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Abstract. We study a singularly perturbed model for a cyclic adenosine monophosphate
(cAMP) signalling system that controls aggregation of the amoeboid microorganism Dictyoste-
lium discoideum. The model, which is based on a classical model due to Martiel and Gold-
beter [16], takes the form of a planar system of ordinary differential equations with two singular
perturbation parameters which manifest very differently: while one parameter encodes the sep-
aration of scales between the slow and fast variables, the other induces a non-uniformity in the
corresponding vector field in the singular limit. We apply geometric singular perturbation the-
ory and the desingularisation technique known as “blow-up” to construct a family of attracting,
periodic (relaxation-type) orbits; in the process, we elucidate the novel singular structure of
the model, and we describe in detail the resulting oscillatory dynamics.

1. Introduction

In the present article, we perform a geometric analysis of a singularly perturbed model for
a cyclic adenosine monophosphate (cAMP) signalling system that controls aggregation of the
amoeboid microorganism Dictyostelium discoideum. The periodic synthesis of pulses of cAMP
constitutes an example of a biochemical oscillation of clear physiological significance [8]. Two
main types of dynamics are observed in cAMP signalling systems: autonomous oscillation [5,7,8]
and relay of super-threshold pulses [19, 22]. The model of cAMP signalling due to Goldbeter
and Segel [9,10] shows that both types are caused by the auto-catalytic regulation of adenylate
cyclase, the latter enzyme being activated on the binding of extracellular cAMP to the cell
receptor [6, 18]. Moreover, relay behaviour has been linked to autonomous oscillation, which
represents the excitability of the system. In the model by Goldbeter and Segel, the substrate
adenosine triphosphate (ATP) plays a role in the oscillation and relay response; however, it has
been shown experimentally that intracellular ATP remains constant during the oscillation [20],
and that the relay results from the absence of ATP consumption when the cAMP receptor is
uncoupled from adenylate cyclase upon incubation with caffeine [24]. These observations were
made under the assumption that adenylate cyclase is an allosteric enzyme; moreover, significant
variation is required in the concentration of ATP. Martiel and Goldbeter [16] considered another
situation, whereby the mechanism is based on desensitisation of the cAMP receptor to extra-
cellular cAMP. The full model proposed in [16], which consists of seven differential equations,
can be reduced to the three-variable system

dρT
dt

“ ´f1pγqρT ´ f2pγqp1´ ρT q,(1a)

dβ

dt
“ qσφpρT , γq ´ pki ` ktqβ,(1b)

dγ

dt
“
kt
h
β ´ keγ,(1c)
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with

f1pγq “
k1 ` k2γ

1` γ
, f2pγq “

k1L1 ` k2L2γ

1` cγ
,(2a)

φpρT , γq “
αpλθ ` εY 2q

1` αθ ` εY 2p1` αq
, and Y “

ρTγ

1` γ
.(2b)

Here, ρT represents the total fraction of receptor in the active state, while β and γ denote
intracellular and extracellular concentrations, respectively, of cAMP. Moreover, c, α, λ, θ, ε, σ,
h, ki, kt, ke, kj , Lj (j “ 1, 2), and q are suitably defined parameters; details can be found in [16].
Equation (1) can be reduced further to a two-variable system for sufficiently large values of the
parameters q, ki, and kt, which allows for a quasi-steady-state assumption to be made for β:

Equation (1b) implies β “ qσ φpρT ,γq
pki`ktq

. Therefore, the effective dynamics is then characterised by

the following planar system of nonlinear ordinary differential equations (ODEs),

dρT
dt

“ ´f1pγqρT ´ f2pγqp1´ ρT q,(3a)

dγ

dt
“

qσkt
hpki ` ktq

φpρT , γq ´ keγ.(3b)

While experiments [16] indicate that q " 1, whereas ki and kt are of the order Op1q, and hence
lower than what is expected for a quasi-steady-state assumption, numerical simulation shows
that the planar system in (3) provides a reasonably good approximation for the three-variable
system in (1). Therefore, (3) can be considered as the core mechanism in the cAMP signalling
system, allowing for a phase plane analysis of relay and oscillation due to the simplicity of the
governing equations.

With these observations in mind, we now introduce the singular perturbation problem con-
sidered in the present article, which is based on the three-variable Martiel-Goldbeter model,
Equation (1), in the scaling of Liţcanu and Velázquez [15]:

Rτ “ κpU ` PεqµpU ` εq ´ pU ` dεqR
pU ` ε

c qpU ` εq
,(4a)

Wτ “
bεpU ` εq2 `ΘR2U2

pU ` εq2 ` ΛR2U2
´W,(4b)

Uτ “ ΓpW ´ Uq.(4c)

The state variables, which are now denoted by R, W , and U , correspond to the total proportion
of receptors in the active state ρT , the concentration of intracellular cAMP β, and the con-
centration of extracellular cAMP γ, respectively; the model parameters are defined in Table 1,
with τ “ pki ` ktqt.

Imposing a quasi-steady-state assumption, as was done for (1) above, we find W “ U , thus
reducing the model to the two-variable system

Rτ “ κpU ` PεqµpU ` εq ´ pU ` dεqR
pU ` ε

c qpU ` εq
,(5a)

Uτ “
bεpU ` εq2 `ΘR2U2

pU ` εq2 ` ΛR2U2
´ U.(5b)

Given the definition of the parameters κ and ε in [15], which are both assumed to be small, (5) is
singularly perturbed (“slow-fast”). Here, we emphasise that the impact of these two parameters
on the dynamics of (5) manifests very differently: while the parameter κ is a “conventional”
singular perturbation parameter that reflects the separation of scales between the slow variable
R and the fast variable U , the parameter ε induces a different type of singular perturbation
which is reflected by the non-uniformity of the limit as εÑ 0 in Equation (5); specifically, that
limit will depend fundamentally on whether U " ε or U “ Opεq therein. Correspondingly, the
limit as κÑ 0 in Equation (5) can be studied using Fenichel’s geometric singular perturbation
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theory [4], while the structure of the resulting asymptotics in ε can be resolved rigorously via
the blow-up technique [3]. In particular, geometric singular perturbation theory implies that
normally hyperbolic portions of the so-called critical manifold, which is obtained for κ “ 0 in
(5), persist for κ positive and sufficiently small. However, since the geometry of that critical
manifold degenerates in the limit as εÑ 0, a blow-up analysis in ε is performed to remove that
degeneracy.

While our article is self-contained, we expect some familiarity on the part of the reader with
geometric singular perturbation theory and the blow-up technique; see again [3, 11, 12, 14] for
details. For an introduction in the context of the present family of problems, the reader is
referred to Appendix A of [13].

Remark 1. Since Equation (4c) can be written as 1
ΓUτ “ pW ´ Uq, and since B

BU pW ´ Uq “
´1, the above quasi-steady-state assumption can be interpreted geometrically [4] as a global
reduction to the critical manifold tW “ Uu, with singular perturbation parameter Γ´1. For the
value of Γ given in Table 1, that reduction is not justified, strictly speaking; however, we follow
the biologically motivated reasoning in [9] here.

Our analysis of Equation (5) has some similarities to the study of the Goldbeter-Lefever
model [21] in [13]; there, the critical manifold was found to consist of two non-hyperbolic lines
and one normally hyperbolic line. The blow-up technique was then applied to achieve a complete
desingularisation of the flow near that manifold, whereby the non-hyperbolic lines were blown up
to intersecting cylinders, allowing the authors to prove the occurrence of relaxation oscillation
in the system.

While Equation (5) shares some characteristics of the Goldbeter-Lefever model studied in [13],
it is slightly more degenerate: as will turn out, the critical manifold here is the union of one
non-hyperbolic line in the “inner” region and one normally hyperbolic curve in the “outer”
region, which meet in a degenerate steady state at the origin. Moreover, the U -variable has
to be scaled with the singular parameter ε due to the presence of the term pU ` εq2 ` ΛR2U2

in (5b), as ε cannot be eliminated by a simple change of coordinates, which represents the
major conceptual difference to the model considered in [13]. Therefore, the resulting singularly
perturbed structure is novel; our resolution of that structure, and in particular of the highly
degenerate flow near the origin in pR,U, εq-space, results in improved understanding of the
oscillatory dynamics that is observed in the reformulated singular perturbation problem of
cAMP signalling, Equation (5).

In accordance with the numerical values given in Table 1, we rescale the parameters µ “ µ̃ε
1
2 ,

d “ d̃ε
1
2 , and b “ b̃ε in (5). These scalings broadly agree with assumptions made in [15], where

it was postulated that µ „ d, µ » ε, and b ! 1; however, we rescale µ and d with ε
1
2 instead

of with ε here, which is consistent with the basic geometry of oscillation found in [16] for the
three-dimensional system, Equation (1). Moreover, we rewrite the resulting equations in the
equivalent form

R1 “ κpU ` PεqpU ` εq
2 ` ΛR2U2

pU ` εqpU ` ε
c q

“

µ̃ε
1
2 pU ` εq ´

`

U ` d̃ε
3
2

˘

R
‰

,(6a)

U 1 “ b̃ε2pU ` εq2 `ΘR2U2 ´ U
“

pU ` εq2 ` ΛR2U2
‰

,(6b)

which is obtained by formally multiplying the right-hand sides in (5) with a (polynomial) factor
of pU ` εq2 ` ΛR2U2. (Since that factor is non-negative, the corresponding transformation of
time does not change the direction of the flow.) Here, the prime now denotes differentiation
with respect to the new, rescaled time.

Remark 2. The apparent singularity of Equation (6) at pU, εq “ p0, 0q will be resolved by
blow-up; in fact, the right-hand side in (6a) vanishes to at least second order in pU, εq, which
implies C2-smoothness of the corresponding vector field in both U and ε.

The following is the main result of our analysis:
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Table 1. Definition and numerical values, with orders of magnitude, of the
parameters in (59); cf. [15], where the quantities in the second column are defined.

Parameter Definition Order of magnitude Numerical value

κ k2p1`L2q

ki`kt
! 1 0.0023

µ m`d
m`1 ! 1 „ d 0.1274

ε M´1 ! 1 0.1258

d 1`L1
c`L1

! 1 0.1

b αqσkt
pki`ktqh

λθ
1`αθ ! 1 0.01587

Γ ke
ki`kt

» 1 2.1052

Λ pAµ2q´1 » 1 0.2966
Θ ΛBε » 1 or " 1 1.5087
c " 1 100

P k1
k2

" 1 100

Theorem 1. Let ε P p0, ε0s, with ε0 positive and sufficiently small. Then, there exists κ0 “

κ0pε0q such that, for κ P p0, κ0s, Equation (6) admits a unique family of attracting periodic
orbits Γκε which tends to a singular cycle Γ0ε as κ Ñ 0 uniformly for ε P p0, ε0s, and to a
singular cycle Γ00 as pκ, εq Ñ p0, 0q.

Remark 3. We emphasise that Γ0ε and Γ00 are defined implicitly, i.e., via Γκε, in the statement
of Theorem 1; an explicit definition will be provided through the following analysis.

