
A GEOMETRIC ANALYSIS OF FRONT PROPAGATION IN A FAMILY OF

DEGENERATE REACTION-DIFFUSION EQUATIONS WITH CUT-OFF

NIKOLA POPOVIĆ

Abstract. We investigate the effects of a Heaviside cut-off on the dynamics of traveling fronts in
a family of scalar reaction-diffusion equations with degenerate polynomial potential that includes
the classical Zeldovich equation. We prove the existence and uniqueness of front solutions in the
presence of the cut-off, and we derive the leading-order asymptotics of the corresponding propaga-
tion speed in terms of the cut-off parameter. For the Zeldovich equation, an explicit solution to the
equation without cut-off is known, which allows us to calculate higher-order terms in the resulting
expansion for the front speed; in particular, we prove the occurrence of logarithmic (switchback)
terms in that case. Our analysis relies on geometric methods from dynamical systems theory and,
in particular, on the desingularization technique known as ‘blow-up.’

1. Introduction

In this article, we are concerned with front propagation in the family of ‘cut-off’ scalar reaction-
diffusion equations

∂u

∂t
=

∂2u

∂x2
+ fm(u)Θ(u− ε),(1.1)

where the potential fm is given by fm(u) = 2um(1 − u) for 0 ≤ u ≤ 1 and integer-valued m ≥ 2
and where the Heaviside cut-off function Θ introduced at the zero rest state satisfies

Θ(u− ε) ≡ 0 if u < ε and Θ(u− ε) ≡ 1 if u > ε,(1.2)

for ε > 0 small. (In other words, Θ deactivates the reaction terms in (1.1) in a neighborhood of
u = 0.) Traveling front solutions that propagate between the two rest states at 1 and 0 in (1.1) are
naturally studied by reverting to a co-moving frame: introducing the new variable ξ = x− ct and
writing U(ξ) = u(t, x), we find

U ′′ + cU ′ + fm(U)Θ(U − ε) = 0(1.3)

for the traveling front equation corresponding to (1.1), where the front U has to satisfy

lim
ξ→−∞

U(ξ) = 1 and lim
ξ→∞

U(ξ) = 0.(1.4)

Cut-offs were introduced by Brunet and Derrida in [12] to model fluctuations in propagating
fronts that arise in the large-scale (or mean-field) limit of discreteN -particle systems, with ε = N−1.
A more detailed exposition of front propagation in reaction-diffusion equations in the presence of
a cut-off can be found in [32] as well as in [37]; see also [17] and the references therein. Front
propagation in the context of Equation (1.1) without cut-off, i.e., of

∂u

∂t
=

∂2u

∂x2
+ fm(u)(1.5)
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and the corresponding traveling front equation

U ′′ + cU ′ + fm(U) = 0,(1.6)

is well-understood [4, 10, 11]; a comprehensive and more recent account is given in [21]. In partic-
ular, the regimes where m is close to 1 and 2 have been studied in detail, using geometric singular
perturbation theory [16] and matched asymptotics [9, 30, 40], while the limit of m → ∞ in (1.5)
(first considered in [31] as well as in [40] via the method of matched asymptotic expansions) was
analyzed rigorously in [16]. Most importantly, it has been shown that, for any m ≥ 1, there exists
a ‘critical’ propagation speed ccrit > 0 such that traveling front dynamics is observed for c ≥ ccrit
in (1.6). When m ≥ 2, ccrit characterizes the traveling front with the strongest (exponential in ξ)
decay at the zero rest state in (1.6), whereas fronts corresponding to c > ccrit decay at a weaker
(algebraic) rate. Moreover, the propagation speed is selected by a global bifurcation in that case.
For m = 1, (1.5) reduces to the classical Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equa-
tion [20, 26]; see also [35] and the references therein. The relevant critical speed ccrit = 2

√
2 is

determined by a local transition condition that is obtained by linearization about the zero rest
state; the decay is now merely algebro-exponential for c = ccrit, whereas it is exponential when
c > ccrit.

Front propagation in the corresponding cut-off equation was first studied by Brunet and Derrida
[12]; they found, in particular, that the leading-order correction to ccrit depends on the inverse
square of the logarithm of the cut-off parameter ε, and they conjectured that the (negative) co-
efficient of that correction is independent of the choice of cut-off function in (1.1). Subsequently,
Dumortier et al. [17] gave a rigorous proof of these findings, using a combination of standard phase
space arguments and the geometric desingularization technique known as ‘blow-up’ [14, 27]. In
addition to proving the existence and uniqueness of traveling front solutions for m = 1 in (1.1),
they also explained the asymptotic structure of the corresponding propagation speed, and they
showed that this structure is universal within a very general family of cut-off functions. The case

we consider, with m ≥ 2, is more degenerate; in particular, since dkfm
duk (0) = 0 for k = 1, . . . ,m− 1

now, the classical existence analysis of Aronson and Weinberger [4] does not apply to (1.5). In that
sense, our results complement those obtained in [17] for m = 1, where the geometric approach was
pioneered in this context of critical front propagation in the presence of a cut-off.

Our analysis of (1.1) is partly motivated by results of Benguria et al. [8], who studied the effects
of a cut-off on propagating fronts in the family of equations

∂u

∂t
=

∂

∂x

(
um−1∂u

∂x

)
+ f1(u)(1.7)

when m ≥ 2; see also [5, 6] and the references therein. We remark that the family in (1.7) represents
one of the simplest ways of incorporating density-dependent diffusivities, while still allowing for a
fairly explicit analysis of the resulting dynamics. General results on the existence and uniqueness
of propagating fronts in equations of the type in (1.7) have e.g. been obtained in [25] and [38].
Although the front speed c cannot be determined from linear considerations in that case, one can
show that the traveling front equation

(Um−1U ′)′ + cU ′ + f1(U) = 0

corresponding to (1.7) is equivalent to (1.6) under the transformation ξ 7→
∫ ξ

0 [U(s)]1−m ds [8];
cf. also [21, Theorem 3.1] or [35, Remark 12]. Since that equivalence extends to the respective cut-
off equations, our analysis remains valid even when the diffusion coefficient in (1.1) is not constant,
but obeys a power law (in u).

We remark that the restriction to the Heaviside cut-off Θ in (1.1) is made for the sake of expo-
sition; in particular, since Equation (1.1) only permits traveling front solutions when c equals the
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critical propagation speed in that case, as we will show in Section 2.4 below, we will for simplicity
write c(ε) instead of ccrit(ε) throughout. Other choices of cut-off function can be analyzed in a
similar fashion; cf. [17] for details. (However, we note that the leading-order asymptotics of the
correction to the front propagation speed that is due to a cut-off will be cut-off dependent when
m ≥ 2 in (1.1), in contrast to the universality of that asymptotics for m = 1, i.e., in the cut-off
FKPP equation [12, 17]; cf. also Section 3.2 below.) Furthermore, we will only consider integer-
valued m ≥ 2 in the following; see Section 5 for an indication of how our approach can potentially
be extended to cover non-integer exponents in (1.1).

The following theorem is the main result of this article:

Theorem 1.1. Let m ≥ 2 in (1.1), with m integer, and let ε ∈ [0, ε0], for ε0 > 0 sufficiently
small. Then, there exists a unique c(ε) such that Equation (1.3), subject to (1.4), supports a
unique traveling front solution U(ξ) that propagates with speed c(ε). Moreover, c(ε) satisfies c(ε) =
c(0)+∆c(ε), where c(0) > 0 denotes the front propagation speed in (1.6) (the corresponding equation
without cut-off) and where

∆c(ε) = γmεm + o(εm),(1.8)

with γm a negative constant.

The leading-order ε-asymptotics of ∆c in (1.8) agrees with results obtained by Benguria et al.
[8], in the context of (1.7). Moreover, it is argued in [8] that the corresponding coefficient –
i.e., the constant γm, in our notation – in the asymptotic expansion for c(ε) is computable for
all values of m in (1.6) (the traveling front equation without cut-off) for which the function that
maximizes a certain variational functional can be found in closed form. We will discuss that claim
from a geometric point of view at the end of Section 3, where we will confirm that the leading-
order coefficient γm in (1.8) cannot, in general, be evaluated analytically; see also the discussion in
Section 5. However, the only m-value for which an exact solution exists seems to be 2, in which case
(1.5) is also known as the Zeldovich equation; see e.g. [21] and the references therein. Moreover,
c(0) = 1 in that case, and the result of Theorem 1.1 can be refined, in that the expansion in (1.8)
can be taken to higher order in ε:

Theorem 1.2. For m = 2 in (1.3), the propagation speed c(ε), as defined in Theorem 1.1, satisfies

c(ε) = 1− 3ε2 + 6ε3 − 6ε4 ln ε− 21ε4 + o(ε4).(1.9)

To the best of our knowledge, only the lowest-order correction in (1.9) had been determined
explicitly before. We remark that geometric singular perturbation theory and blow-up have been
applied previously in the derivation of rigorous asymptotic expansions in a variety of settings; see
[22] as well as [35] or [36] and the references therein for details.

Remark 1. Our scaling of the reaction terms in (1.1) differs from that used in [8, 29] by a factor
of 2. Retracing the proof of Theorem 1.2 in Section 4 below, one finds that the expansion for c(ε)
can be obtained by dividing (1.9) by a factor of

√
2 in that case: c(ε) = 1√

2
− 3√

2
ε2 + O(ε3) (in

our notation); cf. also [35, Lemma 7]. While this scaling is consistent with the findings in [29,
Section VI], it does not agree with [8, Equation (16)], where the leading-order correction to c(0) is
given as −6

√
2ε2. Based on our own results (both analytical and numerical) and those of [29], we

believe [8, Equation (16)] to be in error. �

Remark 2. The exceptional nature of the Zeldovich equation was also recognized in [35], where it
was shown that, when perturbing m to m+ ε in (1.6), the leading-order coefficient in the resulting
expansion for ccrit(ε) is computable if a closed-form solution is known for ε = 0. �
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This article is organized as follows. In Section 2, we establish a geometric framework for the
analysis of (1.3). In Section 3, we build on that framework to prove Theorem 1.1. In Section 4, we
refine the estimates obtained previously, proving Theorem 1.2. Finally, in Section 5, we summarize
our findings, and we discuss possible topics for future study.

2. Geometric framework for (1.3)

In this section, we introduce the geometric framework that underlies our study of (1.1) or, rather,
of the associated traveling front problem in (1.3). However, instead of the nonlinear second-order
Equation (1.3), we will in the following consider the equivalent first-order system

U ′ = V,(2.1a)

V ′ = −cV − 2Um(1− U)Θ(U − ε),(2.1b)

ε′ = 0.(2.1c)

Here, we have appended the trivial ε-dynamics, and the prime denotes differentiation with respect to
ξ. Traveling front solutions propagating between the rest states at 1 and 0 in (1.1) now correspond
to heteroclinic orbits connecting the two equilibrium points Q−

ε := (1, 0, ε) and Q+
ε := (0, 0, ε) of

(2.1), with ε ∈ [0, ε0] and ε0 > 0 small. We note that, for U < ε, any point (U, 0, ε) is an equilibrium
of (2.1), which is due to the fact that the Heaviside cut-off Θ deactivates the reaction terms in
(2.1) in an ε-neighborhood of Q+

ε ; cf. (1.2). However, only the equilibrium at Q+
ε is of interest to

us here, as it corresponds to the original zero rest state in (1.1).
The following lemma is obtained by straightforward calculation:

Lemma 2.1. For any m ≥ 2 and ε ∈ [0, ε0] fixed, the point Q−
ε is a semi-hyperbolic equilibrium

of (2.1), with eigenvalues λ± := − c
2 ±

√
c2

4 + 2 and 0; the corresponding eigenspaces are spanned

by {(1, λ±, 0)} and {(0, 0, 1)}, respectively. The eigenvalues of the linearization at Q+
ε are given by

−c and 0 (double); the −c-eigenspace is spanned by {(1,−c, 0)}, while the 0-eigenspace is given by
span{(1, 0, 0), (0, 0, 1)}.

We remark that the partial hyperbolicity of Q−
ε is solely due to the inclusion of Equation (2.1c),

which provides one zero eigendirection. The point Q+
ε is more degenerate, and non-hyperbolic even

in (U, V )-space, regardless of whether the ε-dynamics is included; this degeneracy is again caused
by the cut-off Θ.

The proof of Theorems 1.1 and 1.2 is based on a (geometric) phase space analysis of the equations
in (2.1), in combination with the blow-up transformation

U = r̄ū, V = r̄v̄, and ε = r̄ε̄,(2.2)

which maps the (degenerate) equilibrium Q+
0 = (0, 0, 0) of (2.1) to the 2-sphere S2 =

{
(ū, v̄, ε̄)

∣∣ ū2+
v̄2 + ε̄2 = 1

}
in R

3; here, r̄ ∈ [0, r0], with r0 > 0 sufficiently small. (For our purposes, it will suffice

to consider the quarter-sphere S
2
+ that is defined by restricting S

2 to ū ≥ 0 and ε̄ ≥ 0.) The flow
of the corresponding blown-up vector field will be studied in two charts, K1 and K2, which are
defined by ū = 1 and ε̄ = 1 in (2.2), respectively.

As will become clear in the following, these charts correspond to the ‘unmodified’ and the cut-off
regimes in (2.1), respectively: while the dynamics in the inner region, i.e., near the degenerate
equilibrium at Q+

ε , will be analyzed in the ‘rescaling’ chart K2, the ‘phase-directional’ chart K1

will cover both the ‘outer’ region (the neighborhood of the equilibrium at Q−
ε ) and the transition

between the outer and inner regions (called the ‘intermediate’ region below). The dynamics ob-
tained separately in these three regions will then be combined to construct a singular heteroclinic
orbit Γ, i.e., a connection between Q−

0 and Q+
0 for ε = 0 in (2.1).
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Given any object � in (U, V, ε)-space, we will denote the corresponding blown-up object by �; in
chart Ki, i ∈ {1, 2}, that same object will generally be denoted by �i. Correspondingly, we write
(r1, v1, ε1) and (u2, v2, r2) for the respective coordinates in the two charts; in particular, setting
ū = 1 and ε̄ = 1, respectively, we find that the blow-up transformation defined in (2.2) takes the
form

U = r1, V = r1v1, and ε = r1ε1(2.3)

in the phase-directional chart K1, whereas it is given by

U = r2u2, V = r2v2, and ε = r2(2.4)

in the rescaling chart K2. Finally, the relationship between the coordinates in these charts on their
domain of overlap is described as follows:

Lemma 2.2. The change of coordinates κ12 : K1 → K2 is given by

u2 = ε−1
1 , v2 = v1ε

−1
1 , and r2 = r1ε1,

while the inverse change κ21 : K2 → K1 satisfies

r1 = r2u2, v1 = v2u
−1
2 , and ε1 = u−1

2 .

