φ′ becomes greater than 1, cf. Proposi-

tion 3.6.
(ii) The derivative Φ′ must change sign near w̄kmin := w̄c

k + νkmin∆w̄k, with νkmin determined by

the condition that ωk(ν
k
min) = 4 ln ε. This implies in particular that νkmin = O((ln ε)−1)

and, hence, that w̄kmin ≈ w̄c
k. (Note that our analysis does not prove the uniqueness of this

minimum, though.)
(iii) A simple computation along the lines of Section 3.5 shows that Φ(w̄kmin) = Φmin +O(ε) is

independent of k to lowest order, where

Φmin := w̄c
0 +
√
ε
(
G(v0, vmax, µ) + G(v∗max, 0, µ)

)
+ εµ

√
−2 ln ε,(3.36)

cf. (2.54). Indeed, given the formula for Π in (3.5), as well as Pw̄Πk(w̄kmin) ∼ w̄0
min, it follows

with (3.30) that

Φ(w̄kmin) ∼ Φ ◦ Pw̄Πk(w̄kmin)

∼ w̄0
min + εµT h(w̄0

min),out + w̄0
minf2µε ln ε+

√
ε
(
G(v0, vmax, µ) + G(v∗max, 0, µ)

)
.

Since ν0
min & (ln ε)−1 implies w̄kmin ∼ w̄c

0 and since T h(w̄0
min),out ∼

√
−2 ln ε, one obtains

(3.36).

By definition, fixed points of Φ on RSk correspond to periodic 1k-type orbits in (2.1). We
are interested in estimating the parameter range (i.e., the µ-interval) in which such orbits can be
observed.

Theorem 3.7. For ε > 0 sufficiently small, the periodic orbit of type 1k, k ≥ 1, exists and is stable
on a µ-interval of the form (µk, µk), with

∆µk := µk − µk = −
µk
√

2Dµ

√
ε√
− ln ε

∫ νk0

νk−2

ωk(ν) dν +O
(√
ε(− ln ε)−1

)
;(3.37)

here, νk−2 denotes the ν-value that solves ωk(ν) = 8 ln ε.
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Proof. Note that MMO orbits with Farey sequence {1k} correspond to solutions of the equation

Φ(w̄, µ) = w̄(3.38)

with w̄ ∈ RSk, where we have now included explicitly the µ-dependence of Φ. We are interested in
determining µ in (3.38) so that the corresponding fixed point of Φ will be stable. To that end, let
νk−2 be defined as in the statement of the theorem, and note that for w̄ ∈ RSk, the leading term of

Φ′(w̄, µ) satisfies |Φ′(w̄, µ)| < 1 if and only if w̄ = w̄c
k + ν∆w̄k with ν ∈ (νk−2, ν

k
0 ), cf. (3.33).

Now, if (3.38) is interpreted as defining implicitly a function µ = µ(w̄), we can set µk = µ(w̄c
k +

νk−2∆w̄k) and µk = µ(w̄c
k+νk0 ∆w̄k). We will use the Fundamental Theorem of Calculus to estimate

∆µk = µk − µk. Applying implicit differentiation to (3.38), we obtain

dµ

dw̄
= −

∂
∂w̄Φ(w̄, µ)− 1

∂
∂µΦ(w̄, µ)

.

Since

∂

∂µ
Φ(w̄, µ) ∼ Dµ

√
ε

(recall the discussion in Section 2.5), it follows that

dµ

dw̄
∼ 1

4Dµ
√
ε ln ε

ωk(ν)

for w̄ = w̄c
k + ν∆w̄k with ν ∈ (νk−2, ν

k
0 ), see (3.33). Therefore, using dw̄

dν ∼ ∆w̄k, we find

∆µk = µk − µk =

∫ w̄(µk)

w̄(µk)

dµ

dw̄
dw̄ ∼ 1

4Dµ
√
ε ln ε

∆w̄k
∫ νk0

νk−2

ωk(ν) dν.(3.39)

Given that ∆w̄k = 2εµ
√
−2 ln ε+O(ε), the result follows. �

Observe that by the definition of νk0 , µk marks the value of µ for which the orbit of type 1k

disappears in a saddle-node bifurcation of Φ, since Φ′ = 1 there. In the following, we summarize a
few additional observations which follow from Theorem 3.7:

(i) Note that∫
ωk(ν) dν = ln |Γ(−k + ν)| − ln |Γ(1 + ν)| − 1

2
ln ν = −1

2
ln ν +O(1),

where Γ denotes the standard Gamma function. Since the leading-order contribution to the
corresponding definite integral in (3.39) comes from νk−2 = O((ln ε)−1), one can show that,
for ε sufficiently small,

∆µk =
µk
√

2Dµ

√
ε ln(
√
− ln ε)√

− ln ε
+O

(√
ε(− ln ε)−

1
2
)
.

Given that the double logarithmic term is “almost constant” (at least if ε does not vary over

too many orders of magnitude), it follows that ∆µk is roughly of the order
√
ε(− ln ε)−

1
2 as

ε→ 0.
(ii) The estimate in (3.37) implies that, for ε fixed, the ratio of the widths of the stability

intervals of “adjacent” periodic orbits (i.e., of orbits of the types 1k+1 and 1k) is approxi-
mately given by the ratio of the corresponding integrals of ωk+1 and ωk. Since {νk0} decays

faster with k than {νk−2} (see Figure 15), it follows that
∫ νk0
νk−2

ωk(ν) dν decreases. Hence, the

sequence {∆µk} is decreasing with k.
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(iii) The well-developed theory of unimodal maps [25] implies that the µ-interval for which there
is an attractor for Φ in RSk is also of size (µk, µk), to lowest order. Hence, for µ in any

interval given approximately by (µk, µk+1), the dynamics of Φ must involve at least two
different sectors.