A visualisation of the assertions made in Theorem 1 can be found in Figure 1, where the
nullclines of Equation (6) are sketched in addition to the singular cycles Γ00 and Γ0ε, as well as
a sample periodic orbit Γκε which was obtained numerically. Here, the values of the relevant
parameters are as specified in Table 1, with the exception of κp“ 0.00023), µp“ 0.13q, and
dp“ 0.071q; the latter two are chosen such that the unique equilibrium in the system is shifted
to the middle branch of the U -nullcline, thus allowing for excitability and, hence, oscillatory
dynamics.
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Figure 1. Nullclines and periodic orbits for Equation (6), with parameter val-
ues as in Table 1: R-nullcline (solid black); U -nullcline (dash-dotted black); sin-
gular cycle Γ00 (solid blue; solid green); singular cycle Γ0ε (dashed red); periodic
orbit Γκε (solid purple); equilibrium (inset).

In the remainder of the article, we will prove Theorem 1 by constructing a family of periodic
(relaxation-type) cycles for Equation (6); as is common in singular perturbation theory, we will
first identify a singular orbit when κ “ 0 “ ε. Subsequently, we will show the persistence of
that orbit for κ and ε positive, but small. Our analysis follows that of Kosiuk and Szmolyan [13]
in spirit, subject to the appropriate modifications due to differences in the singular structure
of (6); in particular, our focus is on the resulting asymptotics in ε, which is discussed in detail,
whereas the relatively standard perturbation analysis with respect to κ is treated in a more
cursory fashion.

2. Singular dynamics

As Equation (6) for ε ą 0 represents a slow-fast system in standard form, with singular
perturbation parameter κ, we rewrite the corresponding flow on the slow time-scale to obtain
the equivalent formulation

9R “ pU ` PεqpU ` εq
2 ` ΛR2U2

pU ` εqpU ` ε
c q

“

µ̃ε
1
2 pU ` εq ´

`

U ` d̃ε
3
2

˘

R
‰

,(7a)

κ 9U “ b̃ε2pU ` εq2 `ΘR2U2 ´ U
“

pU ` εq2 ` ΛR2U2
‰

.(7b)

In our analysis, we hence first consider the singular limit of κ “ 0 in Equations (6) and (7).
The small-ε dynamics in that limit will be studied separately in different scaling regimes Rj

pj “ 1, 2, 3q, which are defined in Section 3 below.
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2.1. Slow-fast analysis for κ “ 0 and ε ą 0. Setting κ “ 0 in Equations (6) and (7) for
fixed, positive ε defines two limiting systems, the “layer problem”

R1 “ 0,(8a)

U 1 “ b̃ε2pU ` εq2 `ΘR2U2 ´ U
“

pU ` εq2 ` ΛR2U2
‰

(8b)

and the “reduced problem”

9R “ pU ` PεqpU ` εq
2 ` ΛR2U2

pU ` εqpU ` ε
c q

“

µ̃ε
1
2 pU ` εq ´

`

U ` d̃ε
3
2

˘

R
‰

,(9a)

0 “ b̃ε2pU ` εq2 `ΘR2U2 ´ U
“

pU ` εq2 ` ΛR2U2
‰

.(9b)

The critical manifold S0ε, which is defined by (9b), is precisely the U -nullcline in Equation (6).
The manifold S0ε is S-shaped; linearisation of the layer problem, Equation (8), about S0ε shows

that B
BU

 

b̃ε2pU ` εq2 `ΘR2U2 ´ U
“

pU ` εq2 ` ΛR2U2
‰(

has zeroes at UA0ε “ 2b̃ε2 `Opε3q and

UC0ε “ ε`Opε2q. Hence, S0ε consists of three branches, which are separated by two fold points

at A0ε :
`

RA0ε, U
A
0ε

˘

and C0ε :
`

RC0ε, U
C
0ε

˘

, with RA0ε “
1

2
?

Θb̃
`Opεq and RC0ε “

2?
Θ
ε

1
2 `Opεq; the

left branch Sa´0ε and the right branch Sa`0ε are attracting under the layer flow of Equation (6),
while the middle branch Sr0ε is repelling.

Remark 4. For ε non-small in the statement of Theorem 1, Equation (6) admits standard
relaxation-type cycles [17] for κ P p0, κ0s sufficiently small, with κ0 “ κ0pεq, as long as the
critical manifold S0ε remains S-shaped; in fact, for the parameter values given in Table 1, that
is the case for ε up to the order of 10. However, our focus here is on ε small, due to the
degenerate singular structure of S0ε as εÑ 0; see Section 2.2 below.

We denote the unique equilibrium of (6), which is found in the intersection of the R-nullcline
with S0ε, by E0ε; see Figure 2. (Due to our assumptions on the parameters µ, d, and Θ, E0ε is,
in fact, located on the middle branch Sr0ε of S0ε.) Analysis of the reduced flow on S0ε shows that
R increases below the point A0ε on Sa´0ε , while it decreases on Sa`0ε . (The direction of the flow on

Sr0ε, as indicated in Figure 2, is determined by the sign of the term
“

µ̃ε
1
2 pU ` εq ´

`

U ` d̃ε
3
2

˘

R
‰

in (9a).) Hence, we obtain the following standard singular relaxation-type dynamics for κ “ 0
and fixed, positive ε: orbits starting on Sa´0ε jump at the fold point A0ε and reach a point D0ε

on Sa`0ε along the 1-dimensional stable manifold thereof; they then follow the reduced dynamics
on Sa`0ε until they reach the fold point at C0ε, from where they jump back to a point B0ε on
Sa´0ε along the 1-dimensional stable manifold thereof; finally, they follow the reduced dynamics
on Sa´0ε until they reach A0ε, at which point the above oscillation repeats. Correspondingly, we
define the singular cycle Γ0ε, which consists of the heteroclinic orbit ΓAD0ε connecting A0ε to D0ε

under the layer flow of (8), the segment ΓDC0ε of Sa`0ε from D0ε to C0ε, the heteroclinic orbit
ΓCB0ε connecting C0ε to B0ε under the layer flow, and the segment ΓBA0ε of Sa´0ε between B0ε and
A0ε; cf. again Figure 2.

Remark 5. Here and in the following, reduced dynamics is depicted in blue, while the corre-
sponding layer flow is shown in green; double arrows indicate hyperbolicity, while non-hyperbolic
dynamics is indicated with single arrows.
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Figure 2. Reduced flow on the critical manifold S0ε (solid blue), layer dynamics
(solid green), singular cycle Γ0ε (solid blue; solid green), and equilibrium E0ε

(inset) for Equation (8), with parameter values as in Table 1.

It follows from [14, Theorem 2.3] that Γ0ε persists, for ε positive and fixed and κ sufficiently
small, as an attracting relaxation-type cycle of Equation (6). However, as (6) constitutes a
two-parameter singular perturbation problem, we are interested in the double limit as κ and ε
tend to zero simultaneously.

2.2. Slow-fast analysis for κ “ 0 “ ε. As will turn out, the limit as pκ, εq Ñ p0, 0q in
Equation (6) is significantly more singular than the limit of κ Ñ 0 with ε fixed, as considered
in the previous subsection.

For pκ, εq “ p0, 0q, (6) yields the seemingly simple layer problem

R1 “ 0,(10a)

U 1 “ ΘR2U2 ´ UpU2 ` ΛR2U2q,(10b)

which corresponds precisely to the system that is obtained from (8) for ε “ 0. Equation (10)
admits two sets of equilibria; one of these satisfies U “ 0, while the other is defined by ΘR2 ´

pU ` ΛR2Uq “ 0. Hence, the critical manifold S00 for (10) consists of the curves Sr00 “
 

pR, 0q
ˇ

ˇR ą 0
(

and Sa`
00 “

 

pR,Uq
ˇ

ˇR ą 0, U “ ΘR2

1`ΛR2

(

, which meet in the origin Q. (Clearly,

S00 coincides with the critical manifold S0ε when ε “ 0.) Linearisation of Equation (10) about
S00 shows that the curve Sa`

00 is normally hyperbolic, while Sr00 – the R-axis – and the point Q
are non-hyperbolic; see Figure 3 for an illustration.
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Figure 3. Reduced flow on the critical manifold S00 (solid blue), layer dynamics
(solid green), and non-hyperbolic origin Q (red dot) for Equation (10).

In particular, it follows that, for U and R bounded away from zero, the critical manifold
Sa`

0ε introduced in the previous subsection is a regular perturbation (in ε) of the manifold Sa`
00

defined above. Hence, standard theory [4] can be applied to show the persistence of Sa`
00 for κ

and ε positive and small in that case:

Proposition 1. Let ε P r0, ε0s be fixed, and let κ P r0, κ0s, with ε0 and κ0 positive and sufficiently
small. Moreover, let U P rα, ᾱs and R P rβ, β̄s, where α and β are positive and small, but

independent of pκ, εq, and ᾱ and β̄ are assumed to be Op1q. Then, the following statements
hold:

1. For κ “ 0, Equation (8) admits the critical manifold

Sa`0ε “
 

pR,Uq
ˇ

ˇR P rβ, β̄s, U “ Φ0εpRq
(

;(11)

here, the function Φ0ε satisfies

Φ0εpRq “
ΘR2

1` ΛR2
`

b̃

1` ΛR2
ε2 `Opε3q.

2. The manifold Sa`0ε is normally attracting, with a single negative eigenvalue ´ Θ2R4

1`ΛR2 .

3. The reduced flow on Sa`0ε is given by

9R “ ´
Θ2R5

1` ΛR2
`

Θ2R4µ̃

1` ΛR2

?
ε`Opεq,

which implies, in particular, 9R ă 0 for ε sufficiently small.
4. For κ positive and small, the manifold Sa`0ε perturbs to a manifold

Sa`κε “
 

pR,Uq
ˇ

ˇR P rβ, β̄s, U “ ΦκεpRq
(

,(12)

where Φκε “ Φ0ε `Opκq is regular in pκ, εq to any order therein.
8



Remark 6. Comparison of Figures 2 and 3 shows that the manifolds Sa´0ε and Sr0ε merge into
Sr00 in the limit as εÑ 0; correspondingly, the points B0ε and C0ε coalesce into the origin Q in
that limit.

3. Scaling regimes

The discussion in Section 2 indicates that, for ε “ 0, essential portions of the sought-after
relaxation cycle Γκε for Equation (6) are “hidden” in the non-hyperbolic line Sr00 and the point
Q; specifically, it is intuitively clear that Sa´0ε and Sr0ε merge into Sr00 in that limit, while the
fold point C0ε converges to the origin Q. Appropriate rescalings of R and U are required in
order to make these aspects of the dynamics visible in different scaling regimes. These regimes
are denoted by Rj (j “ 1, 2, 3), and are defined as follows:

(1) Regime R1: U “ Opε2q, R “ Op1q;
(2) Regime R2: U “ Opεq, R “ Opε

1
2 q;

(3) Regime R3: U “ Op1q, R “ Op1q.
In particular, the “inner” and “outer” regions, which are mentioned in the Introduction, are
covered by regimes Rj (j “ 1, 2) and regime R3, respectively; see Figure 4.

0

0

Figure 4. The scaling regimes R1, R2, and R3 for Equation (6).

The above scalings in U then also imply the corresponding scalings of R, and can be substan-
tiated via the method of Newton polygons [2], which shows in particular that the parameter
b must be of the order Opεq, as assumed above. Finally, the scalings in regimes R1 and R2

are consistent with the ε-dependence of the two fold points of Equation (6) at A0ε and C0ε,
respectively – or, rather, of the pR,Uq-coordinates thereof.