For details on the blow-up technique (geometric desingularization) in general and for its appli-
cation in this context of front propagation in the presence of a cut-off in particular, the reader is
again referred to [17] and the references therein.

2.1. ‘Outer’ region. In the ‘outer’ region, where U = O(1), the cut-off Θ has no impact on the
dynamics of (1.1), as Θ ≡ 1 for U > ε, by (1.2). Hence, (1.3) reduces to the traveling front equation
without cut-off in (1.6) there. In terms of the equivalent first-order system (2.1), we have

U ′ = V,(2.5a)

V ′ = −cV − 2Um(1− U),(2.5b)

ε′ = 0.(2.5c)

The existence of a heteroclinic connection between Q−
0 and Q+

0 , i.e., for ε = 0 in (2.5), is well-
known [10, 11]; we will denote the corresponding value of c by c0. We recall that, in the context of
Equation (1.5), that connection corresponds to a traveling front solution with propagation speed
c0; moreover, we remark that this solution is unique (up to a translation in ξ), as shown e.g. in
[30].

From Lemma 2.1, it follows that, for ε positive and fixed, the point Q−
ε has an unstable manifold

Wu(Q−
ε ) that is analytic in the state variables U and V and in the parameters c and ε as long as

U > ε. (Since the vector field in (2.1) has a discontinuity at U = ε, the smoothness of Wu(Q−
ε )

clearly does not extend beyond that point.) However, the structure of (2.5) implies that V is
independent of ε as long as c is, since any ε-dependence in (2.5b) can only enter through c. In
other words, the unstable manifold of the line ℓ− :=

⋃
ε∈[0,ε0]Q

−
ε =

{
(1, 0, ε)

∣∣ ε ∈ [0, ε0]
}
, which

is a foliation in ε with fibers Wu(Q−
ε ), depends on ε in a trivial fashion, since these fibers lie in

hyperplanes in (U, V, ε)-space, with ε constant. Hence, for ε ∈ [0, ε0], with ε0 > 0 sufficiently small,
we write c = c0 + ∆c(ε), where ∆c(ε) := c − c0 is o(1) and as yet undetermined. We can then
expand V in terms of U and c as

V (U, c) =
∞∑

j=0

1

j!

∂jV

∂cj
(U, c0)(∆c)j ,(2.6)
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where the derivatives ∂jV
∂cj

(U, c0) are smooth functions of U ∈ (ε, 1) for ε ∈ (0, ε0) and j = 0, 1, 2, . . . .

In particular, V (U, c0) corresponds precisely to the heteroclinic connection between Q−
0 and Q+

0
that is realized in the singular limit as ε → 0+ in (2.5).

Finally, we introduce a section for the flow of (2.5), as follows: for ρ ≥ ε0 positive and small, we
denote the hyperplane {U = ρ} by Σ−; specifically, we define

Σ− :=
{
(ρ, V, ε)

∣∣ (V, ε) ∈ [−V0, 0]× [0, ε0]
}
;(2.7)

here, V0 is some fixed, positive constant. We note that Σ− naturally separates the outer region
from the adjacent intermediate region that is characterized by U < O(1), as discussed in Section 2.3
below. For c fixed and ε positive, we write P− = (ρ, V −, ε) for the point of intersection of Wu(Q−

ε )
with Σ−, i.e., we suppress the dependence of this ‘entry’ point on c and ε, for convenience of
notation. The point Wu(Q−

0 ) ∩ Σ− that is obtained in the singular limit will be denoted by P−
0 ;

the restriction of Wu(Q−
0 ) to {U ≥ ρ} yields precisely the portion of the sought-after singular orbit

Γ that is located in the outer region.

2.2. ‘Inner’ region (chart K2). When U < ε, the Heaviside cut-off satisfies Θ ≡ 0; see again
(1.2). The dynamics of (2.1) in this ‘inner’ region is naturally studied in the rescaling chart K2:
the resulting cut-off equations in terms of the rescaled (u2, v2, r2)-coordinates are given by

u′2 = v2,(2.8a)

v′2 = −cv2,(2.8b)

r′2 = 0;(2.8c)

recall (2.4). Here, we have taken into account that the reaction terms are set to zero by Θ; in other
words, the cut-off simplifies the dynamics in this inner region substantially.

For r2 ∈ [0, r0] fixed, any point in {v2 = 0} is an equilibrium of (2.8); however, since only
points on the line ℓ+2 =

{
(0, 0, r2)

∣∣ r2 ∈ [0, r0]
}
can correspond to Q+

ε after blow-down (i.e., after
transformation to the original coordinates U , V , and ε), we will focus on those points here, and we
will collectively denote them by Q+

2 = (0, 0, r2).
Dividing (2.8b) by (2.8a) (formally) to obtain an equation for v2 = v2(u2), we find

dv2

du2
= −c with v2(0) = 0.(2.9)

In the singular limit, i.e., for r2 = 0, the unique solution of (2.9) is given by v2(u2) = −c0u2.
The corresponding orbit, which is the stable manifold of Q+

02
:= (0, 0, 0) ∈ ℓ+2 , gives precisely the

portion Γ+
2 of the singular heteroclinic connection Γ that lies in K2. For r2 > 0 small and (u2, v2)

bounded, Γ+
2 will perturb, in a smooth and regular fashion, to the stable manifold Ws

2(ℓ
+
2 ) of ℓ

+
2 ,

with v2(u2) = −cu2. The resulting geometry in chart K2 is illustrated in Figure 1.
By (2.4), the condition that U < ε translates into u2 < 1 in chart K2. Moreover, by regular

perturbation theory, it follows from (2.9) that v2(1) = −c0[1 + o(1)] for r2 > 0 small and c =
c0[1 + o(1)], as the only r2-dependence in (2.8) enters through c. (Here, o(1) denotes higher-order
terms in r2.) Hence, we introduce a section Σ+

2 for the flow of (2.8) via

Σ+
2 :=

{
(1, v2, r2)

∣∣ (v2, r2) ∈ [−v0, 0]× [0, ρ]
}
,(2.10)

where v0 is some appropriately defined constant, with v0 > c0; cf. again Figure 1. We note that
Σ+
2 naturally separates the inner region, in which the reaction terms in (2.1b) are cut off, from the

adjacent ‘intermediate’ region, where the cut-off has no effect on the dynamics. Given r2(= ε) > 0
and c fixed, we will denote the point of intersection of the stable manifold Ws

2(Q
+
2 ) of Q

+
2 with Σ+

2

by P+
2 = (1, v+2 , ε), i.e., the dependence of this ‘exit’ point on c and ε is again encoded implicitly
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ℓ
+

2

Σ+

2

P
+

02

Q+

02

Ws

2 (Q+

02
)

P+

2

Ws

2 (ℓ+
2

)

Γ+

2

Q
+

2

v2

r2

u2

Figure 1. The geometry in chart K2.

in the notation; recall the definition of P− in Section 2.1. Finally, we note that P+
2 reduces to

P+
02

:= (1,−c0, 0) in the singular limit, since v+2 = −c0 at (c, ε) = (c0, 0); see again Figure 1.

Remark 3. Strictly speaking, the definition of Θ in (1.2) does not extend to {U = ε}; hence, in
chart K2, Θ ≡ 0 is a priori only satisfied on {u2 < 1}. Correspondingly, Θ has to be extended
continuously (by 0) to {u2 = 1} in order for the vector field in (2.8) to be defined in Σ+

2 ; see [17,
Section 2.1] for details. �

2.3. ‘Intermediate’ region (chart K1). The ‘intermediate’ region is characterized by ε < U <

O(1), and is conveniently analyzed in the phase-directional chart K1. Substituting (2.3) into (2.1)
and recalling that again Θ ≡ 1, as in Section 2.1, we obtain

r′1 = r1v1,(2.11a)

v′1 = −cv1 − v21 − 2rm−1
1 (1− r1),(2.11b)

ε′1 = −ε1v1,(2.11c)

which is precisely the first-order system (2.5), after transformation to chart K1. The principal

equilibrium of (2.11) in this intermediate region lies at P1 = (0,−c0, 0); since U ′

U
= V

U
= v1,

see (2.3), P1 corresponds to the stable eigendirection of the linearization at Q+
0 of (2.5). (Other

equilibria of (2.11) are located on the ε1-axis; these correspond to equilibria previously found on the
u2-axis in chart K2 and are thus of no interest to us.) In other words, the blow-up transformation
in (2.2) teases apart the asymptotics close to Q+

ε and, hence, desingularizes the dynamics there
down to ε = 0.

Recalling that c0 > 0 must hold in (2.5) [10, 11], we have the following result:

Lemma 2.3. For any m ≥ 2, the point P1 is a hyperbolic saddle equilibrium of (2.11), with
eigenvalues −c0 and c0 (double). The c0-eigenspace is given by span{(0, 1, 0), (0, 0, 1)}, while the
−c0-eigenspace is spanned by {(1, 0, 0)} for m ≥ 3 and by {(c0, 1, 0)} when m = 2.
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Γ+

1
P
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1

Wu

1
(ℓ−

1
)

P
+
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P1

Σ+

1

Σ−
1

Γ−
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1
(Q−
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)

P−
1

P
−

01
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(a) m = 2.

Σ−
1

Σ+

1

Γ+

1
P

+

1

P
+

01

P1

P
−

01

P−
1

Wu

1
(ℓ−

1
)

Wu

1 (Q−
01

)

Γ−
1

ε1

v1

r1

(b) m ≥ 3.

Figure 2. The geometry in chart K1.

As in Section 2.2 above, it is convenient to introduce sections for the flow of (2.11) (or, rather,
of the continuous extension of that system to {ε1 = 1}, which is again given by (2.11)): for ρ and
v0 as in (2.7) and (2.10), respectively, we define

Σ−
1 =

{
(ρ, v1, ε1)

∣∣ (v1, ε1) ∈ [−v0, 0]× [0, 1]
}

and Σ+
1 =

{
(r1, v1, 1)

∣∣ (r1, v1) ∈ [0, ρ]× [−v0, 0]
}
.

(2.12)

We note that Σ+
1 separates the inner region from the intermediate region, and that it corresponds

to the section Σ+
2 under the change of coordinates κ12 since, by definition, u2 = 1 in Σ+

2 ; see
Lemma 2.2. To state it differently, trajectories leaving the phase-directional chart K1 under the
flow of (2.11) have to traverse Σ+

1 before entering the rescaling chartK2. Similarly, the intermediate
region is naturally separated from the outer region by the section Σ−

1 , which corresponds precisely
to Σ−, as defined in (2.7), after blow-down.

Given any orbit of (2.11), for ε positive and small, we will denote the points of intersection of
that orbit with Σ−

1 and Σ+
1 by P−

1 := (ρ, v−1 , ερ
−1) and P+

1 := (ε, v+1 , 1), respectively. (Here, we
have taken into account that r1ε1 = ε is constant; moreover, we have suppressed any parameter
dependence in the notation, as before.) Correspondingly, for (c, ε) = (c0, 0), these points will be
labeled P−

01
and P+

01
, respectively.

Finally, the singular dynamics in the intermediate region is described by the limiting systems
that are obtained by setting r1 = 0 or ε1 = 0 in (2.11), as both limits are realized for ε = 0
in (2.1) (before the blow-up). We denote the corresponding singular orbits by Γ+

1 and Γ−
1 , and

we note that these orbits lie in the hyperplanes {r1 = 0} and {ε1 = 0}, respectively, which are
invariant for (2.11). (The union of Γ+

1 and Γ−
1 will yield precisely the portion of Γ that is found

in the intermediate region, i.e., in chart K1.) We remark that κ12(P
+
01
) = P+

02
, since v+1 = v+2 , by

Lemma 2.2 and, hence, that P+
01

= (0,−c0, 1) in the singular limit. The orbit Γ+
1 , with Γ+

1 → P+
01

8



as ε1 → 1, is then easily found by solving (2.11) for r1 = 0: since the unique solution to

dv1

dε1
=

c0 + v1

ε1
with v1(1) = −c0(2.13)

is given by v1(ε1) ≡ −c0, Γ
+
1 is a straight line segment connecting P1 and P+

01
. We note that, in

general, no corresponding expression is available for Γ−
1 , since (2.11) can only be solved explicitly

for ε1 = 0 if the traveling front equation in (1.6) is solvable in closed form. (The portion of Γ−
1 lying

in the intermediate region corresponds precisely to the ‘tail’ of that traveling front or, equivalently,
to the manifold Wu(Q−

0 ), restricted to {U ≤ ρ}, in (U, V, ε)-space.) The geometry in chart K1

is summarized in Figure 2, where we have to distinguish between m = 2 and m ≥ 3 in (1.1);
cf. Lemma 2.3.

2.4. Construction of Γ. We now combine the results obtained in Sections 2.1 through 2.3 above
to demonstrate the existence of the singular heteroclinic connection Γ introduced at the beginning
of Section 2.