Next, we derive a set of conditions under which a given periodic orbit will have to pass through
the kth sector of rotation RSk. For the remainder of this subsection, we will consider only points
w̄ ∈ RSk, k ≥ 1, for which w̄ = w̄c

k + ν∆w̄k, with

ν ∈
(

1

(− ln ε)p
, 1− 1

(− ln ε)p

)
(3.40)

for some fixed integer p > 1. Note that the condition in (3.40) is “generic” in that it covers “most
of” RSk; to put it differently, only w̄-values that are “very close” to the boundary points w̄c

k and
w̄c
k−1 are excluded by (3.40).
We begin by proving a simple preparatory result:

Lemma 3.8. Consider w̄ = w̄c
j + ν∆w̄j ∈ RSj for some j ≥ 1, and assume that (3.40) holds.

Then, if w̄ ≤ w̄jmin,

|Φ(w̄)− Φmin| = O
( ln(− ln ε)

− ln ε

)
∆w̄j ,(3.41)

whereas if w̄ > w̄jmin,

|Φ(w̄)− Φmin| .
(

1 +O
( ln(− ln ε)

− ln ε

))
∆w̄j .(3.42)

Proof. Let νjmin be the ν-value corresponding to w̄jmin. By the Fundamental Theorem of Calculus,
we have

Φ(w̄)− Φmin = ∆w̄j
∫ ν

νjmin

(
1− ωj(η)

4 ln ε

)
dη = ∆w̄j

(
ν − νjmin −

1

4 ln ε

∫ ν

νjmin

ωj(η) dη

)
.

Since ν is constrained by condition (3.40), we find∫ ν

νjmin

ωk(η) dη = O(ln ν) +O(ln νjmin) = O
(

ln(− ln ε)
)
,

see also the proof of Theorem 3.7. Now, if ν ≤ νjmin, then νjmin−ν = O((− ln ε)−1), and the estimate

in (3.41) follows. If, on the other hand, ν > νjmin, then ν − νjmin < 1, which implies (3.42). �

Next, we show that orbits satisfying the generic condition in (3.40) will typically pass through
the kth sector of rotation if, additionally, Φmin ∈ RSk holds.

Theorem 3.9. Assume that Φmin ∈ RSk and that, for some q satisfying 0 < q < 1
2 ,

w̄c
k−1 − Φmin .

1

(− ln ε)q
∆w̄k and Φmin − w̄c

k .
1

(− ln ε)q
∆w̄k.(3.43)

Consider a periodic orbit {w̄0, . . . , w̄j}, with Φ(w̄`) = w̄`+1 for ` = 0, . . . , j−1, and let {ν0, . . . , νj}
be the corresponding values of ν. Assume that (3.40) holds. Then, the orbit in question must pass
through RSk provided ε > 0 is sufficiently small.

Proof. We will assume that k ≥ 2 in the following and will omit the remaining cases for the sake
of brevity.
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First, note that Lemma 3.8 and the assumption in (3.43) imply that, for any w̄ ∈ C−ε , Φ(w̄) ∈
RSk ∪RSk−1 ∪RSk−2. This follows from the estimates below, which are a straightforward conse-
quence of (3.41), (3.42), and (3.43): we begin by assuming that w̄ ∈ RSk; then,

Φ(w̄)− w̄c
k−1 = Φ(w̄)− Φmin + Φmin − w̄c

k−1

. Φmin − w̄c
k−1 + ∆w̄k

(
1 +O

( ln(− ln ε)

− ln ε

))
. ∆w̄k

(
1 +O

(
(− ln ε)−q

))
,

which implies that Φ(w̄) can be no higher than RSk−2 in that case.
Similarly, for w̄ ∈ RSk−1 ∪RSk−2, we have the estimate

Φ(w̄)− w̄c
k−2 = Φ(w̄)− Φmin + Φmin − w̄c

k−2

. Φmin − w̄c
k−2 + ∆w̄k−1

(
1 +O

( ln(− ln ε)

− ln ε

))
. O

(
(− ln ε)−q

)
∆w̄k−1,

see (3.41) as well as (3.43). It follows that for w̄ ∈ RSk−1 ∪ RSk−2, Φ(w̄) can be no higher than
RSk−2.

Finally, for any point w̄ ∈ RSk−2 which is contained in the image of Φ, there holds

w̄ − w̄c
k−2 . O

(
(− ln ε)−q

)
∆w̄k−1

and, consequently,

Φ(w̄) . w̄c
k−1 +O

(
(− ln ε)−q

)
∆w̄k−2,(3.44)

by (3.41). It follows that any recurrent set, including the periodic orbit {w̄0, . . . , w̄j}, is contained
in RSk ∪RSk−1 ∪RSk−2.

Now, suppose that such a periodic orbit is given, and note that there is an unstable fixed point
w̄∗ of Φ in RSk−1 close to w̄c

k−2. Assume that w̄0 > w̄∗. Then, the trajectory of w̄0 under Φ must

eventually enter RSk−2; moreover, by (3.44), it must terminate at a point w̄j with w̄j < w̄∗.
Looking at the forward trajectory of w̄j , we see that it is decreasing until it falls below w̄k−1

min .