In this section, we will discuss the geometry in the three regimes Rj (j “ 1, 2, 3) in turn to
motivate how the “full” singular dynamics of Equation (6) can be desingularised to allow for
a description of the resulting, global oscillation. Our discussion will be made fully rigorous in
subsequent sections, where a desingularisation will be achieved via the blow-up technique. In
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particular, as the three regimes introduced above do not overlap, it is not a priori evident how
to match them; here, we will show that matching can be accomplished in various coordinate
charts – so-called “phase-directional charts” – after blow-up, as was also done in [13]. (We
emphasise that these charts are not covered by the scaling regimes themselves, which correspond
to “rescaling charts” in the blow-up, but that they arise naturally in our blow-up analysis.)

3.1. Regime R1: U “ Opε2q, R “ Op1q. Regime R1 covers a neighbourhood of the R-axis
that is, however, bounded away from the origin Q. Correspondingly, we introduce the scaling

R “ R1 and U “ ε2U1(13)

in that regime. For the sake of definiteness, we assume that U1 P r0, ᾱ1s and R1 P rβ1, β̄1s,

where ᾱ1 is assumed to be large, β1 is small, and β̄1 is Op1q, corresponding to our assumption

that the original variables U and R satisfy U “ Opε2q and R “ Op1q; see Figure 5.
After dividing out the factor ε2, we obtain the following system of equations from Equation

(6):

R11 “ κε
1
2 pεU1 ` PqpεU1 ` 1q2 ` ΛR2

1ε
2U2

1

pεU1 ` 1qpεU1 `
1
c q

“

µ̃pεU1 ` 1q ´
`

ε
1
2U1 ` d̃

˘

R1

‰

,(14a)

U 11 “ b̃pεU1 ` 1q2 `ΘR2
1U

2
1 ´ U1

“

pεU1 ` 1q2 ` ΛR2
1ε

2U2
1

‰

,(14b)

which represents a slow-fast system in standard form for κ small.
When κ “ 0, Equation (14) yields the layer problem

R11 “ 0,(15a)

U 11 “ b̃pεU1 ` 1q2 `ΘR2
1U

2
1 ´ U1

“

pεU1 ` 1q2 ` ΛR2
1ε

2U2
1

‰

;(15b)

considering the limit of ε “ 0 in (15), we obtain

R11 “ 0,(16a)

U 11 “ b̃`ΘR2
1U

2
1 ´ U1.(16b)

The critical manifold for Equation (16) is defined by b̃ ` ΘR2
1U

2
1 ´ U1 “ 0; we denote that

manifold as S001 . The manifold S001 consists of a left attracting branch Sa´001
, where U1 ă 2b̃,

and a right repelling branch Sr001
with U1 ą 2b̃; these two branches are separated by a fold

point at A001 :
´

1

2
?

Θb̃
, 2b̃

¯

. The branch Sr001
is asymptotic to the U1-axis as U1 Ñ 8, while

the branch Sa´001
intersects the U1-axis in the point B001 : p0, b̃q. Orbits starting close to the

U1-axis are rapidly attracted to Sa´001
; they then follow the reduced dynamics until they reach

the fold point A001 , where they jump in the positive U1-direction along an orbit of the layer
problem, Equation (15). The geometry in regime R1 is summarised in Figure 5; for details on
the passage past a singularly perturbed planar fold, the reader is referred to [14], as well as to
the summary in Appendix A of [13]. In particular, standard theory [4] implies that Sa´001

and
Sr001

will persist as slow manifolds away from A001 , for κ positive and small.

Remark 7. We note that the steady state E0ε is not visible in regime R1: given our choice of

µ and d, with µ̃

d̃
ą 1

2
?

Θb̃
, the equation tb̃`ΘR2

1U
2
1 ´ U1 “ 0u

ˇ

ˇ

tR1“
µ̃

d̃
u

admits no real solutions

for U1; the underlying reason is the scaling of the U -coordinate of E0ε , which is identified in
regime R2 in the subsequent subsection. In particular, it follows that the reduced flow in the
R1-variable is directed upwards to A001 on S001 .
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Figure 5. Reduced flow on the critical manifold S001 (solid blue) and layer
dynamics (solid green) in regime R1.

Remark 8. The critical manifold S001 corresponds to appropriately specified portions of Sa´0ε
and Sr0ε, as defined in Section 2.1, in the limit as εÑ 0, while the fold point A001 corresponds
to A0ε in that limit. (Here, we note that S001 perturbs in a regular fashion for ε positive and
small.) In some sense, to be specified later, the point C0ε is retrieved for U1 Ñ 8 on Sr0ε1 in
the limit of ε “ 0.

3.2. Regime R2: U “ Opεq, R “ Opε
1
2 q. Regime R2 covers a neighbourhood of the origin Q;

recall Figure 4. We introduce the scaling

R “ ε
1
2R2 and U “ εU2;(17)

here, we assume that U2 P r0, ᾱ2s and R2 P r0, β̄2s, where ᾱ2 and β̄2 are large, corresponding

to our assumption that the original variables U and R satisfy U “ Opεq and R “ Opε
1
2 q,

respectively.
After division through a factor of ε2, Equation (6) becomes

R12 “ κpU2 ` PqpU2 ` 1q2 ` ΛεR2
2U

2
2

pU2 ` 1qpU2 `
1
c q

“

µ̃pU2 ` 1q ´
`

U2 ` d̃ε
1
2

˘

R2

‰

,(18a)

U 12 “ b̃εpU2 ` 1q2 `ΘR2
2U

2
2 ´ U2

“

pU2 ` 1q2 ` ΛεR2
2U

2
2

‰

,(18b)

which again represents a slow-fast system for κ small.
The layer problem obtained for κ “ 0 now reads

R12 “ 0,(19a)

U 12 “ b̃εpU2 ` 1q2 `ΘR2
2U

2
2 ´ U2

“

pU2 ` 1q2 ` ΛεR2
2U

2
2

‰

;(19b)

11



setting ε “ 0 in (19), we find the simplified system

R12 “ 0,(20a)

U 12 “ ΘR2
2U

2
2 ´ U2pU2 ` 1q2.(20b)

The corresponding critical manifold, which is denoted as S002 , is defined by ΘR2
2U

2
2 ´ U2pU2 `

1q2 “ 0. The manifold S002 consists of a left attracting branch Sa´002
, corresponding to tU2 “ 0u,

a middle repelling branch Sr002
, with 0 ă U2 ă 1, and a right attracting branch Sa`002

, where

U2 ą 1. The branches Sr002
and Sa`002

are separated by a fold point at C002 :
`

2?
Θ
, 1
˘

. Orbits

follow the slow flow on the branch Sa`002
until they reach C002 , where they jump to a point B002

on Sa´002
and then follow the slow flow on Sa´002

; see Figure 6 for an illustration. We note that the
fold point A0ε – and, hence, the fast jump to D0ε – is not visible in this regime. Finally, by our
assumptions on the parameters µ and Θ, the steady state at E002 :

`

Θµ̃2, µ̃ ` 1
Θµ̃

˘

is located

on the middle repelling branch Sr002
. (That state is found in the intersection of S002 with the

R2-nullcline
 

R2 “
µ̃pU2`1q

U2

(

.) Again, geometric singular perturbation theory [4] implies the

persistence of Sa´002
, Sr002

, and Sa`002
for κ positive and small, uniformly in ε, away from the fold

point C002 , while standard results on passage past a singularly perturbed planar fold [14] apply
at C002 .

0
0

Figure 6. Reduced flow on the critical manifold S002 (solid blue), layer dynam-
ics (solid green), and equilibrium E002 in regime R2.

Remark 9. Figure 2 seems to be in contradiction with Figures 5 and 6, as it indicates that E0ε

is located near the fold point A0ε, rather than close to C0ε. However, that seeming discrepancy
is due to the fixed, relatively large, value of ε “ 0.12 in Figure 2, recall Table 1, whereas
Figures 5 and 6 illustrate the singular limit of ε “ 0.

Remark 10. The critical manifold S002 corresponds to appropriately specified portions of Sa´0ε ,
Sr0ε, and Sa`0ε , as defined in Section 2.1, in the limit as εÑ 0. In particular, the fold point C002

12



corresponds to C0ε in that limit, while the point B002 is equivalent to B0ε. The jump point at
D0ε corresponds to the limit as U2 Ñ 8 on Sa`002

, while the fold point A0ε is found in the limit

as R2 Ñ8 on Sa´002
.

3.3. Regime R3: U “ Op1q, R “ Op1q. In regime R3, Equation (6) depends on ε in a regular
fashion. We consider U3 P rα3, ᾱ3s and R3 P rβ3, β̄3s here, where α3 and β3 are positive and

small and ᾱ3 and β̄3 are assumed to be Op1q, corresponding to our assumption that the original
variables U and R are Op1q in the “outer” region. For κ “ 0 in (6), we obtain the layer problem
given in (15), while the limit of ε “ 0 yields the singular layer problem

R13 “ 0,(21a)

U 13 “ ΘR2
3U

2
3 ´ U

3
3 p1` ΛR2

3q.(21b)

The critical manifold for Equation (21), which we denote as Sa`003
, is defined by ΘR2

3 ´ U3p1 `

ΛR2
3q “ 0, and is normally attracting. Since the reduced flow on Sa`003

for ε “ 0 reads

9R3 “ ´U
2
3R3p1` ΛR2

3q,(22)

R3 is decreasing on Sa`003
; see Figure 7.

0

0

Figure 7. Reduced flow on the critical manifold Sa`003
(solid blue) and layer

dynamics (solid green) in regime R3.

For ε ą 0, the curve Sa`003
perturbs in a regular fashion to the analogue, in regime R3, of

the family of saddle-type critical manifolds that was denoted by Sa`0ε in Section 2.1. Standard
theory [4] implies that orbits to the left of the critical manifold Sa`003

are rapidly attracted by

the slow manifold corresponding to Sa`003
; they then follow the slow flow on that manifold.

Remark 11. In the limit as ε Ñ 0, the critical manifold Sa`003
corresponds to the portion of

Sa`0ε where U3 and R3 are Op1q. The point D003 corresponds to the point D0ε in that limit,
13



while the singular orbit connecting the point A003 – which is not visible in this regime – to D003

corresponds to the saddle-type fibre of the point D0ε in the limit as εÑ 0.

3.4. Summary. Combining our discussion of the three regimes Rj (j “ 1, 2, 3), we define the
singular cycle Γ00 for Equation (6) in the limit of pκ, εq “ p0, 0q as

Γ00 “ ΓAD00 Y ΓDQ00 Y ΓQA00 ,

where the orbit ΓAD00 corresponds to the fast fibre of (8) that connects the points A00 :
´

1

2
?

Θb̃
, 0

¯

and D00 :
´

1

2
?

Θb̃
, Θ

4Θb̃`Λ

¯

, the orbit ΓDQ00 denotes the segment of the critical manifold Sa`00

between the points D00 and Q00 : p0, 0q, and ΓQA00 is the segment of the critical manifold Sr00

between the points Q00 and A00; see Figure 8. We emphasise again that no reduced flow can

be meaningfully defined on Sr00, i.e., that the segment ΓQA00 is degenerate; that degeneracy will
be partially resolved by blow-up.

For pκ, εq Ñ p0, 0q, regime R1 collapses onto the non-hyperbolic line Sr00, while regime R2

shrinks to the non-hyperbolic origin; in particular, the points B00 and C00 coalesce into Q00

in the double singular limit, as the fast fibre connecting them vanishes. In regime R3, on the
other hand, that limit is regular, as can be seen from the fact that the manifold Sa`00 remains
normally attracting.