First, we note that the blown-up locus, which is defined by r̄ = 0 in (2.2), corresponds to
the hyperplanes {r2 = 0} and {r1 = 0} in the respective coordinate charts. Then, (2.8) and
(2.11) reduce to (2.9) and (2.13), respectively. The union of the corresponding orbits Γ+

2 and
Γ+
1 provides the desired singular connection from P1 via P+

01
(or, equivalently, via P+

02
) to Q+

02
;

recall Figures 1 and 2. (Clearly, that connection is only C0-smooth in Σ+
1 or, alternatively, in

Σ+
2 .) Finally, in {ε1 = 0}, the orbit Γ−

1 connecting Q−
01

and P1 (via P−
1 ) is given by the unstable

manifold Wu
1 (Q

−
01
) of Q−

01
, cf. again Figure 2; that manifold corresponds to the unique traveling

front solution of (1.6) with propagation speed c0, after blow-up and transformation to chart K1.
(Here, Q−

01
:= (1, 0, 0) ∈ ℓ−1 =

{
(1, 0, ε1)

∣∣ ε1 ∈ [0, ε0]
}
denotes the equivalent of Q−

0 in K1.) In sum,

the desired heteroclinic connection Γ – or, rather, the corresponding orbit Γ in blown-up phase

space – is obtained as the union of the orbits Γ
−
and Γ

+
as well as of the singularities Q

−
0 , P , and

Q
+
0 ; see Figure 3 for a schematic illustration of the global geometry of the blown-up vector field

that is induced by (2.5).

Remark 4. Since we are restricting ourselves to the Heaviside cut-off Θ in (1.1), Γ+
2 is the unique

orbit that is asymptotic to Q+
02

in K2. It then follows as in [17, Section 2.3] that the cut-off
traveling front equation in (1.3) has a solution for precisely one value of c. (As was shown in [17],
that statement is generally true for any choice of cut-off function that has an accumulation point
of positive zeros at 0.) �

Remark 5. For m = 2, the transformation in (2.3) is equivalent to the desingularization performed
in [38, Section 2], based on results by Aronson [3]: while [38] is concerned with equations of the
type of (1.7) in which the diffusivity D is density-dependent, [38, Equation (24)] corresponds to
(2.11) for D(u) = u (in our notation). However, their argumentation then proceeds via a center
manifold reduction about the (partially hyperbolic) origin, whereas our analysis focuses on the
dynamics near P1, in the intermediate region. The two approaches do not seem to be related for
higher values of m; see the discussion in [38, Section 3]. �

3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. We will first show that, for ε > 0 sufficiently small
in (2.1), the singular heteroclinic connection Γ constructed in Section 2 persists for a unique value
of c, denoted c(ε); the persistent heteroclinic will lie in the intersection of the unstable manifold
Wu(ℓ−) of ℓ− with the stable manifold Ws(ℓ+) of ℓ+ :=

⋃
ε∈[0,ε0]Q

+
ε =

{
(0, 0, ε)

∣∣ ε ∈ [0, ε0]
}
.
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r2

v2

r1
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v1

ℓ̄+

u2

Γ
−

Q
+

ε

Q
+

0

S
2
+

P

P
+

0

ℓ̄−

Q
−

ε

Q
−

0Γ
+

ε̄

v̄

ū

P
+

(a) m = 2.

r2

v2

r1

ε1

v1

ℓ̄+

u2

Γ
+

P

Γ
−

Q
+

0

Q
+

ε

ℓ̄−

Q
−

ε

Q
−

0

P
+

0

S
2
+

ε̄

v̄

ū

P
+

(b) m ≥ 3.

Figure 3. The global geometry of the blown-up vector field.

(The latter corresponds to the manifold Ws
2(ℓ

+
2 ) in chart K2, as defined in Section 2.2, after blow-

down.) To state it differently, the manifolds Wu(Q−
ε ) and Ws(Q+

ε ) will coincide for c = c(ε),
which will prove the existence of a traveling front solution with propagation speed c(ε) in the
presence of the (Heaviside) cut-off Θ; see again Figure 3 for an illustration of the small-ε dynamics
of (2.1) in blown-up phase space. Then, in a second step, we will derive a necessary condition
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for the persistence of Γ; that condition, in turn, will determine the leading-order ε-asymptotics of
c(ε), completing the proof of Theorem 1.1. The required analysis is summarized in the following
subsections; see also [17, Section 3], where a similar strategy was applied in the study of the cut-off
Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation.

3.1. Existence and uniqueness of c(ε). We set out by proving that, for ε sufficiently small,
Wu(Q−

ε ) and Ws(Q+
ε ) intersect for a unique value of c(ε) in (2.1). Furthermore, we show that

c(ε) < c(0), where c(0) equals c0, the front speed corresponding to ε = 0 in (2.5).

Proposition 3.1. [17, Proposition 3.1] For ε ∈ [0, ε0] with ε0 > 0 sufficiently small, and any
m ≥ 2, there exists a unique c(ε) such that there is a heteroclinic orbit connecting Q−

ε and Q+
ε for

c = c(ε) in (2.1). Moreover, there holds c(ε) . c(0), i.e., c(ε) ≈ c(0) as well as c(ε) < c(0).

Proof. The existence of a singular heteroclinic orbit Γ already follows from the discussion in Sec-
tion 2.4. Hence, c(ε) reduces to c0 in the singular limit as ε → 0+, and we only need to consider
ε > 0 in (2.1) here.

To prove the statement in that case, we investigate how the singular heteroclinic connection
corresponding to c(0) will perturb for ε positive and small. The argumentation is based on the
proof of [17, Proposition 3.1], to which the reader is referred for details.

Recalling the definition of Σ+
2 in (2.10) as well as the fact that the manifold Ws

2(ℓ
+
2 ) is analytic

in c and r2(= ε), one sees that the intersection of Ws
2(ℓ

+
2 ) with Σ+

2 can be written as the graph of

an analytic function φ+, with φ+(c, ε) = −c; in particular, there certainly holds ∂φ+

∂c
= −1 < 0.

(Here, we remark that, for (c, ε) fixed, φ+ equals v+2 , the v2-coordinate of P
+
2 , as defined at the end

of Section 2.2.) It then follows from regular perturbation theory that the intersection of the stable
manifold Ws(Q+

ε ) of Q
+
ε with the hyperplane {U = ε}, which is given by Φ+(c, ε) = εφ+(c, ε) after

blow-down, satisfies −3
2εc(0) < Φ+(c, ε) < −1

2εc(0) for ε sufficiently small and c ≈ c(0).
On {U ≥ ε}, the unstable manifold Wu(Q−

ε ) of Q−
ε can be estimated by considering (2.5) and

by noting that the intersection of Wu(Q−
ε ) with {U = ε} can be represented as the graph of an

analytic function Ψ+(c, ε), with ∂Ψ+

∂c
> 0. For fixed c < c(0), a standard phase plane argument

shows that

lim
ε→0+

Ψ+(c, ε) = Wu(Q−
0 ) ∩ {U = 0}

is well-defined, strictly O(1), and negative, which implies that the same must be true of Ψ+(c, ε),
for ε positive and small. Since Φ+(c, ε) > −3

2εc(0), we conclude that Φ+ > Ψ+ for c . c(0).
Finally, when c = c(0), we first note that Φ+(c(0), ε) = −c(0)ε, by the above. Since one can

show as in the proof of [17, Lemma 2.5] that the flow of (2.5) is trapped in the wedge bounded by

the curves {V = 0} and {V = −c(0)U + O(U
m+1

2 )} and since the O(U
m+1

2 )-coefficient is positive,
it follows that Ψ+(c(0), ε) > −c(0)ε must hold in {U = ε}. Therefore, Φ+ < Ψ+ for c = c(0) in
(2.1).

In sum, we find that, for any ε ∈ [0, ε0], Wu(Q−
ε ) and Ws(Q+

ε ) must connect in {U = ε} for
some value of c, which we denote by c(ε). Moreover, the above argument implies c(ε) < c(0). The

uniqueness of c(ε) follows from ∂Φ+

∂c
< 0 and ∂Ψ+

∂c
> 0 for c ≈ c(0) and ε > 0 small, which completes

the proof. �

For future reference, we note that, for fixed ε ∈ [0, ε0] and V ∈ [−V0, 0], with V0 as in (2.7), the
hyperplane {U = ε} is contained in Σ+, which is the section corresponding to Σ+

1 (or, equivalently,
to Σ+

2 ) in the original (U, V, ε)-coordinates.

3.2. Asymptotics of c(ε). In this section, we derive a necessary condition that c(ε), as defined in
Proposition 3.1, has to satisfy in order for the singular orbit Γ to persist, for ε sufficiently small,
as a heteroclinic connection between Q−

ε and Q+
ε in (2.1).
11



3.2.1. Transition map Π1 : Σ−
1 → Σ+

1 . Let Π1 denote the transition map which is defined as a
mapping, under the flow of (2.11), between the two sections Σ−

1 and Σ+
1 introduced in (2.12).

To obtain an approximation for Π1 that is sufficiently accurate to the order considered here, we
formulate a normal form system for (2.11) that can be solved explicitly to leading order. The
corresponding analysis is carried out entirely in the intermediate region, i.e., in chart K1.

We begin by casting (2.11) into a form that is more convenient for the following discussion:
replacing c with c(ε) in (2.11b), where c(ε) is defined as in Proposition 3.1, and writing c(ε) =
c(0)+ [c(ε)− c(0)] = c(0)+∆c(ε) now, we translate the point P1 into the origin by introducing the
new variable z = v1 + c(0). Under these transformations, the equations in (2.11) become

r′1 = −[c(0)− z]r1,(3.1a)

z′ = [c(0)− z](∆c+ z)− 2rm−1
1 (1− r1),(3.1b)

ε′1 = [c(0)− z]ε1.(3.1c)

Next, we divide out the (positive) factor of c(0) − z from the right-hand sides in (3.1), which
corresponds to a rescaling of time that leaves the phase portrait unchanged:

r′1 = −r1,(3.2a)

z′ = ∆c+ z − 2rm−1
1 (1− r1)

c(0)− z
,(3.2b)

ε′1 = ε1.(3.2c)

(Here, the prime now denotes differentiation with respect to a new independent variable ζ; writing
ζ− for the value of ζ in Σ−

1 , we may, without loss of generality, assume ζ− = 0.)
Finally, we simplify the equations in (3.2) via a sequence of coordinate transformations that

eliminate all but the resonant terms from (3.2b):

Proposition 3.2. Let m ≥ 2 in (3.2), and let V =
{
(r1, z, ε1)

∣∣ (r1, z, ε1) ∈ [0, ρ]× [−z0, 0]× [0, 1]
}
,

for ρ positive and sufficiently small and z0 = v0 + c0, with v0 as in (2.10). Then, there exists
a sequence of C∞-smooth coordinate transformations on V, with (r1, z, ε1) 7→ (r1, ẑ, ε1) and ẑ =
z +O(rm−1

1 ,∆c), such that (3.2) can be written as

r′1 = −r1,(3.3a)

ẑ′ = ẑ − 2

c(ε)m+1
rm−1
1 ẑm[1 +O(r1ẑ)],(3.3b)

ε′1 = ε1,(3.3c)

where O(r1ẑ) denotes a smooth function of r1ẑ.

Proof. We first remove the constant (∆c-)term from (3.2b) by defining the new variable z̃ :=
z +∆c(= v1 + c(ε)); then, we expand the right-hand side of the resulting equation to find

z̃′ = z̃ − 2rm−1
1 (1− r1)

c(0) + ∆c− z̃
= z̃ − 2

c(ε)
rm−1
1 (1− r1)

[
1 + z̃

c(ε) +
(

z̃
c(ε)

)2
+ · · ·+

(
z̃

c(ε)

)m
+ . . .

]
,(3.4)

where we note that | z̃
c(ε) | = | v1

c(ε) + 1| < 1 can be made as small as required by taking ε sufficiently

small. Next, we transform z̃ via

z̃ 7→ z̃ − 1

m

2

c(ε)
rm−1
1 ,

12



to eliminate the O(rm−1
1 )-terms from (3.4):

z̃′ = z̃ +
2

c(ε)
rm1 − 2

c(ε)2
rm−1
1 z̃ + · · · − 2

c(ε)m+1
rm−1
1 z̃m + . . . .(3.5)

The result then follows from standard normal form theory [23]: applying a sequence of near-identity
transformations to z̃ which leave r1 and ε1 unchanged, we successively remove all non-resonant
terms of order m and higher, jointly in r1 and z̃, from (3.5). (Due to the structure of (3.5), the
non-identity part in these transformations will in fact only involve terms of at least order m.) The
lowest-order term that cannot be removed via such a transformation is the resonant O(rm−1

1 z̃m)-
term. Since the coefficient of that term is not affected by any of the preceding coordinate changes,
one obtains the leading-order normal form in (3.3b), as claimed.

Similarly, one finds that any term of order 2m or higher can be eliminated from (3.5), with the
exception of higher-order resonant terms. Clearly, these terms are of the general form rk1 z̃

k+1, with
k ≥ m, which gives (3.3).

Finally, Equations (3.2b) and (3.2c) are decoupled, i.e., the ∆c-term in (3.2b) only depends on the
product r1ε1(= ε), which is constant. (Correspondingly, the definition of V contains no restriction
on ε1, apart from the trivial requirement that ε1 ∈ [0, 1], which is the equivalent, in chart K1, of
U > ε.) Hence, the sequence of normal form transformations defined above is independent of ε1 to
all orders, which implies ẑ = z +O(rm−1

1 ,∆c), completing the proof. �

We denote by P̂−
1 and P̂+

1 the points obtained from the entry and exit points P−
1 ∈ Σ−

1 and
P+
1 ∈ Σ+

1 , respectively, after application of the sequence of normal form transformations from
Proposition 3.2; for simplicity of notation, we will still write Σ−

1 and Σ+
1 , respectively, for the

corresponding sections in (r1, ẑ, ε1)-space. Finally, we note that the point P1 will stay at the origin
under these transformations.

Given the normal form system in (3.3), we can now approximate the transition map Π1 to the
order required here:

Proposition 3.3. For any m ≥ 2 and |ρẑ−| sufficiently small, the map Π1 : Σ−
1 → Σ+

1 satisfies
(ρ, ẑ−, ερ−1) 7→ (ε, ẑ+, 1), with

ẑ+ =
ρẑ−

ε

{
1 +O[(ρẑ−)m−1 ln ε]

}
.(3.6)

Proof. We recall the fact that the equations for r1 and ε1 in (3.3) decouple; the corresponding
explicit solutions are given by r1(ζ) = ρe−ζ and ε1(ζ) =

ε
ρ
eζ , respectively, where again ζ− = 0 in

Σ−
1 . Since, moreover, r1 = ε in Σ+

1 , see again (2.12), the transition ‘time’ from Σ−
1 to Σ+

1 under
the flow of (3.3) is given by ζ+ = − ln ε

ρ
.