In other words, there exists ` ≥ 0 such that w̄j , w̄j+1, . . . , w̄j+`−1 are greater than or equal to
w̄k−1

min and w̄j+` is less than or equal to w̄k−1
min . Hence, we conclude that either w̄j+` ∈ RSk or, by

combining (3.41) and (3.43), w̄j+`+1 ∈ RSk. �

It remains to comment briefly on the assumption put forward in (3.43): given that Φ(w̄kmin) ∼
Φmin, cf. (3.36), as well as that necessarily w̄c

k . Φmin . w̄c
k−1 by (3.43), one can show that, to

lowest order,

(2k − 1)
µc

Dµ

√
ε
√
−2 ln ε ≤ µc − µ ≤ (2k + 1)

µc

Dµ

√
ε
√
−2 ln ε

must hold for (3.43) to be true, with µc defined as in (2.56). This condition is consistent with the
estimate for ∆µk, e.g., given after the proof of Theorem 3.7, and will typically be satisfied if q is
not “too large.”

Remark 11. The restriction to q < 1
2 in (3.43) is made to ensure that Φmin ∈ RSk will imply

Φ(w̄jmin) ∈ RSk for 0 ≤ j ≤ k− 1, since we can a priori conclude only Φmin−Φ(w̄jmin) = O(ε) from
(3.36). �
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One important consequence of Theorem 3.9 is that it allows us to give a precise qualitative
description of the segments that the symbolic sequence of a given periodic orbit can contain. For
any such orbit, let k ≥ 1 be the largest integer such that the segment 1k is contained in the
corresponding Farey sequence. With this convention, k = 1 implies that the sequence can contain
only the segments 11 and 10; restrictions on the sequences that can occur when k ≥ 2 are given in
the following theorem:

Theorem 3.10. Assume that k ≥ 2. Then, a periodic orbit can occur if its sequence consists of
segments of the form 1k (some number of times in succession), 1k−1 (some number of times in
succession), and 1k−2 (preceded by 1k and followed by 1k−1 or 1k).

Proof. First, let us assume that (3.43) is satisfied. Then, the result already follows from the proof
of Theorem 3.9.

Now, suppose that (3.43) does not hold, as well as that Φmin ∼ w̄c
k−1. Then, the steps given in

the proof of Theorem 3.9 can be retraced until almost the very end, namely, up to the statement
that w̄j+` will be less than or equal to w̄k−1

min for some ` ≥ 0. Instead, if w̄j+` ∈ RSk−1, we can now

conclude only that w̄j+`+1 ∈ RSk ∪ RSk−1. The orbit can then either remain in RSk−1 or enter
RSk and subsequently jump back to either RSk−1 or RSk−2. If, on the other hand, Φmin ∼ w̄c

k,
the same kind of sequences can occur, with k shifted upward by 1. This completes the proof. �

Given the result of Theorem 3.10, a natural question that arises is how many times in succession
a given segment can occur:

Proposition 3.11. Let k ≥ 2. If a periodic orbit involves all of the segments 1k−2, 1k−1, and 1k,
then both 1k−2 and 1k can occur at most once in succession.

Proof. First, note that an orbit can contain all of the segments 1k−2, 1k−1, and 1k only if Φmin ∼
w̄c
k−1, see the proofs of Theorems 3.9 and 3.10. It follows that any point on the orbit that lies

in RSk−2 must lie close to w̄k−1
min and, hence, that it must be mapped to RSk−1 ∪ RSk under Φ.

Similarly, any point on the orbit in RSk must be close to w̄c
k−1 and therefore must be mapped to

RSk−2 ∪RSk−1. �

Finally, Theorem 3.10 allows us to make a precise statement on the periodic orbits of the type

{Lkjj } that can be observed for Lj ≥ 2:

Corollary 3.12. For k ≥ 2, L ≥ 2, and L+ k ≥ 5, there are no periodic orbits which contain the
segment Lk and which pass through the part of RSk defined by (3.40).

Proof. Since the segment Lk corresponds to k small loops followed by L large relaxation excursions,
this segment can also be written in the form 1k(10)L−1. If k = 0 or k = 1, Theorem 3.10 places no
restrictions on the existence of such segments. Furthermore, Theorem 3.10 implies that the only
remaining admissible k-value is 2 and that L− 1 = 1 must hold in that case, implying L = 2. �

To put it differently, one will not “generically” observe Farey sequences of the form {Lkjj } if

Lj ≥ 3; if Lj = 2, only segments of the form 21 or 22 will occur. The segment L1
j , however, is

admissible for any Lj ≥ 1; this is due to “leakage” from RS0, in the sense that Φ(w̄) . w̄ for
w̄ ≈ w̄c

0, implying that trajectories can “drift” back into RS1.
Finally, we note that we make no assumptions about the stability of the periodic orbits under

consideration, neither in Theorem 3.10 nor in Corollary 3.12; indeed, our results apply to any orbit
for which the condition in (3.40) is satisfied.
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4. Conclusions and Discussion

In the present article, we have studied mixed-mode oscillations (MMOs) in a three-dimensional
model system of ordinary differential equations with three distinct time-scales, see (1.5). Here, the
“super-slow” variable w has been playing the role of a “dynamical parameter” which makes the
(v, z)-subsystem of (1.5) move slowly through a canard explosion. One major advantage of our
modeling Ansatz is the fact that the resulting system dynamics is “almost” two-dimensional, in
the sense that the integrable structure close to a canard explosion can be exploited to derive the
return map Π for the induced flow.