In conclusion, the degenerate geometry of Γ00 has hence been locally resolved in the scaling
regimes Rj (j “ 1, 2, 3); however, to obtain a global picture, we investigate the transition
between these regimes via a combination of geometric singular perturbation theory and the
blow-up technique. Our geometric approach seems ideally suited to such an investigation, as
it yields a uniformly valid and intuitively appealing description of relaxation-type oscillation in
the two-parameter singular perturbation problem, Equation (6).

Remark 12. We note that the curves of equilibria ΓQA00 and ΓDQ00 for (10) can be connected
by the corresponding layer flow for any fixed choice of R, allowing for a continuum of singular
cycles. However, the analysis in regime R1 suggests that Γ00, as defined above, is the appropriate
choice, which will be substantiated by blow-up in the following section.

14



0

0

Figure 8. Reduced flow on the critical manifold S00 (solid blue), layer dynamics
(solid green), non-hyperbolic origin Q00 (red dot), and singular cycle Γ00 (solid
blue; solid green) for Equation (10).

4. Blow-up analysis

Given the highly singular nature of Equation (6) in regimes R1 and R2, we apply the blow-up
technique to desingularise the dynamics in a neighbourhood of the non-hyperbolic R-axis, with
a particular focus on the degenerate equilibrium at the origin. To that end, we consider the
augmented vector field that is obtained by appending the trivial equation ε1 “ 0 in (6):

R1 “ κpU ` PεqpU ` εq
2 ` ΛR2U2

pU ` εqpU ` ε
c q

“

µ̃ε
1
2 pU ` εq ´

`

U ` d̃ε
3
2

˘

R
‰

,(23a)

U 1 “ b̃ε2pU ` εq2 `ΘR2U2 ´ U
“

pU ` εq2 ` ΛR2U2
‰

,(23b)

ε1 “ 0.(23c)

As is conventional in the application of blow-up, the parameter ε is now treated as an additional
state variable in the above augmented system, while κ encodes the separation of scales, as before.
Our analysis will proceed in two steps: first, we will blow up the origin in the extended pR,U, εq-
space to a sphere, which will allow us to give a rigorous description of the dynamics in regime
R2; the non-hyperbolic line Sr00 – which corresponds to regime R1 – will be recovered in one of
the phase-directional charts in that blow up, and will be desingularised via a second (cylindrical)
blow-up transformation. The dynamics that is obtained in the various coordinate charts after
blow-up will then be combined into a global description of the flow of Equation (6) near the
degenerate R-axis that is uniformly valid in both κ and ε.

Finally, we note that the phase space of (6) can be viewed as being foliated in ε P r0, ε0s, for
ε0 positive and small. Correspondingly, the family of critical manifolds S0ε “ Sa´0ε Y Sr0ε Y Sa`0ε
defined in Section 2.1 can be viewed as a two-dimensional critical manifold S0, with folds along
the curves FA

0 :“
 

pA0ε, εq
ˇ

ˇ ε P r0, ε0s
(

and FC
0 :“

 

pC0ε, εq
ˇ

ˇ ε P r0, ε0s
(

.
15



4.1. Blow-up of the degenerate origin. We recall that regime R2 corresponds to the scaling

U “ Opεq and R “ Opε
1
2 q; cf. Section 3.2. In view of these scalings, we introduce the following

quasi-homogeneous blow-up transformation of the origin in Equation (23):

(24) R “ ρr̄, U “ ρ2ū, and ε “ ρ2ε̄,

with pr̄, ū, ε̄q P S2 and ρ P r0, ρ0s, for ρ0 positive and small. In other words, the degenerate
origin in pR,U, εq-space corresponding to ρ “ 0 in Equation (24) is blown up to the 2-sphere in
R3. The vector field that is induced by Equation (23) after blow-up is conventionally studied in
appropriate coordinate charts [3, 14] that cover different parts of the blown-up space. We will
require two charts in our analysis, which we denote by K1 and K2; these charts are obtained
for r̄ “ 1 and ε̄ “ 1 in (24), respectively, which implies

R “ ρ1, U “ ρ2
1u1, and ε “ ρ2

1ε1(25)

and

R “ ρ2r2, U “ ρ2
2u2, and ε “ ρ2

2,(26)

respectively, for the coordinates in these charts. Intuitively speaking, chart K1 hence covers
a neighbourhood of parts of the equator of the blow-up sphere S2 ˆ t0u where R ą 0 holds,
while the top of that sphere, with ε ą 0, is described in chart K2; see Figure 12 below for an
illustration.

Remark 13. For any object ˝κε given in the original pR,U, εq-variables, we denote the corre-
sponding blown-up object by ¯̋κ. Moreover, in chart Ki, that object will be denoted by ˝κi .

Lemma 1. The change-of-coordinates transformation K12 between charts K1 and K2 is given
by

K12 : pρ1, u1, ε1q ÞÑ

ˆ

ρ2r2,
u2

r2
2

,
1

r2
2

˙

;

its inverse K21 “ K´1
12 reads

K21 : pr2, u2, ρ2q ÞÑ

ˆ

1
?
ε1
,
u1

ε1
, ρ1
?
ε1

˙

.

We will first consider the dynamics in the “rescaling” chart K2; then, we will study the
flow in the “phase-directional” chart K1. In particular, the latter will allow us to describe the
transition between the “inner” and “outer” regions, which correspond to regimes R2 and R3,
respectively, as defined in Section 3.

4.2. Dynamics in chart K2. In chart K2, the blow-up transformation defined in (24) is given
by (26); substituting into Equation (23), we find

r12 “ κρ4
2pu2 ` Pqpu2 ` 1q2 ` Λρ2

2r
2
2u

2
2

pu2 ` 1qpu2 `
1
c q

“

µ̃pu2 ` 1q ´
`

u2 ` d̃ρ2

˘

r2

‰

,(27a)

u12 “ ρ4
2

 

b̃ρ2
2pu2 ` 1q2 `Θr2

2u
2
2 ´ u2

“

pu2 ` 1q2 ` Λρ2
2r

2
2u

2
2

‰(

,(27b)

ρ12 “ 0.(27c)

By dividing out a factor of ρ4
2 from the right-hand sides in Equation (27), we obtain the desin-

gularised dynamics in chart K2:

r12 “ κpu2 ` Pqpu2 ` 1q2 ` Λρ2
2r

2
2u

2
2

pu2 ` 1qpu2 `
1
c q

“

µ̃pu2 ` 1q ´
`

u2 ` d̃ρ2

˘

r2

‰

,(28a)

u12 “ b̃ρ2
2pu2 ` 1q2 `Θr2

2u
2
2 ´ u2

“

pu2 ` 1q2 ` Λρ2
2r

2
2u

2
2

‰

,(28b)

ρ12 “ 0,(28c)

which is a slow-fast system in standard form, with singular perturbation parameter κ; corre-
spondingly, the variable r2 is slow, while u2 is fast. We observe that K2 corresponds precisely
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to regime R2, as Equation (28) is equivalent to (18), with pR2, U2q “ pr2, u2q, ε “ ρ2
2, and

the (trivial) equation ρ12 “ 0 appended. Hence, the geometric singular perturbation analysis in
chart K2 proceeds as in Section 3.2; the relevant dynamics in blown-up space is again illustrated
in Figure 6. In particular, it follows that the geometry of Equation (28) described in Section 3.2
is valid on compact domains in K2.

We first consider the flow of Equation (28) in the invariant plane tρ2 “ 0u, which is governed
by

r12 “ κpu2 ` Pqu2 ` 1

u2 `
1
c

“

µ̃pu2 ` 1q ´ u2r2

‰

,(29a)

u12 “ Θr2
2u

2
2 ´ u2pu2 ` 1q2,(29b)

ρ12 “ 0.(29c)

Equation (29) is again a slow-fast system in standard form, with singular perturbation parameter
κ; correspondingly, the variable r2 is slow, while u2 is fast. The corresponding layer problem
reads

r12 “ 0,(30a)

u12 “ Θr2
2u

2
2 ´ u2pu2 ` 1q2,(30b)

ρ12 “ 0.(30c)

It follows immediately from Section 3.2 that the critical manifold for Equation (30) consists
of the three branches Sa´02

, Sr02 , and Sa`02
; the former equals a segment of the r2-axis, and is

normally attracting under the flow of (30). The branches Sr02 and Sa`02
are separated by the

fold point C02 at which hyperbolicity is lost; Sr02 is normally repelling, while Sa`02
is normally

attracting, outside of a neighbourhood of that point. See again Figure 6 for an illustration;
here, the notation ˝02 in chart K2 corresponds to ˝002 in regime R2.

4.3. Dynamics in chart K1. In chart K1, the blow-up transformation defined in Equation (24)
is given by (25). Substituting into Equation (23), dividing out a factor of ρ4

1 from the resulting
equations, as before, and setting

F1pρ1, u1, ε1q “ pu1 ` Pε1q
pu1 ` ε1q

2 ` Λρ2
1u

2
1

pu1 ` ε1qpu1 `
ε1
c q

”

µ̃ε
1
2
1 pu1 ` ε1q ´

´

u1 ` d̃ρ1ε
3
2
1

¯ı

,

we obtain the system

ρ11 “ κρ1F1pρ1, u1, ε1q,(31a)

u11 “ b̃ρ2
1ε

2
1pu1 ` ε1q

2 `Θu2
1 ´ u1

“

pu1 ` ε1q
2 ` Λρ2

1u
2
1

‰

´ 2κu1F1pρ1, u1, ε1q,(31b)

ε11 “ ´2κε1F1pρ1, u1, ε1q,(31c)

which is a slow-fast system with singular perturbation parameter κ; correspondingly, the vari-
ables ρ1 and ε1 are slow, while u1 is fast.

Remark 14. A priori, it may seem that the denominator pu1 ` ε1qpu1 `
ε1
c q in F1pρ1, u1, ε1q

may cause non-uniformity in the limit as pu1, ε1q Ñ p0, 0q. However, one can show that F1

vanishes to the order Op2q at pu1, ε1q “ p0, 0q, which is sufficient for our purposes.

Setting κ “ 0 in Equation (31) gives the layer problem

ρ11 “ 0,(32a)

u11 “ b̃ρ2
1ε

2
1pu1 ` ε1q

2 `Θu2
1 ´ u1

“

pu1 ` ε1q
2 ` Λρ2

1u
2
1

‰

,(32b)

ε11 “ 0;(32c)

the corresponding critical manifold S01 is the hypersurface in pρ1, u1, ε1q-space that is defined
by

b̃ρ2
1ε

2
1pu1 ` ε1q

2 `Θu2
1 ´ u1

“

pu1 ` ε1q
2 ` Λρ2

1u
2
1

‰

“ 0.(33)
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Rather than attempting a global description of S01 , we will restrict ourselves to the two invariant
hyperplanes tρ1 “ 0u and tε1 “ 0u for Equation (31), which will allow us to infer the geometry
of S01 for either ρ1 or ε1 small. The flow in the plane tρ1 “ 0u is governed by

u11 “ Θu2
1 ´ u1pu1 ` ε1q

2 ´ 2κu1F1p0, u1, ε1q,(34a)

ε11 “ ´2κε1F1p0, u1, ε1q,(34b)

with

F1p0, u1, ε1q “ pu1 ` Pε1q
u1 ` ε1

u1 `
ε1
c

”

µ̃ε
1
2
1 pu1 ` ε1q ´ u1

ı

.