To prove the estimate for ẑ+ in (3.6), we will first approximate Π1 by solving the leading-order
normal form system obtained by retaining only the lowest-order resonant terms in (3.3b). Then,
we will show that the error incurred in this approximation is negligible to the order considered
here. Substituting r1(ζ) into (3.3b) and omitting terms of order 2m + 1 and higher, we find that
the resulting approximate equation

ž′ = ž − 2

c(ε)m+1
rm−1
1 žm(3.7)

is a first-order Bernoulli equation [1]. The corresponding closed-form solution, which we denote by
ž(ζ), is given by

ž(ζ) =

[
c(ε)m+1e(m−1)ζ

2(m− 1)ρm−1ζ + Cmc(ε)m+1

] 1
m−1

.(3.8)
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Here, Cm is a constant of integration that can be fixed by imposing the requirement that ž(ζ−) = ẑ−:
recalling ζ− = 0, we find Cm = (ẑ−)−(m−1), which we substitute back into (3.8). Expanding the
result for |ρẑ−| small, we have

ž(ζ) = ẑ−eζ
{
1 +O[(ρẑ−)m−1ζ]

}
(3.9)

(after some simplification). Evaluating (3.9) at ζ+ = − ln ε
ρ
, we obtain (3.6), as claimed.

It remains to show that, for any ζ ∈ [0, ζ+], the error |ẑ(ζ)− ž(ζ)| that results from replacing ẑ

with ž is irrelevant to leading order. To that end, we make use of a version of Gronwall’s Lemma,
as stated in Appendix A: setting t ≡ ζ, x ≡ ẑ, and y ≡ ž in Lemma A.1 and denoting the
corresponding right-hand sides in (3.3b) and (3.7) by f and g, respectively, we find that (A.1)
becomes

|g(ζ, ž2)− g(ζ, ž1)| =
∣∣∣∣(ž2 − ž1)

(
1− 2

c(ε)m+1
r1(ζ)

m−1
m−1∑

k=0

žk2 ž
m−1−k
1

)∣∣∣∣.

Now, it follows from (3.3a) and (3.7) that (r1ž)
′ = − 2

c(ε)m+1 (r1ž)
m, which, in combination with

(r1ž)(0) = ρẑ−, implies (r1ž)(ζ) = ρẑ−[1+o(1)] for |ρẑ−| sufficiently small. Hence, (A.2) is satisfied
with (for instance) C = 1 + 4m

c(ε)m+1 |ρẑ−|m−1. Similarly, we can estimate

|f(ζ, ẑ)− g(ζ, ẑ)| =
∣∣∣ 2

c(ε)m+1
rm1 ẑm+1[1 +O(r1ẑ)]

∣∣∣ ≤ 4

c(ε)m+1

|ρẑ−|m+1

r1
,

which shows (A.3), with ϕ(ζ) = 4
c(ε)m+1

|ρẑ−|m+1

ρ
eζ . Now, making again use of ẑ(0) = ẑ− = ž(0), we

find that (A.4) reduces to

|ẑ(ζ)− ž(ζ)| ≤ 1

m

(ρẑ−)2

ρ
eζ
[
e

4m
c(ε)m+1 |ρẑ−|m−1ζ − 1

]
= eζ

(ρẑ−)2

ρ
O[(ρẑ−)m−1ζ].(3.10)

In particular, evaluating (3.10) at ζ+, we have |ẑ+ − ž+| = ρẑ−

ε
O[(ρẑ−)m ln ε], which is of higher

order when compared to (3.6). This completes the proof of Proposition 3.3. �

We remark that the resonant terms in (3.3b) will typically give rise to logarithmic terms (in
ε) in the transition through chart K1, which can be seen intuitively as follows. Approximating

the solution to (3.3b) iteratively, we find the lowest-order approximation ẑ(0)(ζ) = ẑ(0)eζ for ẑ.

Recalling r1(ζ) = ρe−ζ and substituting ẑ(0) back into (3.3b), we obtain

ẑ(1)
′
= ẑ(1) − 2

c(0)m+1
ρm−1(∆c)meζ ,

which has the solution

ẑ(1)(ζ) = ẑ(0)eζ − 2

c(0)m+1
ρm−1(∆c)mζeζ .(3.11)

Evaluating ẑ(1) in Σ+
1 , i.e., at ζ+ = − ln ε

ρ
, we find that the (∆c)mζeζ-term in (3.11) will result

in a (∆c)m ln ε
ε
-contribution in ẑ(1)(ζ+). (The fact that ∆c = O(εm), as shown in Proposition 3.6

below, implies that the actual order of that term will be O(εm
2−1 ln ε).) Continuing this iteration,

one can derive the asymptotics of ẑ(ζ+) to arbitrary order. In particular, higher-order resonant
terms in (3.4), i.e., terms of the form rk1 ẑ

k+1 with k ≥ m, will generate higher-order logarithmic
contributions. For a more general discussion of these so-called switchback terms, the reader is
referred to [28]; a detailed analysis from a geometric point of view can be found in [33].

Finally, we note that the normal form system in (3.3) – and, specifically, Equation (3.3b) –
depends on the thus far unspecified correction ∆c(ε) to c(0). That correction can be determined

by imposing the condition that P̂−
1 is mapped to P̂+

1 by Π1, which is equivalent to the persistence
14



of the singular orbit Γ for ε > 0 sufficiently small. Hence, we need to approximate the points P̂−
1

and P̂+
1 or, rather, the corresponding ẑ-coordinates ẑ− and ẑ+, to the order considered here. In

particular, it will follow that ρẑ− = o(1) for ρ sufficiently small, in accordance with the a priori
assumption made in the statement of Proposition 3.3.

Remark 6. Alternatively, the planar (r1, z)-subsystem in (3.2) can be transformed, via a C∞-
smooth sequence of coordinate transformations, into a three-term normal form that coincides with
the leading-order truncation in (3.7) up to an additional higher-order term [13]; see also [15] and
the references therein. However, we will not pursue this approach here. �

3.2.2. Estimates for P̂−
1 and P̂+

1 . We recall the definition of the manifold Ws
2(Q

+
2 ) from Section 2.3,

as well as the fact that the point of intersection P+
2 of Ws

2(Q
+
2 ) with Σ+

2 is a regular perturbation of

P+
02
, i.e., of Γ+

2 ∩Σ+
2 , for r2(= ε) fixed and sufficiently small. Since P̂+

1 = κ21(P̂
+
2 ) must hold when

c = c(ε) for the singular heteroclinic connection Γ to persist, an estimate for ẑ+ can be obtained
from v+2 , after transformation to chartK1, by applying the sequence of normal form transformations

defined in the proof of Proposition 3.2. Similarly, to approximate P̂−
1 , we will estimate the point of

intersection P− of the manifold Wu(Q−
ε ) with Σ−, see (2.7), which we will then transform to chart

K1 to find an estimate for z− and, consequently, for ẑ−.
The required approximation for Wu(Q−

ε ) is naturally obtained from the expansion for V (U, c(ε))
in (2.6). To the accuracy considered here, it suffices to retain the linear term in ∆c in that expansion
– the coefficient of which is given by ∂V

∂c
(U, c(0)) – in addition to the leading-order term V (U, c(0)).

However, due to the fact that no exact traveling front solution to (1.1) is known for m ≥ 3,
no closed-form expressions are available, in general, for either V (U, c(0)) or its derivatives with
respect to c. Therefore, we will derive a small-U approximation that is valid in the overlap domain
between the outer and intermediate regions. Here, we will argue in the original (U, V, ε)-coordinates
instead of in chart K1, as the argument is algebraically simpler. (Conceptually, V (U, c(0)) and its
derivatives could of course be approximated in K1, as that chart covers the entire phase space of
(2.1) for U ≥ ε, down to and including the limit as ε → 0+; cf. the proof of Proposition 3.1.)

Lemma 3.4. For any m ≥ 2 and U ∈ [0, U0], with U0 > 0 sufficiently small, there holds

V (U, c(0)) = −c(0)U +
1

m

2

c(0)
Um +O(Um+1)(3.12)

and

∂V

∂c
(U, c(0)) =

{
ν2 +

(
2

c(0)2
ν2 − 1

)
U +O(U2) for m = 2,

νm − U +O(Um−1) for m ≥ 3
(3.13)

in (2.6), where νm = ∂V
∂c

(0, c(0)) is a positive constant.

Proof. Dividing (2.5b) formally by (2.5a), we find

V
dV

dU
= −cV − 2Um(1− U).(3.14)

We note that V (U, c(0)) is smooth in U ; in fact, since Wu(Q−
0 ) connects to Ws(Q+

0 ) for c = c(0)
in (2.5), V (0, c(0)) = 0 must hold. Hence, we may make the Ansatz V (U, c(0)) =

∑∞
j=1 υjU

j ,

which we then substitute into (3.14) to determine the coefficients υj recursively. In sum, we have
υ1 = −c(0), υj = 0 for j ∈ {2, . . . ,m− 1}, as well as υm = 1

m
2

c(0) , which gives (3.12).

Next, we differentiate (3.14) with respect to c and evaluate the resulting variational equation at
(U, c(0)) to obtain

V (U, c(0))
∂

∂U

(∂V
∂c

(U, c(0))
)
= −V (U, c(0))−

[
c(0) +

∂V

∂U
(U, c(0))

]∂V
∂c

(U, c(0)).(3.15)

15



Making use of (3.12) in (3.15) and rearranging, we find

∂

∂U

(∂V
∂c

(U, c(0))
)
=

2

c(0)2
Um−2

[
1 +O(Um−1)

]∂V
∂c

(U, c(0))− 1.

Assuming a series expansion for ∂V
∂c

(U, c(0)), as before, we obtain (3.13), as claimed, where the

leading-order term ∂V
∂c

(0, c(0)) in the series, i.e., the constant νm, has to remain undetermined.
However, as in the proof of Proposition 3.1, a standard phase plane argument (performed by
evaluating (3.14) in {U = 0}) shows that νm > 0, as claimed. �

Given the equivalence (by definition) of (3.14) and (2.5), V (U, c(0)) again corresponds to the
portion of the singular heteroclinic connection Γ that is located in the outer region, i.e., in {U ≥ ρ};
cf. the discussion in Section 2.4. Moreover, we remark that, while Equation (3.14) is a priori singular
at V = 0, the proof of Lemma 3.4 implies that this singularity is removable, as V (U, c(0)) ∝ U ;

similarly, ∂V
∂c

(U, c(0)) is C∞-smooth for U ∈ (0, 1). However, the smoothness of ∂jV
∂cj

, with j ≥ 2,

cannot be guaranteed: thus, form = 2, ∂2V
∂c2

(U, c(0)) becomes unbounded as U → 0+; see Lemma 4.3
below.

Next, we substitute the result of Lemma 3.4 into the expansion for V (U, c(ε)) in (2.6) to obtain
the required estimates for ẑ− and ẑ+:

Lemma 3.5. For any m ≥ 2 and ρ ∈ (ε, 1), with ε ∈ (0, ε0] and ∆c sufficiently small, the points

P̂−
1 = (ρ, ẑ−, ερ−1) and P̂+

1 = (ε, ẑ+, 1) satisfy

ẑ− = ẑ−(ρ,∆c) =
νm

ρ
∆c[1 + o(1)](3.16)

and

ẑ+ = ẑ+(∆c, ε) = − 1

m

2

c(0)
εm−1[1 + o(1)],(3.17)

respectively, where νm is defined as in Lemma 3.4 and o(1) denotes higher-order terms that are
C∞-smooth in ρ and ∆c and in ∆c and ε, respectively.

Proof. Recalling the definition of Σ− in (2.7), as well as of P− = (ρ, V −, ε), we first evaluate (3.12)
in Σ− and then substitute the result into (2.6) to find

V − = V (ρ, c(ε)) = V (ρ, c(0)) +
∂V

∂c
(ρ, c(0))∆c+O[(∆c)2]

= −c(0)ρ
[
1− 1

m

2

c(0)2
ρm−1 +O(ρm)

]
+ νm[1 +O(ρ)]∆c+O[(∆c)2],

by Lemma 3.4. (Here, the O[(∆c)2]-terms are C∞-smooth, uniformly in ∆c, if ρ is restricted to
compact subsets of (0, 1).) Then, we translate that estimate into chart K1: since V − = ρv−1 ,
cf. (2.3), we obtain v−1 = V −ρ−1 for the v1-coordinate of P−

1 , which gives

z− = v−1 + c(0) =
1

m

2

c(0)
ρm−1[1 +O(ρ)] +

νm

ρ
[1 +O(ρ)]∆c+O[(∆c)2](3.18)

in Σ−
1 . Next, applying the sequence of normal form transformations defined in the proof of Propo-

sition 3.2 to (3.18), we find that the O(ρm−1)-terms cancel in z̃− = z−+∆c− 1
m

2
c(0)ρ

m−1. Similarly,

the O(ρm)-terms in (3.18) are removed after transformation to (r1, ẑ, ε1)-coordinates, as {ẑ = 0}
corresponds to the rectified stable manifold Ws

1(P̂1) of the origin P̂1 when ∆c = 0: since that
manifold is invariant for (3.3), it follows that ẑ−(ρ, 0) = 0 must hold. Finally, since all the above
transformations are near-identity, we find that ẑ− has to satisfy (3.16), as stated. In particular,
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since V − = V (ρ, c(ε)) is smooth in ρ and ∆c, by Section 2.1, and since the sequence of transfor-
mations that takes V − to ẑ is smooth, ẑ− must be smooth in ρ and ∆c (at least as long as ρ is
positive).