We are aware of two specific examples of three time-scale systems which exhibit mixed-mode
dynamics akin to that studied here. One is a compartmental model for the dopaminergic neuron,
first derived by Wilson and Callaway [37] and subsequently analyzed in [23] and [24], which in fact
served as our motivation for formulating the simplified model system considered in this article. The
other example is a model for a chemical reaction, discussed by Moehlis [28]. Although these two
systems are not exactly analogous to the one studied here, they do share many of the underlying
features and can be analyzed in a similar manner; see also the upcoming article [18].

The three time-scale model studied in this article is one realization of a more general canard
mechanism that has been put forward to explain the mixed-mode dynamics often observed in mul-
tiscale dynamical systems [36, 2]. This generalized canard mechanism is defined as a combination
of dynamical (local) passage through a canard point and a (global) return that resets the system
dynamics after the passage has been completed, cf. also Section 1. Other mechanisms that do not
explicitly involve canards have been proposed to explain MMOs; examples include break-up of an
invariant torus [21], loss of stability of a Shilnikov orbit [16], slow passage through Hopf bifurcation
[22], and subcritical Hopf-homoclinic bifurcation [12, 13]. While these other mechanisms are con-
sistent with some of the characteristic features of MMOs, they cannot typically explain all of them,
see [2]. On the other hand, the generalized canard mechanism is consistent with most examples
known to us of systems exhibiting mixed-mode-type behavior [2, 17]. In particular, we note that
both the Shilnikov and the delayed Hopf mechanisms can be realized as an aspect of it. These and
similar questions are the topic of ongoing research, see, e.g., the forthcoming article [3].

An explanation of mixed-mode dynamics based on the Shilnikov mechanism has been suggested
by a number of authors (cf. [16] and the references therein) and is based on the similarities between
the respective bifurcation sequences, as well as on the presence of Shilnikov-type equilibria in
systems that exhibit mixed-mode-type behavior. Roughly speaking, the Shilnikov phenomenon
is the unfolding of a homoclinic orbit to an equilibrium of saddle type with a one-dimensional
stable manifold and a two-dimensional unstable manifold of spiral focus type. Since Shilnikov-type
equilibria are present in canard-based systems that involve a so-called folded saddle-node (of type
II), we propose that the latter systems do realize a “suitably modified” Shilnikov mechanism; cf. [3].
Similarly, a case of slow passage through Hopf bifurcation is seen in the dynamics near a folded
saddle-node (of type II) and plays an important role there. This observation was made already in
[26] and will also be fully elucidated in [3].

Finally, it is important to note that the equations in (1.2) are neither of Shilnikov type nor
of slow-passage-through-Hopf-bifurcation type, though they clearly realize the generalized canard
mechanism. Moreover, due to our assumption that µ+φ = O(1) in (1.2), the mixed-mode dynamics
analyzed in this article is neither of folded-node type nor of folded saddle-node type, cf. Section 1.
More precisely, in a folded-node system, i.e., for µ+ φ = O(1) and negative in (1.2), the dynamics
in the fold region would be strongly contractive and not oscillatory. Furthermore, this dynamics
would be transient, since µ would cause w to increase until the relaxation regime in (1.1) is reached.
The MMO patterns observed in this case would be regular and robust; irregular time series with
two or more successive relaxation cycles would rarely occur upon variation of µ only. In a folded
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saddle-node system with µ small but φ large, on the other hand, one would typically observe slow
passage through a Hopf bifurcation; moreover, the resulting mixed-mode dynamics would again be
fairly regular, in the sense that trajectories would generically consist of one relaxation excursion
followed by a large number of “loops;” the amplitudes of these loops would be relatively small.
This distinction is clearly reflected in the dynamics of (1.5), as predicted analytically in Section 3
and verified numerically below.

Some of our findings on the mixed-mode dynamics of (1.5) are summarized and discussed in
detail in the subsequent paragraphs.

A principal result of our analysis is the accurate reduction of the global return map Π (which is
defined as a two-dimensional map on the Poincaré section ∆−) to a one-dimensional map Φ which
can be studied in a standard, straightforward way.

The first step of this reduction entails the restriction of Π from ∆− to the union of a set of

(one-dimensional) intersecting curves. (These curves, which we have denoted by Cjε , are defined

recursively, with C0
ε ≡ C−ε the flow image of the attracting slow manifold Sa−ε in ∆ and Cjε = Π(Cj−1

ε ),
j ≥ 1.) Most importantly, by Proposition 3.1, this reduction incurs an only exponentially small

error, i.e., the sequence {Cjε} very accurately approximates the attractor of Π.
Then, in a second step, another reduction is performed, which yields a one-dimensional map Φ

that is defined on the curve C−ε . This map again gives an exponentially accurate approximation, this
time for the (k+ 1)th iterate of Π on the kth sector of rotation, RSk. (In other words, Φ restricted
to RSk describes the recurrent dynamics on RSk with an exponentially small error.) Even though
the map Φ is multimodal and possibly discontinuous at the boundaries of RSk, it is one-dimensional
and thus can be analyzed using techniques from one-dimensional discrete dynamics. It is interesting
to note that, conceptually, the reduction to Φ is valid for any finite k, since the return of trajectories
under Π will always eventually be to C−ε . However, given the non-uniformity of our results in k
(Proposition 3.4), one might have to consider higher-order terms (in ε) or, alternatively, take ε
“very small” to describe the asymptotics accurately for “very large” k.