(One can again show that F1p0, u1, ε1q vanishes to the order Op2q at pu1, ε1q “ p0, 0q; recall
Remark 14.) Setting κ “ 0 in Equation (34), we obtain the layer problem

u11 “ Θu2
1 ´ u1pu1 ` ε1q

2,(35a)

ε11 “ 0.(35b)

The critical manifold of Equation (35), which is denoted by Ŝ01 , is defined by u1

“

Θu1 ´ pu1 `

ε1q
2
‰

“ 0; it consists of a normally attracting left branch Ŝa´01
corresponding to the invariant

line tu1 “ 0u with ε1 positive, a normally repelling middle branch Ŝr01 that corresponds to

u1 P p0,
Θ
4 q, and a normally attracting right branch Ŝa`01

corresponding to u1 P p
Θ
4 ,Θs. The

branches Ŝr01 and Ŝa`01
are separated by the fold point C01 ; the equilibrium E01 , which is easily

obtained from (33), lies on Ŝr01 due to our assumptions on the parameters µ and Θ, while Ŝa´01

and Ŝr01 intersect in the origin P̂1 : p0, 0, 0q. (We note that, clearly, all three branches of Ŝ01 are
intersections of S01 with the plane tρ1 “ 0u.) From the corresponding reduced problem, we see

that ε1 increases above E01 on Ŝr01 and on Ŝa`01
, while it decreases below E01 on Ŝr01 and on Ŝa´01

.

Hence, orbits follow the slow manifold Ŝa`01
until they reach the fold point at C01 , where they

jump to the point B01 :
`

0, 0, Θ
4

˘

P Ŝa´01
. The geometry in tρ1 “ 0u is summarised in Figure 9.

In the invariant plane tε1 “ 0u, F1pρ1, u1, 0q “ ´u
2
1

`

1` Λρ2
1

˘

implies

ρ11 “ ´κρ1u
2
1

`

1` Λρ2
1

˘

,(36a)

u11 “ u2
1

“

Θ´ u1

`

1` Λρ2
1

˘‰

` 2κu3
1

`

1` Λρ2
1

˘

,(36b)

which, for κ “ 0, yields the layer problem

ρ11 “ 0,(37a)

u11 “ u2
1

“

Θ´ u1

`

1` Λρ2
1

˘‰

.(37b)

The critical manifold for Equation (37), which is denoted by Š01 , is defined by u2
1

“

Θ ´ u1

`

1 `

Λρ2
1

˘‰

“ 0. A straightforward calculation shows that Š01 consists of a right attracting branch

Ša`01
corresponding to the invariant curve u1 “

Θ
1`Λρ21

and the non-hyperbolic line ˇ̀
01 , given by

tu1 “ 0u. Both branches of Š01 are intersections of the critical manifold S01 for Equation (32)
with the plane tε1 “ 0u. From the corresponding reduced problem, we find that ρ1 is decreasing

on Ša`01
. Finally, the curves Ša`01

and Ŝa`01
intersect on the u1-axis at the point Q̌1 : p0,Θ, 0q;

see again Figure 9 for an illustration.

Remark 15. We emphasise that the critical manifold Ŝ01 and the fold point C01 for Equa-
tion (35) were already identified in chart K2, and that they are hence merely recovered in
K1.
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Figure 9. Geometry in tρ1 “ 0u and tε1 “ 0u, for κ “ 0, in chart K1: reduced
flow (solid blue), layer dynamics (solid green), and equilibrium E01 .

We may summarise the above discussion as follows:

Lemma 2. For ρ1 or ε1 sufficiently small, the critical manifold S01 that is defined by Equa-
tion (33) has the following properties:

i. The manifold S01 “ Sa´01
Y Sr01 Y FC

01
Y Sa`01

is smooth away from the line ˇ̀
01.

ii. The manifold S01 has a folded structure; specifically, it is divided by the fold curve FC
01

into

two branches Sr01 and Sa`01
, whereas the branches Sa´01

and Sr01 intersect cusp-like along ˇ̀
01.

iii. The branches Sa´01
and Sa`01

are attracting under the layer flow of Equation (32), while the
branch Sr01 is repelling.

iv. The restriction of Sa´01
, Sr01, and Sa`01

to the invariant hyperplane tρ1 “ 0u corresponds to

Ŝa´01
, Ŝr01, and Ŝa`01

, respectively; correspondingly, the fold curve FC
01

reduces to the point
C01.

v. In the invariant hyperplane tε1 “ 0u, Sa´01
and Sr01 coalesce into ˇ̀

01, while Sa`01
corresponds

to Ša`01
in that limit.

Proof. Outside of a neighbourhood of the line ˇ̀
01 , the above assertions follow from the Implicit

Function Theorem, in combination with the structural stability of folds; see [13] and the ref-
erences therein for details. The geometry of the manifold S01 near ˇ̀

01 , and the corresponding
dynamics of Equation (31), will be considered in Section 4.4 below. �

For future reference, we define the sections Σin
1 and Σout

1 for the flow of Equation (31) as

Σin
1 :“

!

`

ρ1,
Θ
4 , ε1

˘

ˇ

ˇ

ˇ
ρ1 ´

1

2
?

Θb̃
P rρ˚, ρ

˚s, ε1 P rε˚, ε
˚s

)

and(38a)

Σout
1 :“

!

`

ρ1,
Θ
8 , ε1

˘

ˇ

ˇ

ˇ
ρ1 P rρ˚, ρ

˚s, ε1 ´
Θ
4 P rε˚, ε

˚s

)

,(38b)

respectively; see Figure 9. (Here, ρ˚, ρ
˚, ε˚, and ε˚ are suitably chosen constants.)
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The situation in chart K1 can be summarised as follows: the segment ΓDQ̌01
of the singular

orbit is initialised close to a point D01 which will be specified in chart K4 in the following
section; the orbit is attracted to Ša`01

and then follows the slow flow thereon until it reaches

the point Q̌1. The continuation of ΓDQ̌01
past Q̌1 is given by the orbit ΓQ̌C01

along the slow flow

on Ŝa`01
to the fold point C01 , where the orbit ΓCB01

represents the jump along the fast flow

to the point B01 on Ŝa´01
; the orbit ΓBP̂01

then follows the slow flow on Ŝa´01
to the origin P̂1,

which is still a non-hyperbolic steady state for (31). The continuation of the orbit is located
on the degenerate (non-hyperbolic) line ˇ̀

01 ; to resolve that degeneracy, we require a further
blow-up transformation, which is introduced in the subsequent subsection. The geometry in
the hyperplanes tρ1 “ 0u and tε1 “ 0u in chart K1 is illustrated in Figure 9.

4.4. Blow-up of the non-hyperbolic line ˇ̀
01. To analyse the dynamics in a neighbourhood

of the non-hyperbolic line ˇ̀
01 recovered in chart K1, we introduce the quasi-homogeneous,

cylindrical blow-up transformation

ρ1 “ r̄, u1 “ δ2ū, and ε1 “ δε̄,(39)

with r̄ P R`, pū, ε̄q P S1, and δ P r0, δ0s, for δ0 positive and small; in other words, the line ˇ̀
01 is

blown up to the cylinder R` ˆ S1 ˆ t0u. We emphasise that this second blow-up is performed
entirely in chart K1.

The vector field that is induced by Equation (31) is studied in two coordinate charts K3 and
K4, which are obtained for ε̄ “ 1 and ū “ 1 in (39), respectively; see again [3, 14] for details.
Hence, we have

ρ1 “ r3, u1 “ δ2
3u3, and ε1 “ δ3(40)

and

ρ1 “ r4, u1 “ δ2
4 , and ε1 “ δ4ε4,(41)

respectively, for the coordinates in these charts. Intuitively, chart K3 covers the top of the
cylinder R` ˆ S1 ˆ t0u corresponding to ε̄ positive, while the flow in a neighbourhood of the
front of that cylinder, with ū positive, is described in chart K4; cf. again Figure 12 below.

Lemma 3. The change-of-coordinates transformation K34 between charts K3 and K4 is given
by

K34 : pr3, u3, δ3q ÞÑ

ˆ

r4,
1

ε2
4

, δ4ε4

˙

;

its inverse K43 “ K´1
34 reads

K43 : pr4, δ4, ε4q ÞÑ

ˆ

r3,
?
u3δ3,

1
?
u3

˙

.

As will become clear in the following, chart K3 covers the transition between regimes R1

and R2, while the transition between R1 and R3 is naturally described in chart K4; both
charts provide sufficient overlap for matching to be accomplished between the respective scaling
regimes.

4.5. Dynamics in chart K3. In chart K3, the blow-up transformation defined by ε̄ “ 1 in
Equation (39) is given as in (40). Substituting into Equation (31), dividing out the factor δ2

3

from the resulting equations, and defining

F3pr3, u3, δ3q “ F1pr3, δ
2
3u3, δ3qδ

´2
3 “ δ

1
2
3 pδ3u3 ` Pqpδ3u3 ` 1q2 ` Λr2

3δ
2
3u

2
3

pδ3u3 ` 1qpδ3u3 `
1
c q

ˆ

”

µ̃pδ3u3 ` 1q ´
´

δ
1
2
3 u3 ` d̃r3

¯ı

,
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we obtain the system

r13 “ κr3F3pr3, u3, δ3q,(42a)

u13 “ b̃r2
3pδ3u3 ` 1q2 `Θu2

3 ´ u3

“

pδ3u3 ` 1q2 ` Λr2
3δ

2
3u

2
3

‰

` 2κu3F3pr3, u3, δ3q,(42b)

δ13 “ ´2κδ3F3pr3, u3, δ3q,(42c)

which is a slow-fast system with singular perturbation parameter κ; correspondingly, the vari-
ables r3 and δ3 are slow, while u3 is fast. Here, the prime now denotes differentiation with
respect to a new independent variable. For κ “ 0 in (42), one obtains the layer problem

r13 “ 0,(43a)

u13 “ b̃r2
3pδ3u3 ` 1q2 `Θu2

3 ´ u3

“

pδ3u3 ` 1q2 ` Λr2
3δ

2
3u

2
3

‰

,(43b)

δ13 “ 0.(43c)

The corresponding critical manifold S03 is the hypersurface in pr3, u3, δ3q-space that is defined
by

b̃r2
3pδ3u3 ` 1q2 `Θu2

3 ´ u3

“

pδ3u3 ` 1q2 ` Λr2
3δ

2
3u

2
3

‰

“ 0.(44)

The flow of Equation (42) in the invariant plane tr3 “ 0u is governed by

u13 “ Θu2
3 ´ u3pδ3u3 ` 1q2 ` 2κu3F3p0, u3, δ3q,(45a)

δ13 “ ´2κδ3F3p0, u3, δ3q,(45b)

with

F3p0, u3, δ3q “ δ
1
2
3 pδ3u3 ` Pq δ3u3 ` 1

δ3u3 `
1
c

”

µ̃pδ3u3 ` 1q ´ δ
1
2
3 u3

ı

,

which is again a slow-fast system with respect to κ; correspondingly, the variable δ3 is slow,
while u3 is a fast variable. Setting κ “ 0, we obtain the layer problem

u13 “ Θu2
3 ´ u3pδ3u3 ` 1q2,(46a)

δ13 “ 0.(46b)

The critical manifold in the plane tr3 “ 0u, which we denote by Ŝ03 , is defined by u3

“

Θu3 ´

pδ3u3 ` 1q2
‰

“ 0. It consists of an attracting left branch Ŝa´03
– the δ3-axis, a repelling middle

branch Ŝr03 , and an attracting right branch Ŝa`03
. The branches Ŝr03 and Ŝa`03

are separated by

a fold point at C03 ; here, we note that the equilibrium E03 lies in Ŝr03 . Moreover, Ŝa´03
and

Ŝr03 intersect the u3-axis in the points P̂3 : p0, 0, 0q and Q̂3 :
`

0, 1
Θ , 0

˘

, respectively. All three

branches of Ŝ03 are intersections of S03 with the plane tr3 “ 0u. From the corresponding reduced

problem, we conclude that δ3 is increasing on Ŝr03 above E03 and on Ŝa`03
, while it is decreasing

on Ŝr03 below E03 and on Ŝa´03
. Hence, orbits follow the slow manifold Ŝa`03

until they reach the

fold point C03 , where they jump to the point B03 P Ŝa´03
.