To estimate ẑ+, we recall that, necessarily, P+
1 = κ21(P

+
2 ) in the transition through the interme-

diate region for the singular heteroclinic orbit Γ to persist when c = c(ε) in (2.1). Correspondingly,
we will first consider the point P+

2 , which we will then transform to chart K1. Now, our discussion
of the K2-dynamics in Section 2.2 implies that v+2 = −c(ε). Since, moreover, v+1 = v+2 , cf. Sec-
tion 2.3, it follows that z+ = −∆c, which, together with r1 = ε in Σ+

1 , yields z̃+ = − 1
m

2
c(ε)ε

m−1.

Performing once again the sequence of near-identity transformations from Proposition 3.2 and re-
calling ∆c = o(1), we find (3.17) (to leading order in ∆c and ε), as claimed. Finally, the smoothness
of ẑ+ is due to the fact that both v+1 = v+2 and the coordinate transformations defined in the proof
of Proposition 3.2 are smooth in ∆c and ε. �

We note that the estimates in (3.16) and (3.17), in combination with νm > 0 and ∆c < 0 – recall
Lemma 3.4 and Proposition 3.1, respectively – imply that both ẑ− and ẑ+ are negative.

Remark 7. For m = 2, the expansions in (3.12) truncate, i.e., the leading-order approximations
V (U, c(0)) = −U +U2 and ∂V

∂c
(U, c(0)) = ν2+

(
2

c(0)2
ν2−1

)
U are exact in that case; see Lemma 4.3,

where we will show in particular that ν2 =
1
3 . �

Remark 8. The estimate for ẑ+ in (3.17) could be refined by calculating the sequence of normal
form transformations in Proposition 3.2 explicitly to higher order. However, as will become clear
in the following, the accuracy provided by Lemma 3.5 is sufficient to the order considered here; in
particular, explicit knowledge of the leading-order O(εm−1)-term in (3.17) is crucial for the proof
of Theorem 1.1. �

3.2.3. End of proof of Theorem 1.1. Finally, we make use of Lemma 3.5 to solve the approximate
normal form system that is obtained from (3.3) by neglecting the O(2m+ 1)-terms in (3.3b). The

corresponding solution will yield the desired condition that c(ε) has to satisfy for P̂−
1 to be mapped

to P̂+
1 under the flow of (3.3), i.e., for Π1(P̂

−
1 ) = P̂+

1 to hold, to leading order. That condition
will fix the leading-order ε-asymptotics of ∆c, as stated in (1.8), thus completing the proof of
Theorem 1.1.

Proposition 3.6. For Γ to persist when ε ∈ (0, ε0] in (2.1), ∆c must necessarily satisfy

∆c(ε) = γmεm + o(εm),(3.19)

with γm a negative constant.

Proof. Given the approximation for the transition map Π1 derived in Proposition 3.3, it only
remains to impose the requirement that ẑ(ζ+) = ẑ+ in (3.6), which will allow us to determine the
leading-order ε-asymptotics of ∆c.

Substituting the estimates for ẑ− and ẑ+ from Lemma 3.5 into (3.6) and recalling ζ+ = − ln ε
ρ
,

we find the following necessary condition for the existence of a connecting orbit between P̂−
1 and

P̂+
1 :

− 1

m

2

c(0)
εm−1[1 + o(1)] = ẑ+(∆c, ε) =

ρẑ−(ρ,∆c)

ε

{
1 +O[(ρẑ−(ρ,∆c))m−1 ln ε]

}

=
νm∆c

ε

[
1 + o(1)

]
.

(3.20)

(Here, the o(1)-terms in (3.20) are smooth in ∆c and ε, by Lemma 3.5, for ρ in compact subsets of
(0, 1).) The as yet undetermined parameter ∆c is implicitly defined by the relation in (3.20); since
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that relation is trivially satisfied at (∆c, ε) = (0, 0) and since νm > 0, by Lemma 3.4, it follows
from the Implicit Function Theorem that a solution ∆c = ∆c(ε) exists for (∆c, ε) small. Although
this solution might a priori be ρ-dependent, no such dependence is possible conceptually, as c(ε)
cannot depend on the (arbitrary) definition of the section Σ−

1 in (2.12). In particular, since (3.20)
is valid for any ρ positive and small, we may pass to the limit of ρ → 0+ to obtain

∆c

εm
= − 1

m

2

c(0)

1

νm
≡ constant(3.21)

to leading order, where the constant, which we denote by γm ≡ γ(m, c(0), νm), is O(1). Finally,
νm > 0 implies that γm is negative (as stated also in Proposition 3.1), which completes the proof. �

A detailed analysis of the condition in (3.20) suggests that the o(εm)-term in (3.19) will actually
be of the order O(εm+1), as well as that the lowest-order logarithmic term in ∆c will enter at

O(εm
2
ln ε). (This intuition will be confirmed explicitly in Section 4 for m = 2.) Similarly, expand-

ing (3.8) in terms of ε and making use of ζ+ = − ln ε + O(1) as well as of ∆c(ε) = O(εm), one

confirms that the lowest-order logarithmic term in ẑ+ is of the order O(εm
2−1 ln ε), as postulated

already in Section 3.2.1. Finally, we conjecture that ∆c is a C∞-smooth function of ε and ln ε:
since, by standard results on differentiability with respect to initial conditions and parameters [2],
the solution ẑ(ζ) of (3.3b) is smooth in ẑ− as well as in ∆c, and since ẑ− and ẑ+ are smooth in their
arguments, by Lemma 3.5, we expect the relation in (3.20) to be smooth in ε and ln ε. However, a
fully rigorous discussion of these questions for general m ≥ 3 in (1.1) has to be left for future study.

We remark that the negativity of γm in (3.19) agrees with the more general argumentation given
in [8, 29], which implies that a cut-off slows down ‘pulled’ and ‘pushed’ fronts, but that it speeds
up ‘bistable’ fronts. By that classification, the decrease in propagation speed that is caused by the
cut-off in (1.1) is due to fm(u) > 0 for u < ε, as is generally the case for fronts propagating into
unstable states. However, while the presence of a cut-off induces a logarithmic correction in the
propagation speed for m = 1 in (1.1), as shown e.g. in [12, 17], the leading-order asymptotics of ∆c

obeys a power law in the degenerate case discussed here, with m ≥ 2, as was also observed in [8, 29]
in the pushed and bistable propagation regimes. Moreover, while that asymptotics is universal in
the pulled regime, its counterpart in (3.19) is cut-off dependent, as the estimate for ẑ+ in (3.17)
depends crucially on the choice of (Heaviside) cut-off Θ in (1.1); recall the proof of Lemma 3.5.
A systematic analysis of the bistable propagation regime, from a geometric point of view, can be
found in [18], while the pushed regime will be studied in the upcoming article [19].

Remark 9. Intuitively, the result of Proposition 3.6 can be seen as follows: retaining only the
leading-order terms in (3.2b), we find

z′ = ∆c+ z − 2

c(0)
rm−1
1 ,

which, together with r1(ζ) = ρe−ζ and z(0) = 1
m

2
c(0)ρ

m−1 (to lowest order), gives the leading-order

solution

z(ζ) = ∆c(eζ − 1) +
2

c(0)

ρm−1

m
e−(m−1)ζ .

Then, the requirement that z+ = z(ζ+), in combination with ζ+ = − ln ε + O(1) and z+ = −∆c,
yields a necessary condition on ∆c. Solving that condition, we have ∆c = O(εm) to leading order,
as claimed. �

3.3. Computability of ∆c(ε). Finally, we investigate the question of whether the correction ∆c =
c(ε)−c(0) can be evaluated exactly; in particular, we discuss the computability of the leading-order
coefficient γm in (3.19). First, we make use of Proposition 3.6, i.e., of the fact that the asymptotics
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of ∆c(ε) is now known to lowest order, to rewrite the expansion for Wu(Q−
ε ) in (2.6) in terms of

U and ε:

V (U, c(ε)) =

∞∑

j=0

1

j!

∂jV

∂cj
(U, c(0))

[
γmεm + o(εm)

]j
=:

m∑

j=0

Vj0(U)εj + o(εm).(3.22)

(The notation in (3.22), with Vjk denoting the coefficient of εj(ln ε)k in the expansion, is chosen for
consistency with Section 4 below, where the lowest-order logarithmic term corresponding to k = 1
will be evaluated explicitly.) Although the coefficient functions Vj0 cannot be determined exactly
in general, one can derive their small-U asymptotics as follows:

Proposition 3.7. Let m ≥ 2, let (U, ε) ∈ [0, U0] × [0, ε0], with U0 and ε0 positive and small, and
let c(ε) be defined as in Proposition 3.1. Then, the coefficient functions Vj0 in (3.22) satisfy

V00(U) = −c(0)U +
1

m

2

c(0)
Um +O(Um+1),(3.23)

Vj0(U) ≡ 0 for j ∈ {1, . . . ,m− 1}, and

Vm0(U) =

{[
ν2 +

(
2

c(0)2
ν2 − 1

)
U +O(U2)

]
γ2 for m = 2,[

νm − U +O(Um−1)
]
γm for m ≥ 3,

(3.24)

where νm and γm are defined as in Lemma 3.4 and Proposition 3.6, respectively.

Proof. Since V00(U) = V (U, c(0)), Lemma 3.4 implies that V00 is regular, and that its small-U
asymptotics is as given in (3.23); recall (3.12). Moreover, it follows from (3.22) by inspection that
Vj0 is identically zero for j ∈ {1, . . . ,m− 1}.

Hence, the only higher-order term making a contribution in (3.22), to the accuracy considered
here, is the Vm0-term, and it remains to show (3.24). To that end, we note that

Vm0(U) =
1

1!

∂V

∂c
(U, c(0)) · γm,

see (3.22). Given the (regular) U -asymptotics of ∂V
∂c

(U, c(0)), as stated in (3.13), we immediately
find (3.24), which completes the proof. �

While Proposition 3.7 yields an approximation for V (U, c(ε)) that is accurate up to an o(εm)-
error, it does not automatically imply that the O(εm)-coefficient γm in ∆c can be evaluated: the
expansion for Vm0 in (3.24) depends on the as yet undetermined constant νm. However, by (3.21),
γm is computable only if νm is.

By contrast, expanding V (U, c(ε)) about U = 1, i.e., consideringWu(Q−
ε ) close to the equilibrium

point Q−
ε , we find V (W, c(0)) = −λ+W + O(W 2), with W = 1 − U . (Here and in the following,

λ± = − c(0)
2 ±

√
c(0)2

4 + 2; see Lemma 2.1.) As in the proof of Lemma 3.4, it now follows that
∂V
∂c

(W, c(0)) satisfies the variational equation

∂

∂W

(∂V
∂c

(W, c(0))
)
=

λ−
λ+

1

W
[1 +O(W )]

∂V

∂c
(W, c(0)) + 1,(3.25)

which has the leading-order solution

∂V

∂c
(W, c(0)) =

λ+

λ+ − λ−
W + ωW

λ−
λ+ ,(3.26)

with ω a constant of integration. Since ∂V
∂c

(W, c(0)) must remain bounded (and, indeed, go to

zero) as W → 0+, it follows from λ−
λ+

< 0 that the only admissible solution is obtained for ω = 0
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in (3.26). Reverting to the original (U, V )-coordinates, we find ∂V
∂c

(U, c(0)) = − λ+

λ+−λ−
(U − 1) for

U ≈ 1, where the coefficient λ+

λ+−λ−
is computable if c(0) is known.

However, knowledge of that coefficient does not necessarily allow one to calculate the constant
νm, since both (3.26) and its small-U analogue in (3.13) are only valid locally, i.e., in a neighborhood
about 1 and 0, respectively. In other words, there seems to be no way of relating the two expansions
in general, which implies that γm is certainly not computable if no explicit solution to the traveling
front equation without cut-off in (1.6) is available.

To see why γm can, in principle, be evaluated exactly in cases where such a solution can be
found, we recall the proof of Lemma 3.4 and, in particular, the variational equation in (3.15),
which determines ∂V

∂c
(U, c(0)). Here, it is important to note that (3.15) is a priori exact, and that

an error is introduced only by the fact that, generally, V (U, c(0)) has to be approximated, as was
done in Lemma 3.4. Making use of (3.14) (with c replaced by c(0)) and rearranging, we may rewrite
(3.15) as

∂

∂U

(∂V
∂c

(U, c(0))
)
=

2Um(1− U)

V (U, c(0))2
· ∂V
∂c

(U, c(0))− 1,(3.27)

where we additionally require ∂V
∂c

(1, c(0)) = 0, as before. For values of m for which V (U, c(0)) is
known explicitly, (3.27) can be integrated using the variation-of-constants formula, i.e., standard
results on differentiability with respect to parameters [2] imply that the variational equation for
(3.14) certainly has a solution. As a consequence, ∂V

∂c
(U, c(0)) can be found in closed form provided

the integrals that arise in solving (3.27) can be evaluated analytically. This observation seems
to agree with the findings of Benguria et al. in [8], where it is claimed that the leading-order
coefficient in ∆c is computable for all values of m for which the function that maximizes a certain
variational functional can be found; see also the discussion in Section 5 below. Even in cases where
an explicit solution to Equation (1.6) – and, consequently, V (U, c(0)) – is available, there seems
to be no guarantee that (3.27) can also be integrated in closed form, i.e., that ∂V

∂c
(U, c(0)) can be

determined exactly and evaluated at U = 0 to give νm. Whether this restriction is intrinsic, or
merely of a methodological nature, must remain open here.

To the best of our knowledge, the only m-value for which an explicit traveling front solution to
(1.5) is known is, in fact, m = 2. We note that the leading-order approximation in (3.26) is exact,
and that it agrees with (3.13) in that case, as ∂V

∂c
(U, 1) = −1

3(U − 1); cf. Proposition 4.6 below.