Some authors [23, 27] postulate a reduction to the dynamics of an interval map that would capture
the properties of MMOs in systems of the type of (1.2). The fact that all MMO trajectories must
pass extremely close to Sa−ε is a strong indication that the system dynamics of (1.2) is almost
two-dimensional in nature. Similarly, one might expect that the corresponding return map Π is
almost one-dimensional. However, our results imply that a straightforward reduction of Π to a
one-dimensional map defined on a single interval is not possible, whereas the one-dimensional map
Φ, which is defined on a set of intervals corresponding to the sectors of rotation, approximates
Π with an only exponentially small error. By contrast, in [23], the return is approximated by a
piecewise linear map, with a jump discontinuity corresponding to the strong canard, that admits a
large variety of potential Farey sequences. Our analysis, on the other hand, resolves precisely the
rich bifurcation structure of Φ close to the strong canard of (1.2), allowing us to characterize exactly
which Farey sequences will actually be observed in (1.2), as well as to give accurate estimates of
the relevant parameter intervals. (It is important to note, though, that the analysis in [23] does not
focus primarily on resolving the canard structure in detail; rather, it is concerned with the system
dynamics close to Hopf bifurcation which we do not analyze in detail here.)

The properties of Φ on RSk directly determine those of the corresponding MMO trajectories of
type 1k, i.e., of periodic orbits for (1.5) which pass through the kth sector of rotation. Hence, a
large part of our analysis is devoted to establishing the qualitative and quantitative asymptotics of
the reduced return map Φ. More specifically, our results on the bifurcation structure of Φ as well
as on the Farey sequences Lk0

0 L
k1
1 . . . of the corresponding MMO trajectories include a proof of the

existence and stability of 1k-type orbits (Theorem 3.7), a precise description of the ordering of the
Farey sequences that will “generically” occur for Lj ≡ 1 (Theorem 3.10 and Proposition 3.11), as
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well as a statement on the “improbability” of observing orbits with symbolic sequence {Lkjj } when

Lj ≥ 3 (Corollary 3.12). It is important to note that these restrictions on the dynamics of Φ are
by no means exhaustive; rather, they provide a sample of the types of results that can be proved
using the techniques of Section 3. A more comprehensive analysis, however, is beyond the scope of
this work.

Another important aspect of the generalized canard mechanism is the asymptotic structure of
secondary canards, as well as of the corresponding sectors of rotation. To date, rigorous results
in this direction have only been obtained by Wechselberger [36] for systems of general folded-node
type, via a bifurcation analysis of resonances. To the best of our knowledge, no comparable analysis
has been available so far for other realizations of the generalized canard mechanism. The three
time-scale structure of our problem in combination with the resulting near-integrability, however,
allows us to obtain rather specific results; in particular, it enables us to derive a more or less explicit
asymptotic estimate for the sector size: given the definition of the critical canard value w̄c

0, as well
as of the w̄-value w̄c

k corresponding to the kth secondary canard Γkε , it follows with w =
√
εw̄ that

wc = O(ε) after “blow-down,” as well as that

∆wk :=
√
ε∆w̄k ∼ 2µε

3
2

√
−2 ln ε

is the width of RSk ⊂ C−ε , independent of k to leading order. This estimate confirms the well-
known fact [33, 36] that the canard phenomenon is fairly “robust” in three dimensions, in the sense
that the relevant parameter intervals are relatively large, whereas in two dimensions, they are only
exponentially small [20]: in our case, the width of the relevant w-interval will roughly be O(ε).

Finally, given the above discussion, our partly rigorous and partly heuristic conclusions on the
bifurcation (Farey) structure of the mixed-mode dynamics which will typically be observed in (1.5)
can be summed up as follows:

(i) Symbolic sequences of the form {1k} and {1k1k−1} dominate the stable dynamics; such
sequences correspond to MMO trajectories that visit only one sector of rotation and two
adjacent sectors, respectively; see Figure 17.

(ii) Stable 1k-type orbits are observed in a relatively small parameter range. Consequently, non-
1k orbits (i.e., orbits that are not periodic with Farey sequence {1k}) dominate a significant
portion of the parameter space. Moreover, they occur more frequently with increasing k,
since the 1k-stability intervals decrease in size as k increases; cf. Figures 17 and 18.

(iii) For Lj ≥ 2, segments of the form L
kj
j are not generically observed when kj ≥ 2, except

for the segment 22. The segment L1
j , on the other hand, is possible for any Lj ≥ 1; see

Figure 19.
(iv) As µ increases, the Farey sequences observed in the transition are roughly of the form

. . .→ 1k → 1k1k−1 → 1k−1 → . . .; in particular, all sectors of rotation are “swept through”
until µ > µc, when the dynamics finally enters the relaxation regime (cf. Figures 18 and
20).

(v) The local dynamics depends quite sensitively on the curvature of f(v), i.e., on the coefficient
f2; in particular, 1k-type orbits become increasingly harder to observe with growing f2, see
Figure 21(a).

(vi) The number of sectors visited is also influenced by the strength of the global dynamics, i.e.,
by how far “back” w is reset after relaxation: the smaller the parameter g1 is, the closer
to the strong canard trajectories will return after relaxation, and the smaller the relevant
µ-interval will be; cf. Figure 21(b).

(vii) Since w = O(ε) throughout, see Figure 18(f), the global return point will be O(ε)-close
(in w) to the strong canard. This implies that only the “lower” sectors will typically be
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(a) µ = 0.035.
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(b) µ = 0.04.
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(c) µ = 0.045.
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(d) µ = 0.05.