Next, we consider the flow of Equation (42) in the invariant plane tδ3 “ 0u, which is governed
by

r13 “ 0,(47a)

u13 “ b̃r2
3 `Θu2

3 ´ u3.(47b)

The corresponding critical manifold, which is denoted by Š03 , is defined by b̃r2
3 `Θu2

3´ u3 “ 0;
it consists of a left attracting branch Ša´03

corresponding to u3 P r0,
1

2Θq and a right repelling

branch Ša`03
which is obtained for u3 P p

1
2Θ ,

1
Θ s. The two branches are separated by the fold

point A03 . Both branches are intersections of S03 with the plane tδ3 “ 0u. The geometry in
chart K3 is summarised in Figure 10.
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Remark 16. The manifolds Š03 and Ŝ03 correspond precisely to the critical manifolds S001

and S002 uncovered in regimes R1 and R2, respectively. Hence, chart K3 covers the transition
between those two regimes, as claimed.

Due to F3pr3, u3, 0q “ 0, the reduced flow with respect to κ in tδ3 “ 0u is degenerate, in that
it vanishes identically; hence, A03 is not a jump point in the classical sense of [14]. However, the
equivalent of A03 in regime R1, denoted by A001 in Section 3.1, is, which allows for a description
of the passage past A03 by recourse to R1; see also the proof of Lemma 10 below.

Remark 17. Alternatively, one may note that, for δ3 positive and small, the factor
”

µ̃pδ3u3 `

1q ´
´

δ
1
2
3 u3 ` d̃r3

¯ı

“ µ̃ ´ d̃r3 ´ u3δ
1
2
3

´

1 ´ µ̃δ
1
2
3

¯

in the definition of F3 is positive due to our

choice of µ and d, which implies µ̃

d̃
ą

`

2
a

Θb̃
˘´1

. Hence, r13 ą 0 for r3 ă
`

2
a

Θb̃
˘´1

, i.e., the

reduced flow in r3 is directed towards A03 : orbits follow the corresponding sheet Sa´03
of S03

until they reach the fold curve FA
03

and then jump away under the layer flow of Equation (43);
recall Remark 7. (The corresponding touch-down point is not visible in chart K3.)

Figure 10. Geometry in tr3 “ 0u and tδ3 “ 0u, for κ “ 0, in chart K3: reduced
flow (solid blue), layer dynamics (solid green), and equilibrium E03 .

We conclude with the following result, the proof of which is analogous to that of Lemma 2:

Lemma 4. For r3 or δ3 sufficiently small, the critical manifold S03 that is defined by Equa-
tion (44) has the following properties:

i. The manifold S03 “ Sa´03
Y FA

03
Y Sr03 Y FC

03
Y Sa`03

is smooth.

ii. The manifold S03 has a folded structure; in particular, the branches Sa´03
and Sr03 are sepa-

rated by the fold curve FA
03

, while Sr03 and Sa`03
are separated by the fold curve FC

03
.

iii. The branches Sa´03
and Sa`03

are attracting under the layer flow of Equation (43), while the
branch Sr03 is repelling.
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iv. The restriction of Sa´03
, Sr03, and Sa`03

to the invariant hyperplane tr3 “ 0u corresponds to

Ŝa´03
, Ŝr03, and Ŝa`03

, respectively. Correspondingly, the fold curve FC03 intersects tr3 “ 0u in
the point C03.

v. In the invariant hyperplane tδ3 “ 0u, Sa´03
and Sr03 reduce to Ša´03

and Šr03, respectively. The

fold curve FA
03

intersects tδ3 “ 0u in the point A03.

As in Section 4.3, we introduce two sections Σin
3 and Σout

3 for the flow of Equation (42) as

Σin
3 :“

!

pr3, u3, δ3q

ˇ

ˇ

ˇ
r3 P rr˚, r

˚s, u3 ´
2
Θ P ru˚, u

˚s, δ3 ´
Θ
4 P rδ˚, δ

˚s

)

and(48a)

Σout
3 :“

!

`

r3,
1
Θ , δ3

˘

ˇ

ˇ

ˇ
r3 ´

1

2
?

Θb̃
P rr˚, r

˚s, δ3 P rδ˚, δ
˚s

)

,(48b)

respectively, where r˚, r
˚, u˚, u

˚, δ˚, and δ˚ are suitably chosen constants, as before. Here,
we note that Σin

3 is equivalent to the section Σout
1 defined in (38) via the change-of-coordinates

transformation in (40), while Σout
3 is defined directly in chart K3.

In summary, the segment ΓC03 of the singular orbit follows the slow flow on Ŝa`03
to the fold

point C03 ; the orbit ΓCB03
represents the jump along the fast flow to the point B03 . The segment

ΓBP̂03
then follows the slow flow on Ŝa´03

until it reaches the origin P̂3, continuing with the curve

of equilibria ΓP̂A03
that corresponds to the segment of Ša´03

between P̂3 and the fold point A03 ;
finally, the orbit jumps along the fast flow to the right for u3 large. We label the corresponding
segment by ΓA03 ; see Figure 10 for an illustration. The large-u3 dynamics of Equation (42) is
then naturally studied in chart K4.

4.6. Dynamics in chart K4. In chart K4, the blow-up transformation defined by ū1 “ 1 in
Equation (39) is given as in (41). Substituting into Equation (31), dividing out a factor of δ2

4 ,
and defining

F4pr4, δ4, ε4q “ F1pr4, δ
2
4 , δ4ε4qδ

´2
4 “ δ

1
2
4 pδ4 ` Pε4q

pδ4 ` ε4q
2 ` Λr2

4δ
2
4

pδ4 ` ε4qpδ4 `
ε4
c q

ˆ

”

µ̃ε
1
2
4 pδ4 ` ε4q ´

´

δ
1
2
4 ` d̃r4ε

3
2
4

¯ı

,

we obtain the simplified system

r14 “ κr4F4pr4, δ4, ε4q,(49a)

δ14 “
1

2
δ4

 

b̃r2
4ε

2
4pδ4 ` ε4q

2 `Θ´
“

pδ4 ` ε4q
2 ` Λr2

4δ
2
4

‰(

´ κδ4F4pr4, δ4, ε4q,(49b)

ε14 “ ´
1

2
ε4

 

b̃r2
4ε

2
4pδ4 ` ε4q

2 `Θ´
“

pδ4 ` ε4q
2 ` Λr2

4δ
2
4

‰(

´ κε4F4pr4, δ4, ε4q,(49c)

which is a slow-fast system with singular perturbation parameter κ; correspondingly, the variable
r4 is slow, while δ4 and ε4 are fast. Here, the prime again denotes differentiation with respect
to a new independent variable.

Remark 18. The denominator pδ4 ` ε4qpδ4 `
ε4
c q in F4pr4, δ4, ε4q may be expected to render

the limit as pδ4, ε4q Ñ p0, 0q in (49) non-uniform. However, F4 again vanishes to the order Op2q
at pδ4, ε4q “ p0, 0q; recall Remark 14.

Setting κ “ 0 in (49), we obtain the layer problem

r14 “ 0,(50a)

δ14 “
1

2
δ4

 

b̃r2
4ε

2
4pδ4 ` ε4q

2 `Θ´
“

pδ4 ` ε4q
2 ` Λr2

4δ
2
4

‰(

,(50b)

ε14 “ ´
1

2
ε4

 

b̃r2
4ε

2
4pδ4 ` ε4q

2 `Θ´
“

pδ4 ` ε4q
2 ` Λr2

4δ
2
4

‰(

.(50c)
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The corresponding critical manifold S04 is the hypersurface in pr4, δ4, ε4q-space that is defined
by

b̃r2
4ε

2
4pδ4 ` ε4q

2 `Θ´
“

pδ4 ` ε4q
2 ` Λr2

4δ
2
4

‰

“ 0;(51)

an additional line of equilibria is found for δ4 “ 0 “ ε4, i.e., on the r4-axis.

Remark 19. Since δ4 and ε4 are fast variables outside of a neighbourhood of S04 , Equation (49)
is not a slow-fast system in standard form; details can be found in [13].

We consider the flow of Equation (50) in the invariant plane tδ4 “ 0u, which is governed by

r14 “ 0,(52a)

ε14 “ ´
1

2
ε4

`

b̃r2
4ε

4
4 `Θ´ ε2

4

˘

.(52b)

The corresponding critical manifold is defined by

b̃r2
4ε

4
4 `Θ´ ε2

4 “ 0;

it consists of a lower repelling branch Šr04 corresponding to ε4 P r
?

Θ,
?

2Θq and an upper

attracting branch Ša´04
with ε4 P p

?
2Θ,8q, which are separated by the fold point A04 . We

denote the line of additional equilibria on the r4-axis by ˇ̀
04 ; here, we emphasise that ˇ̀

04 is
attracting in tδ4 “ 0u. All three branches are found in the intersection of S04 with the plane
tδ4 “ 0u. Orbits follow the slow manifold Ša´04

until they reach the fold point at A04 , where

they jump forward to the point P̌4 :
´

1

2
?

Θb̃
, 0, 0

¯

P ˇ̀
04 .

In the invariant plane tε4 “ 0u, Equation (49) reduces to

r14 “ ´κr4δ
2
4

`

1` Λr2
4

˘

,(53a)

δ14 “
1

2
δ4

“

Θ´ δ2
4

`

1` Λr2
4

˘‰

` κδ3
4

`

1` Λr2
4

˘

,(53b)

as F4pr4, δ4, 0q “ ´δ
2
4

`

1` Λr2
4

˘

then. The corresponding layer problem is obtained for κ “ 0:

r14 “ 0,(54a)

δ14 “
1

2
δ4

“

Θ´ δ2
4

`

1` Λr2
4

˘‰

,(54b)

which implies that the critical manifold satisfies Θ ´ δ2
4

`

1 ` Λr2
4

˘

“ 0. That manifold con-

sists of an attracting branch Ša`04
, which intersects the δ4-axis in the point Q̌4 “ p0,

?
Θ, 0q;

the line of equilibria on the r4-axis, denoted again by ˇ̀
04 , is repelling in tε4 “ 0u. Orbits

starting close to P̌4 P ˇ̀
04 leave along the unstable manifold thereof and jump to the point

D04 :
´

1

2
?