Remark 10. As stated in the proof of Proposition 3.6, the ε-asymptotics of ∆c in (3.19) has
to be independent of ρ; correspondingly, it was derived here by taking the limit of ρ → 0+ in
the definition of Σ−

1 . Alternatively, (3.19) can also be obtained by concatenating the dynamics
in the outer and intermediate regions for ρ small, but fixed. Specifially, taking the sequence of
normal form transformations defined in Proposition 3.2 to a sufficient degree of accuracy, one can

eliminate explicitly any ρ-dependence from P̂−
1 , with the notable exception of terms that involve

ln ρ (and powers thereof); however, those terms can be removed by refining the approximation
for the transition map Π1 in Proposition 3.3 accordingly and by retaining the corresponding ln ε-
dependent terms in the expansion for V (U, c(ε)) in (3.22). (For general m ≥ 3, the lowest-order
such term will most probably correspond to Vm21; recall the discussion in Section 3.2.3.) This
approach, though conceptually equivalent to the one adopted here, is more involved algebraically
and will therefore not be pursued further. �

4. Proof of Theorem 1.2

In this section, we discuss in detail the case where m = 2 in (1.1). That case is of particular
interest, as it corresponds to the only value of m for which both the critical front speed and the
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corresponding front solution to the traveling front equation without cut-off in (1.6) are known
explicitly [35], with

U(ξ) =
1

1 + eξ
for c(0) = 1(4.1)

in (1.3). (One checks easily that (4.1) satisfies limξ→−∞ U(ξ) = 1 and limξ→∞ U(ξ) = 0, as required
in (1.4).) Explicit knowledge of both the front and its propagation speed will allow us to refine the
result of Theorem 1.1 and to obtain the ε-asymptotics of ∆c up to and including terms of the order
O(ε4), as stated in Theorem 1.2.

We begin by recalling some of the relevant equations from Section 2 for convenience here: when
m = 2, the cut-off first-order system in (2.1) reads

U ′ = V,(4.2a)

V ′ = −cV − 2U2(1− U)Θ(U − ε),(4.2b)

ε′ = 0.(4.2c)

For future reference, we note that the singular heteroclinic orbit Γ corresponding to (4.1) – i.e.,
the connection between the two equilibria Q−

0 and Q+
0 , for ε = 0 in (4.2) – is known explicitly in

this case, with V (U) = U(U − 1) [35] for 0 ≤ U ≤ 1, as can also easily be seen from (4.1).
Applying the blow-up transformation in (2.2) to (4.2), we find

u′2 = v2,(4.3a)

v′2 = −cv2,(4.3b)

r′2 = 0(4.3c)

for the relevant cut-off equations in chart K2, as given in (2.8). Similarly, the dynamics in K1 is
described by

r′1 = r1v1,(4.4a)

v′1 = −cv1 − v21 − 2r1(1− r1),(4.4b)

ε′1 = −ε1v1;(4.4c)

recall (2.11).

4.1. Asymptotics of c(ε). The existence of c(ε), as defined in Theorem 1.1, has already been
shown in Section 3.1, since the proof of Proposition 3.1 is equally valid for m = 2. Hence, we only
need to prove the corresponding ε-asymptotics of ∆c, as stated in (1.9). To that end, we retrace
the argumentation from Section 3.2, which we adapt as required; in particular, given the closed-
form solution to the traveling front problem without cut-off in (4.1), many estimates become more
explicit now. To avoid unnecessary repetition, we will omit some of the details in the following.

4.1.1. Transition map Π1 : Σ−
1 → Σ+

1 . For m = 2, the transformed equations in (3.2), with
c(ε) = 1 +∆c(ε) and z = v1 + 1, are given by

r′1 = −r1,(4.5a)

z′ = ∆c+ z − 2r1(1− r1)

1− z
,(4.5b)

ε′1 = ε1.(4.5c)

In analogy to Proposition 3.2, we now have the following result on the normal form system corre-
sponding to (4.5):
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Proposition 4.1. Let V =
{
(r1, z, ε1)

∣∣ (r1, z, ε1) ∈ [0, ρ] × [−z0, 0] × [0, 1]
}
, for ρ positive and

sufficiently small and z0 defined as before. Then, there exists a sequence of C∞-smooth coordinate
transformations on V, with (r1, z, ε1) 7→ (r1, ẑ, ε1) and ẑ = z + O(r1,∆c), such that (4.5) can be
written as

r′1 = −r1,(4.6a)

ẑ′ = ẑ − 2

(1 + ∆c)3
r1ẑ

2[1 +O(r1ẑ)],(4.6b)

ε′1 = ε1,(4.6c)

where O(r1ẑ) denotes a smooth function of r1ẑ.

Proof. The proof is similar to that of Proposition 3.2; however, since we are interested in deriv-
ing the higher-order asymptotics of ∆c now, we calculate the required sequence of normal form
transformations explicitly to higher order than was done in Section 3.

In particular, noting that the lowest-order resonance in (4.5) is found at O(r1z
2), after expansion

of the third term in (4.5b), one can eliminate all non-resonant terms up to and including order 3
via the following sequence of coordinate transformations:

z 7→ z̃ := z +∆c 7→ z̃ − 1

1 + ∆c
r1 7→ z̃ +

2

3

1

1 + ∆c

[
1− 1

(1 + ∆c)2

]
r21 −

2

(1 + ∆c)2
r1z̃

7→ z̃ − 1

2

1

(1 + ∆c)3

[
1− 1

(1 + ∆c)2

]
r31 +

1

(1 + ∆c)2
r21 z̃.

(4.7)

Applying a sequence of near-identity transformations (as defined in Proposition 3.2 for general
m ≥ 3) to the resulting z̃-equation

z̃′ = z̃ − 2

(1 + ∆c)3
r1z̃

2 +O(4),(4.8)

one obtains the normal form in (4.6b), as claimed. (As in the proof of Proposition 3.2, we note
that the non-identity part in these transformations is actually of at least order 4, jointly in r1 and
z̃.) �

Finally, to approximate the transition map Π1 : Σ−
1 → Σ+

1 to the order considered here, we
require the following (refined) analogue of Proposition 3.3:

Proposition 4.2. For m = 2 and |ρẑ−| sufficiently small, the map Π1 : Σ−
1 → Σ+

1 satisfies
(ρ, ẑ−, ερ−1) 7→ (ε, ẑ+, 1), with

ẑ+ =
ρẑ−

ε

{
1 +

2

(1 + ∆c)3
ρẑ− ln

ε

ρ
+O

[
(ρẑ−)2(ln ε)2

]}
.(4.9)

Proof. As in the proof of Proposition 3.3, we solve the leading-order normal form system that is
obtained by retaining only the lowest-order resonant terms in (4.6b), which gives

ž(ζ) =
c(ε)3eζ

2ρζ + C2c(ε)3
;(4.10)

cf. (3.8). From ζ− = 0 and ž(0) = ẑ−, it follows as before that the constant C2 in (4.10) satisfies
C2 = (ẑ−)−1. Expanding (4.10) for |ρẑ−| small, we find

ž(ζ) = ẑ−eζ
{
1− 2

(1 + ∆c)3
ρẑ−ζ +O

[
(ρẑ−)2ζ2

]}
.
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Evaluating ž(ζ) at ζ+ = − ln ε
ρ
and noting that the estimate for the error incurred when replacing

ẑ with ž from Proposition 3.3 remains valid when m = 2, since |ẑ+ − ž+| = ρẑ−

ε
O[(ρẑ−)2 ln ε] in

that case, we obtain (4.9), which completes the proof. �

4.1.2. Estimates for P̂−
1 and P̂+

1 . Next, we recall the expansion for V (U, c(ε)) in (2.6), as well as
the fact that the coefficients in that expansion are determined by successive derivatives of V with
respect to c, evaluated at c(0). In contrast to the general case discussed in Section 3 above, the
argument for m = 2 is simplified by the fact that these derivatives can now be found in closed form,
at least to the order considered here. In particular, given c(0) = 1 and V (U, 1) = U(U − 1), the
result of Lemma 3.4 can be refined as follows:

Lemma 4.3. For m = 2, there holds V (U, 1) = U(U − 1),

∂V

∂c
(U, 1) = −1

3
(U − 1),(4.11)

and

∂2V

∂c2
(U, 1) =

2

9

U2 − 4U + 3 + 2 lnU

(U − 1)2
(4.12)

in (2.6).

Proof. Proceeding as in the proof of Lemma 3.4, we first differentiate

V
dV

dU
= −cV − 2U2(1− U)(4.13)

once with respect to c. Evaluating the result at (U, 1), substituting in V (U, 1) = U(U − 1), and
rearranging, we find the variational equation

∂

∂U

(∂V
∂c

(U, 1)
)
= − 2

U − 1
· ∂V
∂c

(U, 1)− 1(4.14)

for ∂V
∂c

(U, 1); cf. (3.15). The general solution of (4.14) is given by

∂V

∂c
(U, 1) =

θ1

(U − 1)2
− 1

3
(U − 1),(4.15)

where θ1 is a constant of integration. Hence, for ∂V
∂c

(U, 1) to remain bounded (and, indeed, go to
zero) as U → 1−, we require θ1 = 0, which yields (4.11), as stated.

Similarly, differentiating (4.13) twice with respect to c and substituting once again gives

∂

∂U

(∂2V

∂c2
(U, 1)

)
= − 2

U − 1

∂2V

∂c2
(U, 1) +

4

9U
,

which has the solution

∂2V

∂c2
(U, 1) =

θ2

(U − 1)2
+

2

9

U2 − 4U + 2 lnU

(U − 1)2
(4.16)

for some constant θ2. Although (4.16) is a priori singular as U → 1−, since the second term
will become unbounded, that singularity can be removed, and the boundary condition at U = 1
satisfied, by a suitable choice of the constant θ2: for θ2 =

2
3 in (4.16), we find with l’Hôspital’s Rule

that limU→1−
∂2V
∂c2

(U, 1) = 0, as required. This verifies (4.12), which completes the proof. �

Based on the result of Lemma 4.3, we can improve the estimates for the transformed entry and

exit points P̂−
1 and P̂+

1 that were obtained in Lemma 3.5:
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Lemma 4.4. For m = 2 and ρ ∈ (ε, 1), with ε ∈ (0, ε0] and ∆c sufficiently small, the points

P̂−
1 = (ρ, ẑ−, ερ−1) and P̂+

1 = (ε, ẑ+, 1) satisfy

ẑ− = ẑ−(ρ,∆c) =
∆c

3ρ

{
1 +

(
1 +

2

3
ln ρ

)
∆c+O[(∆c)2]

}
(4.17)

and

ẑ+ = ẑ+(∆c, ε) = −ε[1− 2ε+ ε2 +O(ε3)] + ε
[
1− 14

3
ε+ 2ε2 +O(ε3)

]
∆c+O[(∆c)2],(4.18)

respectively, where the corresponding higher-order terms are C∞-smooth in ρ and ∆c and in ∆c and
ε, respectively.

Proof. The proof is similar to that of Lemma 3.5; however, we now consider terms up to and
including O[(∆c)2] in (2.6) in the expansion for V − = V (ρ, c(ε)), which gives

V − = V (ρ, 1) +
∂V

∂c
(ρ, 1)∆c+

1

2

∂2V

∂c2
(ρ, 1)(∆c)2 +O[(∆c)3]

= ρ(ρ− 1)− 1

3
(ρ− 1)∆c+

1

9

ρ2 − 4ρ+ 3 + 2 ln ρ

(ρ− 1)2
(∆c)2 +O[(∆c)3].

(Here and in the following, the error terms are again C∞-smooth in ∆c as long as ρ is positive,
uniformly in compact subsets of (0, 1).) Recalling v−1 = V −ρ−1 in Σ−

1 and expanding the result in
ρ, we have

z− = ρ− 1

3ρ
(ρ− 1)∆c+

1

9ρ

[
2 ln ρ+ 3 + 4ρ ln ρ+ 2ρ+O(ρ2 ln ρ)

]
(∆c)2 +O[(∆c)3],(4.19)

after transformation to z. Now, applying first the sequence of coordinate transformations from (4.7)
and, subsequently, the sequence of near-identity transformations defined in the proof of Proposi-
tion 4.1 to (4.19), we find that the corresponding value of ẑ is given by (4.17).

The point P̂+
1 , on the other hand, only depends on the dynamics in the inner region and is hence

not affected by the result of Lemma 4.3. Applying (4.7) again, we find that z̃+ and, therefore, also
ẑ+ satisfies (4.18), as claimed. �

4.1.3. End of proof of Theorem 1.2. Given the estimates for ẑ− and ẑ+ found in Lemma 4.4,
we can now complete the proof of Theorem 1.2. In contrast to the general case considered in
Section 3, however, we can determine both the ε-asymptotics of ∆c and the numerical values of
the corresponding coefficients up to and including O(ε4) here, which is due to the fact that the
leading-order normal form transformation in (4.7) is available explicitly to the corresponding order:

Proposition 4.5. For Γ to persist when ε ∈ (0, ε0] in (4.2), ∆c must necessarily satisfy

∆c(ε) = γ20ε
2 + γ30ε

3 + γ41ε
4 ln ε+ γ40ε

4 + o(ε4),(4.20)

where γ20 = −3, γ30 = 6, γ41 = −6, and γ40 = −21.

Proof. The proof is similar to that of Proposition 3.6: we recall ζ+ = − ln ε
ρ
and the estimates for

ẑ− and ẑ+ from (4.17) and (4.18), respectively. Then, the requirement that ẑ+ = ẑ(ζ+) in (4.9)
yields the following analogue of Equation (3.20) for the implicit condition that ∆c has to satisfy in
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this case:

(4.21) − ε[1− 2ε+ ε2 +O(ε3)] + ε
[
1− 14

3
ε+ 2ε2 +O(ε3)

]
∆c+O[(∆c)2]

= ẑ+(∆c, ε) =
ρẑ−(ρ,∆c)

ε

{
1 +

2

(1 + ∆c)3
ρẑ−(ρ,∆c) ln

ε

ρ
+O

[
(ρẑ−(ρ,∆c))2 ln ε

]}

=
∆c

3ε

{
1 +

(
1 +

2

3
ln ε

)
∆c+O[(∆c)2]

}
,

where the O[(∆c)2]-terms in (4.21) can additionally depend on (powers of) ε and ln ε. We remark
that a trivial solution to (4.21) is given by (∆c, ε) = (0, 0), as well as that ∆c(ε) is again well-
defined for ε > 0 sufficiently small, by the Implicit Function Theorem. Taking into account that
the relation in (4.21) has to be independent of ρ, as in the proof of Proposition 3.6, we may now
pass to the limit as ρ → 0+. (In particular, we note that (4.21) cannot contain ln ρ-dependent
terms, on principle, which is due to the fact that any such terms are canceled by the corresponding
terms in (4.19), irrespective of how the coefficients γjk in (4.20) are chosen; similarly, higher-order
terms in ρ must cancel due to the ρ-independence of ∆c.)