Figure 17. The time series of v, z, and w in (1.5) for f2 = 1.5, f3 = −1, g1 = 0.5,
and ε = 0.01. As µ increases from (a) 0.035 via (b) 0.04 and (c) 0.045 to (d) 0.05,
one observes a transition from 1716 via 1615 and 1514 to 1413 in the resulting Farey
sequences.

involved in the dynamics, resulting in MMO trajectories with a sub-maximum number of
small oscillations.

(viii) As k increases or, alternatively, as µ decreases, the sectors of rotation decrease in size.
Overall, however, the dynamics seems to become less expanding with higher k, making it
less likely for sequences containing segments of the form 1k1k−`, ` > 1, to occur.

With the exception of the conjecture in (viii), these observations are reflected by our numerical
findings, see Figures 17 to 21 as referred to in the individual items. Figure 17 shows a sample of
regular 1k1k−1-type orbits for k = 4, . . . , 7, while Figure 18 illustrates the transition from 12 to 11

via mixed transitory segments of the form 221211; Figure 19 indicates how Farey sequences with
mixed segments containing 11, 22, and 21, as well as L1

j -type sequences with Lj ≥ 1, can arise;
Figure 20 illustrates the transition from mixed-mode dynamics to the pure relaxation regime at
µ = µc in (1.5); finally, in Figure 21, (a) and (b) exemplify the effects of a change in f2 and g1,
respectively, on the dynamics of (1.5). In each case, the relevant parameter regimes are specified in
detail in the corresponding captions. All numerical simulations were performed in Matlab using
the predefined routine ode23tb with absolute and relative accuracies 10−10 and 10−8, respectively.
For clarity, the results are illustrated starting at t = 6000, after initial transients have subsided.
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(b) µ = 0.0675.
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(c) µ = 0.07.
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(d) µ = 0.0725.
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(e) µ = 0.075.
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(f) µ = 0.0725.

Figure 18. The time series of v, z, and w in (1.5) for f2 = 1.5, f3 = −1, g1 = 0.5,
and ε = 0.01. As µ increases from (a) 0.065 via (b) 0.0675, (c) 0.07, and (d) 0.0725
to (e) 0.075, one observes a transition from 12 to 11 in the resulting Farey sequences,
with transitory sequences which contain mixed segments of the form 1211 as well
as 221211. Panel (f) shows a zoom on the time series of w for µ = 0.0725; clearly,
w = O(ε), in accordance with Assumption 1 (cf. also Section 3.3).
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(a) µ = 0.0775.
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(b) µ = 0.08.
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(c) µ = 0.0825.
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(d) µ = 0.085.
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(e) µ = 0.0875.
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(f) µ = 0.09.

Figure 19. The time series of v, z, and w in (1.5) for f2 = 1.5, f3 = −1, g1 = 0.5,
and ε = 0.01. As µ increases from (a) 0.0775 via (b) 0.08 to (c) 0.0825, one observes
a variety of complex Farey sequences, with segments containing 11, 22, and 21 as well
as repetitions thereof. As µ is increased further to 0.09, one observes a transition
from (c) 1121 via (d) 21 and (e) 2131 to (f) 3141, as predicted analytically in Sec-
tion 3.5.

Appendix A. Some asymptotic results

In this appendix, we summarize a few results on the asymptotics of the rescaled system (2.3), as
well as of its generalization in (2.8). Recall that the equations in (2.3) are given by

v̄′ = −z̄ + f2v̄
2 +
√
εf3v̄

3,(A.1a)

z̄′ = v̄ − w̄,(A.1b)

w̄′ = ε(µ− g1εz̄),(A.1c) 47
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(a) µ = 0.095.

6000 6500 7000 7500 8000 8500 9000 9500 10000
−1

−0.5

0

0.5

1

1.5

t

 

 

v

z

w

(b) µ = 0.0925.

Figure 20. The time series of v, z, and w for µ = 0.095 and µ = 0.0925. Clearly,
the system is in the pure relaxation regime in (a), whereas in (b), one observes
already mixed-mode dynamics, in agreement with the theoretical prediction that
the critical µ-value should be µc ≈ 0.0938, up to an O(ε)-error.
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(a) µ = 0.019, f2 = 2, g1 = 0.5.
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(b) µ = 0.045, f2 = 1.5, g1 = 0.25.

Figure 21. The effects of a change of (a) f2 and (b) g1 on the dynamics of (1.5).
As f2 is increased from 1.5 to 2, the stability interval of 11-type orbits decreases,
since Dµ = 2.25 is replaced by Dµ = 4 and since ∆µ1 ∝ D−1

µ , see Theorem 3.7; as
g1 is decreased from 0.5 to 0.25, the dynamics recurs to lower sectors of rotation,
cf. Figure 17(c).

as well as that they reduce, for ε = 0, to

v̄′ = −z̄ + f2v̄
2,(A.2a)

z̄′ = v̄ − w̄,(A.2b)

w̄′ = 0,(A.2c)

cf. (2.4). For w̄ = 0, the system in (A.2) is integrable. Moreover, given the constant of motion

H(v̄, z̄) =
1

2
e−2f2z̄

(
− v̄2 +

z̄

f2
+

1

2f2
2

)
(A.3)

as defined in (2.5), the orbits of (A.2) correspond in a unique fashion to the level curves of H with
H = h constant, cf. Section 2. More precisely, to any h < h0 = (4f2

2 )−1, we can assign a unique
48



z̄

v̄

γ̄h
0 (0) = (0, ζh)

γ̄h
0 (−Th) = (0, ξh) = γ̄h

0 (T
h)

∆−

γ̄0
0

γ̄h
0

Figure 22. A typical solution of (A.2).

z̄-value z̄h in ∆−. For any such point (0, z̄h, w̄) ∈ ∆−, we denote the corresponding solution to
(A.1) by γ̄hε . Here, we assume the parametrization to be such that γ̄hε (T h−(w̄)) = (0, z̄h, w̄) holds

and that γ̄hε (T h+(w̄)) is the point of first return to ∆−, recall Figure 6.