Θb̃
, 2Θ

?
b̃?

4Θb̃`Λ
, 0
¯

in Ša`04
; then, they follow the slow manifold Ša`04

until they reach the

point Q̌4. An illustration of the resulting geometry can be found in Figure 11.
Similarly, in the invariant plane tr4 “ 0u, the flow of Equation (49) is governed by

δ14 “
1

2
δ4

“

Θ´ pδ4 ` ε4q
2
‰

´ κδ4F4p0, δ4, ε4q,(55a)

ε14 “ ´
1

2
ε4

“

Θ´ pδ4 ` ε4q
2
‰

´ κε4F4p0, δ4, ε4q,(55b)

where

F4p0, δ4, ε4q “ δ
1
2
4 pδ4 ` Pε4q

δ4 ` ε4

δ4 `
ε4
c

”

µ̃ε
1
2
4 pδ4 ` ε4q ´ δ

1
2
4

ı

.
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(One can show that δ4F4p0, δ4, ε4q and ε4F4p0, δ4, ε4q vanish to the order Op3q at pδ4, ε4q “ p0, 0q;
recall Remark 14.) Setting κ “ 0, we obtain the layer problem

δ14 “
1

2
δ4

“

Θ´ pδ4 ` ε4q
2
‰

,(56a)

ε14 “ ´
1

2
ε4

“

Θ´ pδ4 ` ε4q
2
‰

;(56b)

the corresponding critical manifold, which is denoted by Ŝ04 , is defined by

Θ´ pδ4 ` ε4q
2 “ 0.

(The additional steady state which is located at the origin is attracting in the ε4-direction, but

repelling in the direction of δ4; see our definition of ˇ̀
04 above.) The manifold Ŝ04 is, in fact,

a line connecting the point Q̌4 to the point Q̂4 : p0, 0,
?

Θq; it consists of an attracting right

segment Ŝa`04
and a repelling left segment Ŝr04 that exchange stability at the point C04 , which

is not a genuine fold point in the coordinates of chart K4. The corresponding equilibrium E04

lies in Ŝr04 ; the reduced flow on Ŝr04 is increasing above E04 , while it decreases below E04 until
it reaches C04 .

Remark 20. Clearly, most of the objects described above have already been identified in other
coordinate charts, viz. in K1 and K3. Our focus in this subsection is on the description of the
flow past the line ˇ̀

04 ; see Equation (57) below.

Figure 11. Geometry in tδ4 “ 0u, tε4 “ 0u, and tr4 “ 0u, for κ “ 0, in chart
K4: reduced flow (solid blue), layer dynamics (solid green), and equilibrium E04 .

In conclusion, we have the following result, the proof of which is again analogous to that of
Lemma 2:

Lemma 5. For r4, δ4, or ε4 sufficiently small, the critical manifold S04 that is defined by
Equation (51) has the following properties:
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i. The manifold S04 “ Sa´04
Y FA

04
Y Sr04 Y FC

04
Y Sa`04

is smooth away from the line ˇ̀
04.

ii. The manifold S04 has a folded structure; in particular, the branches Sa´04
and Sr04 are sepa-

rated by the fold curve FA
04

, while Sr04 and Sa`04
are separated by the fold curve FC

04
.

iii. The branches Sa´04
and Sa`04

are attracting under the layer flow of Equation (50), while the
branch Sr04 is repelling.

iv. The restriction of Sr04 and Sa`04
to the invariant hyperplane tr4 “ 0u corresponds to Ŝr04 and

Ŝa`04
, respectively. Correspondingly, the fold curve FC

04
intersects tr4 “ 0u in the point C04.

v. In the invariant hyperplane tδ4 “ 0u, Sa´04
and Sr04 reduce to Ša´04

and Šr04, respectively. The

fold curve FA
04

intersects tδ4 “ 0u in the point A04.

vi. The restriction of Sa`04
to the invariant hyperplane tε4 “ 0u corresponds to Ša`04

.

vii. The line ˇ̀
04 consists of saddle-type equilibria for Equation (49), with 1-dimensional stable

manifold in the hyperplane tδ4 “ 0u and 1-dimensional unstable manifold in the hyperplane
tε4 “ 0u.

Again, we define two sections Σin
4 and Σout

4 for the flow of Equation (49); here, the former is
obtained as the image of the section Σout

3 from chart K3 under the transformation K34 defined
in Lemma 3, while the latter is the image of the section Σin

1 from chart K1 in K4 under the
transformation

K14 : pρ1, u1, ε1q ÞÑ
`

r4, δ
2
4 , δ4ε4

˘

.

Hence, Σin
4 and Σout

4 can be represented as

Σin
4 :“

!

pr4, δ4,
?

Θq
ˇ

ˇ

ˇ
r4 ´

1

2
?

Θb̃
P rr˚, r

˚s, δ4 P rδ˚, δ
˚s

)

and(57a)

Σout
4 :“

!

`

r4,
?

Θ
2 , ε4

˘

ˇ

ˇ

ˇ
r4 ´

1

2
?

Θb̃
P rr˚, r

˚s, ε4 P rε˚, ε
˚s

)

,(57b)

where the constants r˚, r
˚, δ˚, δ

˚, ε˚, and ε˚ are again suitably chosen.

Remark 21. We emphasise that our blow-up of the non-hyperbolic line ˇ̀
01 from chart K1 to

a cylinder has resulted in a gain of hyperbolicity; in particular, the line ˇ̀
04 in K4 is of saddle

type, by item vii above.

To summarise, the segment ΓAP̌04
of the singular cycle is initiated close to the fold point A04

and is attracted to Ša´04
, where it jumps forward along the fast flow to the point P̌4; the orbit

ΓP̌D04
then leaves along the unstable manifold thereof and is attracted by Ša`04

, connecting to

the point D04 . The orbit ΓDQ̌04
follows the slow flow on Ša`04

to the point Q̌4 and continues as

the orbit ΓQ̌C04
along the slow flow on Ŝa`04

until it reaches the point C04 , where the orbit ΓC04
represents the jump back which is, however, not visible in chart K4, but is discussed in K3

already. (Clearly, the manifolds Ša´03
, Šr03 , Ŝa`03

, and Ŝr03 defined in chart K3 correspond to Ša´04
,

Šr04 , Ŝa`04
, and Ŝr04 , respectively.) The geometry in the planes tδ4 “ 0u, tε4 “ 0u, and tr4 “ 0u

in chart K4 is illustrated in Figure 11.

4.7. Global geometry in blown-up space. We now summarise the global geometry of the
blown-up space, which we denote as M̄κ, with κ P r0, κ0s. The above analysis implies that M̄κ

contains the sphere MU and the cylinder MR, which are obtained by the blow-up transformation
in (24) at the origin Q in pR,U, εq-space and the blow-up in (39) of the non-hyperbolic line ˇ̀

01

in chart K1 of the former, respectively; see Figure 13. We recall that the vector field Xκ

corresponding to Equation (6), which is defined on R3, induces a blown-up vector field X̄κ on
the blown-up space M̄κ; blow-up resolves the degeneracy of the critical manifold S0 – with κ
as the singular perturbation parameter – at ε “ 0. In particular, the equation ε1 “ 0 implies
an invariant foliation of M̄κ in ε, with the singular leaf defined by ε “ 0 corresponding to the
union of the sphere MU , the cylinder MR, and the plane tε̄ “ 0u. It follows that, for κ “ 0,
the restriction of X̄0 to that singular leaf represents the double singular limit of pκ, εq Ñ p0, 0q,
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which has now been resolved in the blown-up space M̄0. The following results follow immediately
from our discussion in Section 4; see also [13, Theorem 4.5].

Lemma 6. The critical manifold of system (23), for κ “ 0, in the blown-up space M̄0 is defined
as

S̄0 “ S̄a´0 Y F̄A
0 Y S̄r0 Y F̄C

0 Y S̄a`0 ;

here, the branches S̄a´0 and S̄a`0 are attracting under the layer flow that is induced by Equa-
tion (8) after blow-up, while the branch S̄r0 is repelling. Moreover, S̄a´0 and S̄a`0 are separated
by the fold curve F̄A

0 , while S̄r0 and S̄a`0 are separated by the fold curve F̄C
0 .

(We recall that, by Remark 13, any object ˝κε is written as ¯̋κ after blow-up.)
Lemma 6 implies that a unique singular cycle Γ̄00 can now be defined in the blown-up space

M̄κ due to the improved transversality and hyperbolicity properties of the flow therein; for
clarity, we label the corresponding persistent cycle in blown-up space by Γ̄κε which, for pκ, εq Ñ
p0, 0q, yields the singular cycle Γ̄00.

Lemma 7. The singular cycle Γ̄00 is defined by

Γ̄00 “ Γ̄AP̌00 Y Γ̄P̌D00 Y Γ̄DQ̌00 Y Γ̄Q̌C00 Y Γ̄CB00 Y Γ̄BP̂00 Y Γ̄P̂A00 .

Here, the heteroclinic connection Γ̄AP̌00 is located on the cylinder MR and represents the fast

jump from the point Ā0 to the point P̌ P S̄r0 ; the orbit Γ̄P̌D00 lies in the plane tε̄ “ 0u, connecting

P̌ to the point D̄0 P S̄a`0 . Finally, Γ̄DQ̌00 represents the transition on S̄a`0 from D̄0 to the point

Q̌. On the sphere MU , the segment Γ̄Q̌C00 on S̄a`0 connects the point Q̌ to the fold point at C̄0;
Γ̄CB00 denotes the heteroclinic connection from C̄0 to the point B̄0 P S̄a´0 , followed by the orbit

Γ̄BP̂00 from B̄0 to the point P̂ . The final segment Γ̄P̂A00 is located on the cylinder MR, and denotes

the connection on S̄a´0 from P̂ to the fold point at Ā0.

An illustration of Γ̄00 can be found in Figure 13; here, the reduced flow for pκ, εq “ p0, 0q is
shown in blue, as are the corresponding critical manifolds, while the layer dynamics is illustrated
in green. We emphasise that chart K2 is not required for our construction, strictly speaking, as
the relevant portions of Γ̄00 can be obtained in either chart K1 or K3; recall Figures 9 and 10,
respectively.

27



Figure 12. The charts Ki (i “ 1, . . . , 4) in the blown-up space M̄κ.

Figure 13. Geometry of the blown-up space M̄0: singular cycle Γ̄00 (solid blue;
solid green) and singular cycle Γ̄0ε (solid red; solid pink).
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Next, we have the following result on the persistence of Γ̄00, for ε positive and sufficiently
small:

Lemma 8. For ε P p0, ε0s, with ε0 positive and sufficiently small, there exists a singular cycle
Γ̄0ε which follows the slow flow on S̄a´0 and S̄a`0 , with jumps at the fold curves F̄A

0 and F̄C
0 ;

that cycle limits on Γ̄00 as εÑ 0.

The orbit Γ̄0ε is again illustrated in Figure 13; here, we emphasise that Γ̄0ε is obtained as a
perturbation off Γ̄00 for ε P p0, ε0s and κ “ 0. (The corresponding reduced flow is shown in red,
while the layer dynamics is illustrated in pink.)

Remark 22. Intuitively, blow-up desingularises the limit as ε Ñ 0 in our definition of the
critical manifold S0ε for Equation (9), in that the non-uniform collapse of that manifold onto
the degenerate manifold S00 has been prevented; in particular, the folded structure of S0ε

remains visible for ε “ 0 after blow-up.