Finally, the ε-asymptotics of ∆c, as stated in (4.20), can be determined recursively so that the
condition in (4.21) is satisfied to the order considered here. In particular, we have the lowest-
order approximation ∆c = −3ε2[1 + o(1)], i.e., γ20 = −3, which is in agreement with the general
expression for γm in (3.21), evaluated at m = 2. Similarly, defining the next-order correction to ∆c

as ∆(2)c := ∆c − (−3ε2), substituting into (4.21), and rearranging, we find that the O(ε2)-terms

cancel by construction; then, collecting powers of ε and noting that ∆(2)c = o(ε2) must hold, we
obtain

2ε3 − 4ε4[1 + o(1)] =
∆(2)c

3
+ (3 + 2 ln ε)ε4[1 + o(1)],(4.22)

which implies that ∆(2)c has to satisfy 2ε3 = ∆(2)c
3 , to leading order. Hence, ∆(2)c = 6ε3[1 + o(1)],

and it follows that γ30 = 6. Finally, introducing ∆(3)c = ∆(2)c − 6ε3, substituting, and canceling

terms in ε3, we see that ∆(3)c must be chosen so that the relation −4ε4 = ∆(3)c
3 + (3 + 2 ln ε)ε4

balances. (Here, we note that ∆(3)c has to cancel the O(ε4 ln ε)-term in (4.22), as there is no

corresponding term on the left-hand side of that relation.) Therefore, ∆(3)c = −6ε4 ln ε − 21ε4,
which gives (4.20), as claimed. �

This completes the proof of Theorem 1.2.

Remark 11. The fact that the coefficient γ20 in (4.20) must be negative already follows from the
proof of Proposition 3.6. Moreover, while (4.20) seems to indicate that, in general, the sign of γjk
alternates with j irrespective of k, no rigorous results to that effect are available for j ≥ 3. Finally,
we conjecture that the condition in (4.21) can be refined to show that the o(ε4)-term in (4.20)
will actually be of the order O(ε5 ln ε), as well as that ∆c will again be C∞-smooth in ε and ln ε;
cf. Section 3.2.3. A proof is, however, beyond the scope of this article. �

4.2. Regularity of Wu(Q−
ε ). As in the general case discussed in Section 3.3 above, we now inves-

tigate how the ε-asymptotics of ∆c, as given in Proposition 4.5, determines the regularity of the
unstable manifold Wu(Q−

ε ) of Q
−
ε . In particular, we show that Wu(Q−

ε ), while smooth in the pa-
rameters c and ε, is not smooth when considered as depending on ε alone. This loss of smoothness
is due to the presence of logarithmic (switchback) terms in (4.20), which give rise to logarithmic
terms in the corresponding expansion for V (U, c(ε)) in (2.6). Making use of (4.20) to rewrite that
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expansion in terms of U and ε, we find

V (U, c(ε)) =
∞∑

j=0

1

j!

∂jV

∂cj
(U, 1)

[ 4∑

k=2

γk0ε
k + γ41ε

4 ln ε+ o(ε4)

]j

=:
4∑

j=0

Vj0(U)εj + V41(U)ε4 ln ε+ o(ε4).

(4.23)

In analogy to Proposition 3.7, we have the following result:

Proposition 4.6. Let c(ε) be defined as in Proposition 3.1. Then, the coefficient functions Vjk in
(4.23) satisfy V00(U) = U(U − 1), V10(U) ≡ 0,

Vjk(U) = −γjk

3
(U − 1)(4.24)

for j ∈ {2, 3} and k = 0 or j = 4 and k = 1, and

V40(U) = −γ40

3
(U − 1) +

γ220
9

U2 − 4U + 3 + 2 lnU

(U − 1)2
,(4.25)

where the constants γjk are defined as in (4.20).

Proof. Rewriting (4.23) as

V (U, c(ε)) = V (U, 1) +
∂V

∂c
(U, 1)

[
γ20ε

2 + γ30ε
3 + γ40ε

4 + γ41ε
4 ln ε+ o(ε4)

]

+
1

2

∂2V

∂c2
(U, 1)

[
γ20ε

2 + γ30ε
3 + γ40ε

4 + γ41ε
4 ln ε+ o(ε4)

]2
+ o(ε4)

= V (U, 1) + γ20
∂V

∂c
(U, 1)ε2 + γ30

∂V

∂c
(U, 1)ε3

+ γ41
∂V

∂c
(U, 1)ε4 ln ε+

[
γ40

∂V

∂c
(U, 1) +

1

2
γ220

∂2V

∂c2
(U, 1)

]
ε4 + o(ε4),

one sees immediately that V00(U) = V (U, 1) = U(U − 1), as before, as well as that V10(U) ≡ 0.
Moreover,

Vjk(U) = γjk
∂V

∂c
(U, 1)(4.26)

for j ∈ {2, 3} and k = 0 or j = 4 and k = 1, while

V40(U) = γ40
∂V

∂c
(U, 1) +

1

2
γ20

∂2V

∂c2
(U, 1).(4.27)

Replacing ∂V
∂c

(U, 1) and ∂2V
∂c2

(U, 1) in (4.26) and (4.27) with the corresponding expressions found in
Lemma 4.3, one obtains (4.24) and (4.25), which completes the proof. �

In particular, combining the results of Propositions 4.5 and 4.6, i.e., substituting the numerical
values for γjk obtained in the former into the expressions for Vjk found in the latter, we can write
(4.23) explicitly as

(4.28) V (U, c(ε)) = U(U − 1) + (U − 1)ε2 − 2(U − 1)ε3 + 2(U − 1)ε4 ln ε

+
[
7(U − 1) +

U2 − 4U + 3 + 2 lnU

(U − 1)2

]
ε4 + o(ε4).

The presence of the O(ε4 ln ε)-term in (4.28) implies that V (U, c(ε)) is only C3-smooth in ε as
ε → 0+ when considered as a function of (U, ε) ∈ (0, 1) × (0, ε0). (In fact, one can check that the
O(ε4)-coefficient V40 is in fact C∞-smooth in U away from U = 0.) However, irrespective of the
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value of m, the smoothness of Wu(Q−
ε ) in U can only extend up to {U = ε}, as the vector field

in (2.1) has a discontinuity there. Correspondingly, for m = 2, (4.25) shows that V40(U) becomes
unbounded as U → 0+, which is also evident from Lemma 4.3; cf. (4.12). Finally, we note that
the approximation for V (U, c(ε)) in (4.28) can in principle be refined to arbitrary order once the
corresponding terms in the expansion for ∆c(ε) in (4.20) have been determined.

Remark 12. Equivalently, the coefficient functions Vjk can be derived as follows: substituting the

expansion for V (U, c(ε)) in (4.23) into (4.13), making use of dV
dU

=
∑4

j=0
dVj0

dU
εj + dV41

dU
ε4 ln ε+ o(ε4)

and of the expansion for ∆c(ε) in (4.20), and comparing terms of like powers of ε, one obtains a
recursive sequence of differential equations for Vjk:

j∑

i=0

Vi0
dVj−i,0

dU
= −Vj0 −

j∑

i=2

γi0Vj−i,0 for j ∈ {2, 3, 4},(4.29a)

V00
dV41

dU
+ V41

dV00

dU
= −V41 − γ41V00,(4.29b)

where we additionally impose the boundary conditions Vjk(1) = 0 throughout.
Given V00 and V10, as before, Equation (4.29a) reads

dV20

dU
= − 2

U − 1
V20 − γ20(4.30)

for j = 2, which has the unique non-singular solution V20(U) = −γ20
3 (U − 1). Similarly, one

finds that (4.29a) again reduces to (4.30) (with V20 replaced by V30) when j = 3, which shows
V30(U) = −γ30

3 (U−1). Applying the same reasoning to (4.29b), one deduces V41(U) = −γ41
3 (U−1),

which proves (4.24). Finally, given Vj0 for j ∈ {0, . . . , 3}, (4.29a) simplifies to

dV40

dU
= − 2

U − 1
V40 − γ40 +

2

9

γ220
U

when j = 4; the unique non-singular solution is given by

V40(U) = −γ40

3
(U − 1) +

γ220
9

U2 − 4U + 3 + 2 lnU

(U − 1)2
,

as stated in (4.25). �

4.3. Numerical verification. To illustrate the analytical results obtained in this section for m =
2 in (1.1) and, in particular, to verify the ε-asymptotics of c(ε) derived in Proposition 4.5, we
calculated numerically the error incurred in approximating c(ε) by successive truncations of the
asymptotic expansion in (4.20).

For j ∈ {2, 3, 4} and k ∈ {0, 1}, let ∆jk(ε) denote the approximation for ∆c(ε) obtained by

retaining all terms up to and including O(εj ln εk) in that expansion. Moreover, recall the definition
of the section Σ+ which, for ε fixed, corresponds to the hyperplane {U = ε} in (U, V, ε)-space, as well
as of the functions Φ+ and Ψ+, which describe the intersection of the manifoldsWs(ℓ+) andWu(ℓ−)
with Σ+; cf. Section 3.1 and, in particular, the proof of Proposition 3.1. Then, the corresponding
approximation error was estimated by evaluating the difference, in Σ+, between the approximate
value for Φ+ that is given by Φ+

jk(ε) := −ε∆jk(ε) and Ψ+
jk(ε), which is the approximation for

Ψ+ that is found from a straightforward numerical integration of (4.13), with c(ε) replaced by
∆jk(ε). The results are illustrated in Figure 4, where we have plotted the absolute values of the

error |Φ+
jk − Ψ−

jk| on a doubly logarithmic scale, with ε between 10−4 and 10−2. Clearly, each

additional O(εj)-term in the expansion for ∆c reduces the approximation error by about an order
of magnitude (in ε), as expected. However, Figure 4(a) shows that including the O(ε4 ln ε)-terms
alone yields no improvement over the O(ε3)-truncation ∆30; rather, it actually seems to increase
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(a) Error |Φ+
jk −Ψ+

jk| for ε = 10−4
, . . . , 10−2.

e
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(b) Truncation ∆40(ε) (circles) and interpolation (solid
line).

Figure 4. Numerical results for m = 2.

the error slightly, at least for larger values of ε. Only by taking into account the O(ε4)-correction
in (4.20), as well, does one find the anticipated reduction of the error by an additional order of
magnitude. Conversely, omitting the logarithmic terms altogether eliminates the difference in error
between ∆30 and ∆40, i.e., the O(ε4)-truncation does not improve on the approximation by ∆30

in that case (data not shown). Finally, in Figure 4(b), we have plotted ∆40, where ε varies again
as above. One sees that, for ε > 0, ∆40(ε) < c(0) = ∆00 is satisfied throughout, as demonstrated
analytically for c(ε) in Proposition 3.1.

Remark 13. Our computations were performed in double-precision Maple arithmetic. However,
we remark that we did not systematically consider ε smaller than 10−4, as shown here; due to the
inherent ‘stiffness’ of (4.13), we obtained numerically spurious results already for ε = O(10−5). �

5. Discussion

In this section, we summarize our findings, and we discuss open questions that have to be left
for future study.

5.1. Summary. In this article, we have provided a rigorous geometric proof for the existence
and uniqueness of traveling front solutions in the degenerate family of ‘cut-off’ reaction-diffusion
equations in (1.1), with integer-valued m ≥ 2. Moreover, we have derived the leading-order ε-
asymptotics of the corresponding front propagation speed c(ε).

For m = 2 (in which case (1.1) is the exactly solvable Zeldovich equation), we have proven
the occurrence of logarithmic (‘switchback’) terms in ε in the asymptotic expansion for c(ε), and
we have calculated explicitly the lowest-order such term as well as its coefficient. Our analysis
shows that this switchback phenomenon is caused by resonances between eigenvalues in one of the
coordinate charts used to describe the dynamics in blown-up phase space, as observed already in
[27]. A more general discussion of logarithmic switchback can be found in [28]; see also [33]. On
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a conceptual level, these logarithmic terms are a consequence of the loss of smoothness incurred
during the (resonant) transition through the intermediate region: although the manifolds Wu(Q−

ε )
andWs(Q+

ε ) are analytic in both c and ε when restricted to the outer and inner regions, respectively,
that transition introduces a logarithmic dependence of c on ε, which then translates into a loss of
smoothness of the above manifolds when considered as depending on ε alone.

In particular, Lemma 4.4 implies that the ε-asymptotics of both ẑ− and ẑ+ will contain loga-
rithmic terms, which is due to the fact that the estimates in (4.17) and (4.18) depend on ∆c(ε) =
c(ε) − c(0). It then follows from the proof of Proposition 4.5 that these terms feed back into the
ε-asymptotics of c(ε) which, in turn, gives rise to higher-order logarithmic terms in the expansion
for V (U, c(ε)) in (2.6). The resulting non-smoothness of Wu(Q−

ε ) in ε was made explicit in Propo-
sition 4.6: substituting the leading-order ε-asymptotics of c(ε) into (2.6) and rewriting the result
as an expansion in terms of ε, cf. (4.23), we determined the coefficient V41 of the O(ε4 ln ε)-term in
closed form. Thus, we found that although Wu(Q−

ε ) is analytic in U , V , c, and ε (at least as long
as U > ε), the ln ε-dependence of c(ε) implies that it cannot be analytic (or even C∞-smooth) in
U , V , and ε alone.