In the particular case when w̄ = 0, we write T h = T h+(0). Let h > 0 be fixed, and let γ̄h0 denote
the corresponding (periodic) solution of (A.2). For convenience, we denote the z̄-coordinates of the
two points of intersection of γ̄h0 with ∆ by ξh and ζh, respectively; see Figure 22.

Lemma A.1. There holds ζh = 1
2f2

(− lnh) +O(1) and ξh = − 1
2f2

+O(h).

Proof. The assertion follows from (A.3): note that v̄ = 0 in ∆−, and expand z̄
f2

+ 1
2f2

2
= h1

2e2f2z̄

for z̄ large, respectively, for z̄ (asymptotically) constant to obtain the expansions for ζh and ξh,
respectively. �

Given Lemma A.1, we have the following result on the asymptotics of T h:

Lemma A.2. There holds T h =
√

2(− lnh)
1
2 +O(1).

Proof. Given (A.3), we first express v̄ via

v̄ =

√
z̄

f2
+

1

2f2
2

− 2he2f2z̄ =

√
z̄

f2

√
1 +

1

2f2z̄
− 2f2h

e2f2z̄

z̄
(A.4)

and then make use of v̄ = z̄′ = dz̄
dt for w̄ = 0, see (A.4), to obtain

∫ ζh

ξh

dz̄√
z̄
f2

√
1 + 1

2f2z̄
− 2f2h

e2f2z̄

z̄

=

∫ 0

−Th
dt.
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Integrating the left-hand side by parts, we find that

(A.5) T h = 2
√
f2z̄
(

1 +
1

2f2z̄
− 2f2h

e2f2z̄

z̄

)− 1
2

∣∣∣∣ζh
ξh

+

∫ ζh

ξh

√
f2z̄
(

1 +
1

2f2z̄
− 2f2h

e2f2z̄

z̄

)− 3
2
(
− 1

2f2z̄2
− 2f2h

e2f2z̄

z̄2
(2f2z̄ − 1)

)
dz̄.

From Lemma A.1, it follows that the leading-order contribution in the first term on the right-
hand side of (A.5) comes from the evaluation at the upper limit ζh. Moreover, by expanding the
integrand in the second term, one can check that the corresponding integral will contribute only

terms of O(1). Hence, again by Lemma A.1, T h ∼ 2
√
f2ζh ∼

√
2(− lnh)

1
2 . This concludes the

proof. �

Recall the definitions of dh√
ε

and dhw̄ in (2.10) and (2.11), respectively:

dh√ε =

∫ Th

−Th
∇H(γ̄h0 (t)) ·

(
f3v̄

h
0 (t)3, 0

)T
dt,(A.6a)

dhw̄ =

∫ Th

−Th
∇H(γ̄h0 (t)) · (0,−1)T dt.(A.6b)

For a numerical evaluation of the transition map Π : ∆− → ∆− (as defined in Section 2.2), it is
convenient to express dh√

ε
and dhw̄ as follows:

Lemma A.3. Let the integrals I1 and I2 be defined by

I1(h) := 2

∫ ζh

ξh
e−2f2z̄ v̄h0 (z̄) dz̄ and I2(h) := 2

∫ ζh

ξh
e−2f2z̄ v̄h0 (z̄)3 dz̄,

respectively, with ξh and ζh as above. Then, there holds

dhw̄ = −2f2I1(h) and dh√ε = −f3I2(h).(A.7)

Proof. We will verify the assertion for dh√
ε

first: since

∂H

∂v̄
= −v̄e−2f2z̄ and

∂H

∂z̄
= (f2v̄

2 − z̄)e−2f2z̄,

it follows that ∇H · (f3v̄
3, 0)T = −f3v̄

4e−2f2z̄. To replace the t-integration in (A.6a) by an integra-
tion with respect to z̄, we make use of the fact that dz̄

dt = z̄′ = v̄ for w̄ = 0. Then,

dh√ε = −2f3

∫ ζh

ξh
e−2f2z̄ v̄h0 (z̄)3 dz̄,

since (v̄h0 , z̄
h
0 )(−t) = (−v̄h0 , z̄h0 )(t) on γ̄h0 . To evaluate dhw̄, note that the corresponding integrand in

(A.6b) is given by −f2v̄
2 + z̄. Also, it follows from (A.4) that v̄ and z̄ are related via z̄ = −v̄′+f2v̄

2.
The result then follows from an integration by parts, since v̄h0 (ξh) = 0 = v̄h0 (ζh) by definition. �

In general, for h 6= 0, the integrals I1 and I2 cannot be computed analytically but have to be
approximated numerically. However, for h = 0, one can evaluate I1 and I2 exactly by integrating
by parts repeatedly. Recalling the definition of γ̄0

0 in (2.6), one finds, for instance,

I1(0) =
e

4f2
2

∫ ∞
−∞

t2e−
t2

2 dt =
e

4f2
2

(
− te−

t2

2

∣∣∣∞
−∞

+

∫ ∞
−∞

t2e−
t2

2 dt

)
=

e
√

2π

4f2
2

.
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Similarly, one can show I2(0) = 3e
√

2π
16f4

2
, see also [19, 20]. In particular, this implies

d0
w̄ = − 1

2f2

√
2πe < 0 and d0√

ε = − 3f3

16f4
2

√
2πe > 0.