Finally, and in analogy to Theorem 4.6 in [13], we can conclude that, for κ P p0, κ0s, the
blown-up vector field X̄κ admits smooth slow manifolds S̄a´κ , S̄rκ, and S̄a`κ away from the fold
curves F̄A

0 and F̄C
0 ; in accordance with standard practice [23], we assume that these manifolds

are extended beyond F̄A
0 and F̄C

0 by the flow corresponding to X̄κ.

5. Poincaré map and existence

To prove the persistence of the singular cycle Γ̄00 for κ and ε sufficiently small, we construct
a Poincaré map in the neighbourhood of Γ̄00 which is obtained through the concatenation of
three transition maps Πi (i “ 1, 3, 4) between specific sections for the flow in the blown-up space
M̄κ; see Figure 14.

i. The transition map Π1 : Σ1 Ñ Σ3 is initialised in the section Σ1; the corresponding flow
is attracted to the slow manifold S̄a`κ , which it follows up to the non-hyperbolic fold curve
F̄C

0 , where it jumps, remaining close to the heteroclinic connection Γ̄CB00 to reach a section
Σ3.

ii. The transition map Π3 : Σ3 Ñ Σ4 is initialised in the section Σ3; the corresponding flow
is attracted to the slow manifold S̄a´κ , which it follows up to the non-hyperbolic fold curve

F̄A
0 . It then jumps, remaining close to the heteroclinic connection Γ̄AP̌00 , to reach a section

Σ4.
iii. The transition map Π4 : Σ4 Ñ Σ1 is initialised in the section Σ4; the corresponding flow

then remains close to the heteroclinic connection Γ̄AP̌00 , passing near the hyperbolic line ¯̀
0

and the singular heteroclinic Γ̄P̌D00 to reach a section Σ1.

The Poincaré map Π : Σ1 Ñ Σ1, which is a global return map, is now defined as the
composition Π “ Π4 ˝ Π3 ˝ Π1. Here, we note that the maps Πi (i “ 1, 3, 4) are constructed in
charts Ki, respectively; details can be found in the following subsections.

Remark 23. The sections Σ1, Σ3, and Σ4 are defined to be transversal to the heteroclinic

orbits Γ̄P̌D00 , Γ̄CB00 , and Γ̄AP̌00 , respectively; see again Figure 14.
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Figure 14. Illustration of the Poincaré map Π: sections Σ1, Σ3, and Σ4 (shaded
dark grey); singular cycle Γ̄00 (solid blue; solid green); sample periodic orbit Γ̄κε
(solid purple).

5.1. Transition map Π1. The transition map Π1 is constructed in chart K1 as a mapping
between the sections Σ1 and Σ3, which correspond to Σin

1 and Σout
1 , respectively; recall Equa-

tion (38). We note that, since ε “ ρ2
1ε1 in K1, invariant leaves of the form tε ” constantu satisfy

ε1 « 4Θb̃ε in Σin
1 and ρ1 «

2?
Θ

?
ε in Σout

1 .

Lemma 9. For pκ, εq P p0, κ0s ˆ p0, ε0s, with κ0 and ε0 positive and sufficiently small, the
transition map Π1 is well-defined. Moreover, the restriction of Π1 to the leaf tε ” constantu is

a contraction (in ρ1) with contraction rate Ope´ν{κq, where ν is a positive constant.

Proof. The passage past a regular fold point is studied in detail in [14]; in particular, it follows
from the analysis therein that orbits initiated in Σin

1 are attracted by the extended slow manifold

S̄a`κ at a contraction rate of the order Ope´ν{κq, while the distance between the intersection of

that extended manifold with Σout
1 and the singular cycle Γ̄00 is of the order Opκ2{3q. �

Remark 24. While our approximation of the transition map Π1 is performed in chart K1, the
dynamics in that chart can also be recovered in regime R2. Hence, the results of [14] on passage
past a singularly perturbed planar fold can be applied to Equation (18). For a more detailed
analysis of chart K1, we refer to [23], where general folds in R3 are studied. Finally, we remark
that passage past the point Q̌1 can be described in terms of well-adapted normal forms that are
derived in [1].

5.2. Transition map Π3. The transition map Π3 is constructed in chart K3 as a mapping
between the sections Σ3 and Σ4. Here, we recall that these sections correspond to Σin

3 and
Σout

3 , respectively; cf. Equation (48). Due to ε “ r2
3δ3 in K3, leaves with tε ” constantu satisfy

r3 «

b

4
Θε in Σin

3 and δ3 « 4Θb̃ε in Σout
3 .

We have the following result, the proof of which is analogous to that of Lemma 9:
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Lemma 10. For pκ, εq P p0, κ0s ˆ p0, ε0s, with κ0 and ε0 positive and sufficiently small, the
transition map Π3 is well-defined. Moreover, the restriction of Π3 to the leaf tε ” constantu is

a contraction (in r3) with contraction rate Ope´ν{κq, where ν is a positive constant.

Remark 25. Again, the map Π3 can alternatively be approximated in regime R1, i.e., by
reference to Equation (14), to which the results of [14] apply. A more detailed analysis of chart
K3 can be based on [23].

5.3. Transition map Π4. The transition map Π4 is constructed in chart K4 as a mapping
between the sections Σ4 and Σ1 which correspond to Σin

4 and Σout
4 , respectively, as defined in

Equation (57).

Lemma 11. For pκ, εq P p0, κ0s ˆ p0, ε0s, with κ0 and ε0 positive and sufficiently small, the

transition map Π4 : Σ4 Ñ Σ1, pr
in
4 , δ

in
4 ,
?

Θq ÞÑ
`

rout
4 ,

?
Θ

2 , εout
4

˘

is well-defined; here, δin
4 «

4
?

Θb̃ε and εout
4 « 8

?
Θb̃ε. In particular, as the restriction of Π4 to a leaf tε ” constantu

satisfies

rout
4 “ rin

4 `Opκq

with rin
4 «

1

2
?

Θb̃
, the map Π4 is at mostly weakly expanding.

Proof. Recall the governing equations in chart K4, as given in Equation (49), as well as the

definition of F4pr4, δ4, ε4q therein; dividing out the factor 1
2

 

b̃r2
4ε

2
4pδ4 ` ε4q

2 `Θ´
“

pδ4 ` ε4q
2 `

Λr2
4δ

2
4

‰(

from the right-hand sides in (49) and factoring out δ
1
2
4 from F4, we obtain the new

system

r14 “ κr4δ
1
2
4 F̃4pr4, δ4, ε4q,(58a)

δ14 “ δ4 ´ κδ
3
2
4 F̃4pr4, δ4, ε4q,(58b)

ε14 “ ´ε4 ´ κδ
1
2
4 ε4F̃4pr4, δ4, ε4q,(58c)

where F̃4pr4, δ4, ε4q is smooth and Op1q. Equation (58) is again a slow-fast system in standard
form; considering the layer problem

r14 “ 0,

δ14 “ δ4,

ε14 “ ´ε4,

we can estimate the transition time T4 in tε ” constantu under Π4: since δ4 « 4
?

Θ b̃ε in Σin
4

and ε4 « 8
?

Θ b̃ε in Σout
4 due to ε “ r2

4δ4ε4 in chart K4, it follows that T4 “ Op´ ln εq. Finally,

since r4δ
1
2
4 “

b

ε
ε4

and ε4 «
?

Θe´t, we may write (58a) as r14 “ κ
?
εet{2 ¨Op1q, from which the

statement of the lemma follows. �

5.4. Proof of Theorem 1. To conclude the proof of Theorem 1, we combine the above asymp-
totics of the transition maps Πi (i “ 1, 3, 4) into the Poincaré map Π, which yields

Theorem 2. For ε P p0, ε0s, with ε0 positive and sufficiently small, there exists κ0 “ κ0pε0q

such that the blown-up vector field X̄κ admits a unique family of attracting periodic orbits Γ̄κε
for κ P p0, κ0s. That family tends to Γ̄0ε as κ Ñ 0 uniformly for ε P p0, ε0s, and converges to
the singular cycle Γ̄00 as pκ, εq Ñ p0, 0q.

Proof. The proof follows from a combination of Lemmas 9, 10, and 11, in conjunction with the
contraction mapping theorem. Specifically, since ρ1 “ R “ r3, the restriction of the maps Π1

and Π3 to leaves with tε ” constantu is contracting in R, while Π4 is at most weakly expanding
in Rp“ r4q. �
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An indicative illustration of the orbit Γ̄κε, for pκ, εq positive and fixed, can be found in
Figure 14.

Theorem 1 is a direct consequence of Theorem 2 after blow-down.

6. Discussion

In the present article, we have performed a geometric analysis of a singularly perturbed two-
variable model for a cyclic AMP (cAMP) signalling system. The model is obtained from a scaling
of the three-variable Martiel-Goldbeter model [16] which is due to Liţcanu and Velázquez [15].
The planar system resulting from a quasi-steady-state assumption, Equation (5), represents a
two-parameter singular perturbation problem; the presence of two parameters κ and ε in the
model manifests in a highly degenerate, and non-standard, singular limit as pκ, εq Ñ p0, 0q which
is resolved via a combination of geometric singular perturbation theory and the desingularisation
technique known as blow-up. In particular, our approach allows us to describe in detail the
global geometry of the model in the limit as both singular perturbation parameters tend to zero;
the underlying critical manifold, consisting of one non-hyperbolic line in the “inner” region and
one normally hyperbolic curve in the “outer” region which meet at a degenerate equilibrium at
the origin, is desingularised in the process. Our resolution of those degeneracies is motivated by
a similar study of the Goldbeter-Lefever model by Kosiuk and Szmolyan [13] and permits us to
construct a family of periodic (relaxation-type) cycles for Equation (59), thus shedding light on
a novel singular perturbation problem and improving our understanding of the corresponding
oscillatory dynamics.

In future, we intend to extend our analysis to the three-variable reaction-diffusion system [15]

Rτ px̃, τq “ κpU ` PεqµpU ` εq ´ pU ` dεqR
pU ` ε

c qpU ` εq
,(59a)

Wτ px̃, τq “
bεpU ` εq2 `ΘR2U2

pU ` εq2 ` ΛR2U2
´W,(59b)

Uτ px̃, τq “ Ux̃x̃ ` ΓpW ´ Uq,(59c)

which incorporates an extracellular cAMP diffusion term, as introduced in [25]. Correspond-

ingly, R, W , and U are functions of both space x̃ and time τ , with x “
b

D
ki`kt

x̃; cf. again

Table 1. The main result of [15] is a proof for the existence of travelling pulse solutions to (59)
in one spatial dimension on the basis of singular perturbation theory, under the assumption
that the parameters κ and ε are small; moreover, asymptotic formulae are derived for these
pulse solutions in a number of relevant scaling regimes.

We expect that a geometric construction of these solutions can be based on the framework
established here, in the context of our simplified two-variable Equation (5). However, in prelim-
inary work, we have not managed to find a scaling for regime R1 that allows us to establish an
overlap with R3; recall our discussion in Section 4.4. That failing is mirrored by the fact that
a key non-linear eigenvalue problem in [15, Section 4.1.2] has to be solved numerically to allow
for the calculation of the unique velocity of travelling pulses. Hence, we believe that further
investigation is warranted.
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