We note that the proof of Theorem 1.2 could easily be extended to calculate higher-order terms
in the asymptotic expansion for c(ε) in (4.20). (In fact, by refining explicitly the sequence of normal
form transformations in (4.7), that expansion could in principle be taken to arbitrary order; the
accuracy provided by the leading-order normal form in (4.6) is exhausted by the order to which c(ε)
is approximated in Theorem 1.2.) We conjecture that, by taking the expansion in (2.6) to higher
order in ∆c, one would find logarithmic terms of the general form εj(ln ε)k, with j ≥ 4 and k ≤ j.
Similarly, for any (integer-valued) m ≥ 3, one could refine the argumentation in Section 3.2 to
describe the structure of the expansion for c(ε) in more detail than is provided in Proposition 3.6.
Thus, for instance, we postulate that, for given m, the lowest-order logarithmic term in the ε-

asymptotics of c(ε) will be O(εm
2
ln ε) (see also Section 3.2.3), as well as that the expansion in

(3.19) will contain logarithmic switchback terms of the form εj(ln ε)k, where j ≥ m2 and k ≤ j.
However, in general, it does not seem possible to calculate the corresponding coefficient γm21 in
that expansion explicitly.

In fact, the discussion in Section 3.3 implies that explicit knowledge of a solution to the corre-
sponding problem without cut-off is a necessary condition for the correction ∆c that is induced by
the (Heaviside) cut-off Θ to be computable. The only value of m in (1.6) for which such a solution
is known seems to be 2. In the context of the first-order system (2.1), the non-computability of
the leading-order coefficient γm (or, indeed, of any of the coefficients in the expansion in (3.19)) for

m ≥ 3 is evident due to the fact that the derivatives ∂jV
∂cj

(U, c(0)) of V (U, c(0)) with respect to c or,
equivalently, the coefficient functions Vjk in the expansion for V (U, c(ε)) in (3.22), cannot be eval-
uated in closed form in that case. Rather, they have to be approximated locally about either Q−

ε

or Q+
ε . The resulting two expansions are not equivalent, in that they cannot be transformed into

one another; however, ∂V
∂c

(0, c(0)) – the constant νm in (3.24) – cannot be determined unless the

boundary condition ∂V
∂c

(1, c(0)) = 0 that is imposed at Q−
ε is taken into account; see the discussion

in Section 3.3. Therefore, the coefficient γm is not computable in that case; cf. (3.21). By contrast,

for m = 2, the derivatives ∂jV
∂cj

(U, 1) (and, consequently, the coefficient functions Vjk in (4.23)) can
be found in closed form to the order considered here, i.e., no expansion is required, which implies
in particular that ν2 =

1
3 is known explicitly.

A crucial step in the proof of Theorem 1.1 consisted in determining the appropriate normal form
system (3.3) that describes the transition through the intermediate region in the phase-directional
chart K1. The corresponding leading-order normal form in (3.8) (in which only the lowest-order
resonant terms have been retained) is of Bernoulli type [1] and can be solved exactly. Moreover,
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knowledge of the resulting approximate solution ž is sufficient to determine the leading-order ε-
asymptotics of ∆c(ε); recall the proof of Proposition 3.6.

However, the leading-order analysis that led to the expansion for ∆c does not allow one to
calculate the coefficient γm in (3.19) analytically, irrespective of the value of m. From (3.21), it
is evident that both c(0) (the propagation speed in the absence of a cut-off) and ∂V

∂c
(U, c(0)) (the

variation of the corresponding front solution with respect to c) have to be known for γm to be
computable. By contrast, in the study of the Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP)
equation in [17], i.e., for m = 1 in (1.1), knowledge of c(0) was sufficient to approximate the
transition through the phase-directional chart K1 to lowest order and, hence, to determine the
(universal) leading-order coefficient in ∆c; see in particular [17, Proposition 3.2]. This distinction
is due to differences in the corresponding normal forms that characterize the transition through
chart K1: the ẑ-direction in (3.3) is strongly repelling, whereas it was linearly neutral in [17,
Equation (34)]. In other words, both propagation regimes require ∆c to be fixed in precisely the
right manner for a heteroclinic connection to exist between Q−

ε and Q+
ε , as Wu(Q−

ε ) will connect
to Ws(Q+

ε ) for a unique value of c(ε), but veer off otherwise; however, the phenomenon seems even
more delicate here than it was in [17].

5.2. Outlook. A question that arises naturally, given the result of Theorem 1.1, is whether our
analysis can be extended to cover the case where the exponent m in (1.1) is non-integer. This
question concerns in particular the family of equations with variable diffusivity in (1.7), see [38]
and the references therein for details and applications.

One potential approach that suggests itself here can be outlined as follows: given m ≥ 2 real,
one first sets m = n + p, where n = [m] ≥ 2 is the integer part of m and p = m − [m] ∈ [0, 1)
denotes the remainder. The equivalent first-order system in (2.1) can then be rewritten as

U ′ = V,(5.1a)

V ′ = −cV − 2UnW (1− U)Θ(U − ε),(5.1b)

W ′ = pW
V

U
,(5.1c)

ε′ = 0,(5.1d)

where the new (artificial) variable W = Up is introduced to remove the loss of smoothness as
U → 0+ in Up = ep lnU . To study the dynamics of (5.1), one can proceed as in Section 3, i.e., one
can include the additional variable W = w̄ in the blow-up transformation in (2.2) and then define
the same two coordinate charts as before. (Alternatively, one could projectivize the equations by

introducing U ′

U
= V

U
as a new variable; the reduced model that is found by restricting (5.1) to the

strongly attracting center manifold given by {U = 0} could then potentially be analyzed as in [35].
In particular, the system obtained in chart K1, after blow-up, is equivalent to that projectivization
of (5.1); cf. [35] for details.) Due to the fact that the reaction terms in (5.1) are still set to zero
by the cut-off Θ when U < ε, see (1.2), the dynamics in the inner region, i.e., in chart K2, should
remain largely unchanged. The transition through the intermediate region, where ε < U < O(1),
is naturally described in chart K1, as before; recall Section 3.2. Moreover, preliminary analysis
suggests that no resonance occurs in this case, which would substantially simplify the argument.
However, in the outer region, complications seem to arise due to the non-smoothness of the manifold
Wu(Q−

ε ), as well as of the variation of that manifold with respect to c, at (U, c) = (0, c(0)); recall the
proof of Lemma 3.4. Still, we conjecture that the approach developed in Section 3 can be adapted
to show that the correction ∆c induced by the cut-off Θ will again satisfy ∆c(ε) = γmεm[1 + o(1)],
as for integer-valued m, as well as that ∆c will be a smooth function of ε and εp, provided that a
traveling front solution to (1.5) exists for some unique value of c even when the potential fm(u) is
non-smooth. A rigorous proof of this conjecture is deferred to future work.
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A related question concerns the asymptotics of the critical front speed in the two limiting cases
where either m → 1+ or m → ∞ in (1.5). The dynamics of the corresponding equations without
cut-off was analyzed geometrically in [35] and [16], respectively. The question of how the results
obtained there would be affected by the presence of a cut-off is left for future study. In particular,
it was argued in [29, Section VI] that the reaction terms in (1.5) are negligible in a neighborhood
of the zero rest state. In other words, the exponent m induces an ‘internal’ cut-off in that case,
whereas the cut-offs discussed here would be classified as ‘external.’ The question of how these two
types of cut-off are related remains to be clarified.

Rigorous results on critical front propagation in the presence of a cut-off are also available in
work by Benguria, Depassier, and collaborators [7, 8], as well as by Kessler et al. [24] and Méndez
and colleagues [29]. Their approach is based on a variational principle which, in the context of
Equation (1.5), yields the front propagation speed as the supremum of an appropriately defined
variational functional:

c2 = sup
g

[
− 2

∫ 1
0 fm(U)g(U) dU
∫ 1
0

g2(U)
g′(U) dU

]
,(5.2)

taken over all positive and decreasing functions g on (0, 1) such that the integrals in (5.2) exist [6].
(The supremum in (5.2) is in fact a maximum if the corresponding front is of ‘pushed’ or ‘bistable’
type, whereas it is not attained for fronts of ‘pulled’ type; see [8] and the references therein for
details.) The very general expression in (5.2) was adapted to accommodate cut-offs in the form
of an ‘improved variational principle’ in [29]; moreover, it was extended by Benguria et al. in
[8], where they also calculated the leading-order coefficients in the correction due to a cut-off in
a number of explicitly solvable cases, including for the Zeldovich equation discussed here; recall
Remark 1. Finally, they argued that the correction ∆c is computable in closed form whenever the
function ĝ that maximizes (5.2) – in the absence of a cut-off – is known exactly. We conjecture
that this condition is in fact equivalent to the requirement that the variational equation in (3.15)
has a closed-form solution ∂V

∂c
(U, c(0)), as discussed in Section 3.3; moreover, it is argued there

that knowledge of a front solution to Equation (1.5) (without cut-off) is a necessary, but in general
not a sufficient condition for (3.15) to be solvable in closed form. Incidentally, we remark that
ĝ(U) = 1−U

U
for m = 2 in (1.1), cf. e.g. [8], where it is noted that ĝ is unique up to a multiplicative

constant. Evaluating the denominator in (5.2), we find that −
∫ 1
0

ĝ2(U)
ĝ′(U) dU = 1

3 equals ν2, as defined

in Lemma 3.4; see also [8], where that same integral features in their closed-form expression for the
leading-order coefficient in ∆c. (Specifically, (3.21) and the corresponding formula in [8] agree up to
the scaling factor 2

m
.) However, to the best of our knowledge, the precise nature of the relationship

between the integral variational principle and our more geometric approach remains to be resolved.
In particular, since the work of Benguria et al. does not seem to make explicit reference to the case
of non-integer m in (1.1), such an investigation would appear particularly worthwhile in that case.

Finally, we emphasize that the degenerate family of equations studied in this article represents
only one aspect of a larger and more ambitious program, the aim of which is a systematic, geometric
classification of traveling front propagation in scalar reaction-diffusion systems in the presence of
a cut-off. We postulate that, generally, the effects of a cut-off on the dynamics of traveling fronts
can be categorized in terms of the associated normal form equations that are obtained in one of
the (phase-directional) coordinate charts, after blow-up. The properties of these normal forms will
determine not only the structure of the ε-dependence of c(ε), but also the sign of the corresponding
leading-order coefficient in ∆c. (The dynamics in the rescaling chart, on the other hand, is obtained
by regular perturbation off the much simplified cut-off equations and is hence largely independent
of the specific choice of reaction terms in (1.1).)
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One prototypical example of a reaction-diffusion system in which a variety of front propagation
regimes can be realized is given by the Nagumo equation [8, 29]

∂u

∂t
=

∂2u

∂x2
+ u(1− u)(u− a),(5.3)

which is also known as the Schlögl equation when formulated in terms of the reaction function
f(u) = (1− u2)(u+ σ). (In fact, the degenerate family of equations in (1.1) has been suggested in
[39] as a ‘bridge’ between the classical FKPP and Nagumo equations; see also [16].) The traveling
front dynamics of (5.3) depends crucially on the value of the parameter a; moreover, explicit front
solutions are available for a wide range of a-values, cf. e.g. [21]. In particular, for a ∈ (0, 12), the
reaction kinetics in (5.3) are bistable, and a family of front solutions propagating between the rest

states at 1 and 0 is given by U(ξ) =
(
1+e

ξ√
2
)−1

, with propagation speed c = 1√
2
−
√
2a [21]. As was

shown e.g. in [8, 29], the correction ∆c in the associated cut-off equation is of the order O(ε1+2a)
in that case; moreover, the leading-order coefficient in ∆c was calculated in [8] via a variational
approach. (The corresponding result for the Schlögl equation, first derived geometrically in [34]
and subsequently proven rigorously in [18], reads ∆c = O(ε2−σ), with 0 < σ < 1.) In the limit as
a → 0+ in (5.3), we retrieve the Zeldovich equation; correspondingly, the leading-order expansion
for ∆c obtained in [8, 18] has to reduce to − 3√

2
ε2 in that limit, as required by our Theorem 1.2

(after division of (1.9) by a factor of
√
2, recall Remark 1). The relationship between (5.3) and

the family in (1.1) discussed here has been elucidated in detail in [18], where the propagation of
‘bistable’ fronts in the presence of a cut-off has been studied in full generality, from a geometric
point of view; a comprehensive study of Equation (5.3) in the ‘pushed’ propagation regime will be
provided in the upcoming article [19].
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Appendix A. Gronwall’s Lemma

In this appendix, we restate Gronwall’s Lemma in the formulation in which it is applied here;
recall the proof of Proposition 3.3:

Lemma A.1 (Gronwall’s Lemma). Let U be an open set in R, let f, g : [0, T ] × U → R be
continuous, and let x(t) and y(t) be solutions of the initial value problems

x′(t) = f(t, x(t)) with x(0) = x0 and y′(t) = g(t, y(t)) with y(0) = y0,(A.1)

respectively. Assume that there exists C ≥ 0 such that

|g(t, y2)− g(t, y1)| ≤ C|y2 − y1|;(A.2)

furthermore, let ϕ : [0, T ] → R
+ be a continuous function, with

|f(t, x(t))− g(t, x(t))| ≤ ϕ(t).(A.3)

Then, there holds

|x(t)− y(t)| ≤ eCt|x0 − y0|+ eCt

∫ t

0
e−Cτϕ(τ) dτ(A.4)

for t ∈ [0, T ].
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quantité de matiére et son application à un problème biologique, Moscow Univ. Math. Bull. 1 (1937), 1–25.
[27] M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points—fold and

canard points in two dimensions, SIAM J. Math. Anal. 33(2) (2001), 286–314.
[28] P.A. Lagerstrom, Matched Asymptotic Expansions. Ideas and Techniques. Applied Mathematical Sciences 76

(1988), Springer-Verlag, New York.
[29] V. Méndez, D. Campos, and E.P. Zemskov, Variational principles and the shift in the front speed due to a cutoff,

Phys. Rev. E 72(5) (2005), 056113.

33



[30] J.H. Merkin and D.J. Needham, Reaction-diffusion waves in an isothermal chemical system with general orders

of autocatalysis and spatial dimension, Z. Angew. Math. Phys. 44(4) (1993), 707–721.
[31] D.J. Needham and A.N. Barnes, Reaction-diffusion and phase waves occurring in a class of scalar reaction-

diffusion equations, Nonlinearity 12(1) (1999), 41–58.
[32] D. Panja, Effects of fluctuations on propagating fronts, Phys. Rep. 393 (2004), 87–174.
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