We require the following result on the asymptotics of I2(h) for h small:

Lemma A.4. There holds I2(h) = I2(0)−
√

2
f2
2
h(− lnh)

3
2 +O(h(− lnh)

1
2 ).

Proof. We will prove the assertion by first determining the leading-order behavior of dI2
dh : given

v̄2 = z̄
f2

+ 1
2f2

2
− he2f2z̄, we obtain by implicit differentiation that ∂v̄

∂h = −v̄−1e2f2z̄ and, hence, that

dI2(h)

dh
∼ −6

∫ ζh

ξh
v̄h0 (z̄) dz̄.

As in the proof of Lemma A.1, we now make use of (A.4) and then perform an integration by parts
to find

dI2(h)

dh
= − 4√

f2
(ζh)

3
2 +O

(
(ζh)

1
2
)

= −
√

2

f2
2

(− lnh)
3
2 +O

(
(− lnh)

1
2
)
.(A.8)

The assertion follows by integrating (A.8) with respect to h, to leading order. �

Given Lemma A.4, one can write

dh√ε = d0√
ε +R(h) = d0√

ε + hR̃(h),(A.9)

where R(h) denotes the corresponding remainder term and R̃(h) = −f3
dI2
dh is the first-order coef-

ficient in the Taylor expansion of dh√
ε

about h = 0. Note that the leading-order asymptotics of dhw̄
can be obtained in a similar manner.

Finally, recall the generalized system of equations from (2.8), as well as the definition of the
corresponding return map in (3.16),

Π(h, w̄) =

(
PhΠ0(h, w̄) + εµK(h) +O(ε2)

w̄ + 2εµT h +O(ε2)

)
,

where Π0 denotes the return map for (3.14) and K is defined via

K(h) =

∫ Th

−Th
∇H(γ̄h0 (t)) · (G(0, 0),−1)T (t+ T h) dt.

An estimate for K is derived as follows:

Lemma A.5. There holds

K(h) = 2d0
w̄T

h +O(1).(A.10)

Proof. Recall that, by definition, we have∫ Th

−Th
∇H(γ̄h0 (t)) · (G(0, 0),−1)T dt =

∫ Th

−Th
∇H(γ̄h0 (t)) · (0,−1)T dt = dhw̄,

see (A.6b) and the proof of Proposition 2.2. It follows that

K(h) = dhw̄T
h +

∫ Th

−Th
∇H(γ̄h0 (t)) · (G(0, 0),−1)T tdt.
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To estimate the above integral, note that

(A.11)

∫ Th

−Th
∇H(γ̄h0 (t)) · (G(0, 0),−1)T t dt = −G(0, 0)

∫ Th

−Th
v̄h0 (t)e−2f2z̄h0 (t)t dt

−
∫ Th

−Th

(
f2v̄

h
0 (t)2 − z̄h0 (t)

)
e−2f2z̄h0 (t)t dt.

Since the integrand in the second integral on the right-hand side of (A.11) is odd in t, that integral
vanishes. Hence, it remains to estimate the first integral: using integration by parts, we obtain∫ Th

−Th
v̄h0 (t)e−2f2z̄h0 (t)t dt = T h

∫ Th

−Th
v̄h0 (t)e−2f2z̄h0 (t) dt−

∫ Th

−Th

∫ t

−Th
v̄h0 (s)e−2f2z̄h0 (s) ds dt.(A.12)

The first integral on the right-hand side of (A.12) is again zero, since the corresponding integrand
is odd in t. Next, we recall that (v̄h0 , z̄

h
0 )(t) is a solution of (A.2) for w̄ = 0 and, hence, that

v̄h0 (s)e−2f2z̄h0 (s) = − 1

2f2

d

ds

(
e−2f2z̄h0 (s)

)
.

Consequently, ∫ t

−Th
v̄h0 (s)e−2f2z̄h0 (s) ds = − 1

2f2

(
e−2f2z̄h0 (t) − e−2f2ξh

)
,

where ξh = z̄h0 (±T h), as before. Now, since∫ Th

−Th
e−2f2z̄h0 (t) dt

is bounded, i.e., O(1), we conclude that∫ Th

−Th
v̄h0 (t)e−2f2z̄h0 (t)t dt ∼ 1

f2
T he−2f2ξh ,

and it remains only to estimate G(0, 0): indeed, by (2.36) and (2.37), there holds

G(0, 0) = −dz̄
h+(w̄,ε)

dw̄
(0, 0).

Recalling that the relationship between z̄h and h is given implicitly by

1

2f2
e−2f2z̄h

(
z̄h +

1

2

)
= h,

cf. (A.3), we find from an implicit differentiation that

dz̄h

dh
= 2f2e2f2z̄h +O(h).

Since ξh = z̄h, (2.35) shows that

dh+(w̄,
√
ε)

dw̄
(0, 0) = d+

w̄ = −1

2
d0
w̄

and, hence, that G(0, 0) = d0
w̄f2e2f2ξh . The result follows. �
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