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Abstract. We consider a family of structured population models from adaptive dynamics in which
cells transition through a number of growth states, or classes, before division. We prove the exis-
tence and global asymptotic stability of invariant (“resident”) manifolds in that family; furthermore,
we re-derive conditions under which scarce mutants can invade established resident populations,
and we show the existence of corresponding “invasion” manifolds which are obtained as critical
manifolds under the additional assumption that resident has attained quasi-steady state, which
induces a separation of scales. Our analysis is based on standard phase space techniques for ordi-
nary differential equations, in combination with the geometric singular perturbation theory due to
Fenichel.

1. Introduction

Adaptive dynamics is typically characterised as “a process by which natural selection, acting
on variation within a population, promotes the survival of individuals that are more successful
at reproducing and contributing to future generations” [7, Section 1.2]. The relevant terminology
was coined in [4, 11] in an attempt to unify the fields of population genetics, replicator dynamics,
and game theory [5], with the ultimate aim of describing the evolution of phenotypic traits in
populations that interact with each other and their environments. Crucially, adaptive dynamics
seeks to reconcile the disparate timescales that naturally emerge when mutants attempt to invade
an established resident population. In the simplest scenario, it is assumed that all individuals in
a given population are identical; a natural generalisation is hence obtained under the additional
assumption that every individual can be assigned to one of a number of discrete classes that are,
however, still characterised by the same value for the evolvable trait. Concurrently, individuals
have to consider the trade-offs that ensue when various competing traits, or behaviours, cannot be
optimised independently, but have to be balanced given resource limitations in the environment.

A class-structured modelling framework for resource allocation in microbial populations in che-
mostat-like well-mixed environments was developed in [7] on the basis of adaptive dynamics. For
definiteness, allocation of resources (“nutrients”) was limited to processes that can either promote
biomass synthesis (“growth”) or a nutrient-use pathway (“maintenance”). Here, it is worth not-
ing that the family of models proposed in [7] is based on the classic notion of a chemostat [12]
which allows for “the uninterrupted culture of microorganisms under controlled and reproducible
conditions with continuous inputs and outputs”, and which “has since been used as the laboratory
analog for natural, open, systems” [7, Section 1.2]; that notion is extended by incorporation of
concepts from the established theory of structured population models [10]. We refer the reader to
[7] for a detailed discussion and further references.

In the simplest case, the framework proposed in [7] is realised in a family of nonlinear ordinary
differential equation (ODE) models for a class-structured population of cells in the presence of a
single nutrient. In that case, it was observed numerically that the induced flow converges to an
appropriately defined family of invariant manifolds following an initial transient. Furthermore,
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the invasion of scarce mutant into an established (“resident”) population was studied, again with
reference to invariant manifold theory. Given the focus in [7] on the physiological interpretation
of the family of models formulated therein, the existence and stability of the underlying invariant
manifolds was assumed, rather than shown rigorously. Here, we fill that gap by constructing these
manifolds – specifically, the so-called “resident”, “invasion”, and “mutant” manifolds – analytically
for the simplest structured model proposed in [7]. Moreover, we show that these manifolds are
globally attracting under suitable assumptions on model parameters which, not unexpectedly, echo
the survival and invasion conditions derived in [7]. Our analysis is based on standard phase space
techniques for ordinary differential equations in combination with the so-called “geometric singular
perturbation theory” (GSPT) due to Fenichel [3, 6]; the latter applies naturally in the resident-
mutant scenario in which a separation of scales is present.

This article is organised as follows. In Section 2, we briefly introduce the family of class-structured
“resident” models studied here; in Section 3, we modify that family by introducing a mutant into
the environment. In Section 4, we present the two-class case and the three-class case as illustrative
examples; finally, we conclude with a brief discussion in Section 5.

2. Resident model

We consider the class-structured model

ẋ1 = uku(rx)rx(−x1 + 2xn)− x1D,(1a)

ẋi = uku(rx)rx(−xi + xi−1)− xiD for 2 ≤ i ≤ n,(1b)

u̇ = p− uD − uku(rx)

n∑
i=1

xi(1c)

that was introduced in [7, Section 2.3]. Here, xi (i = 1, . . . , n) is the i-th class in a resident
population of cells, with n ≥ 2 an integer, while u is the concentration of some nutrient; the
overdot denotes differentiation with respect to time t.

The model in (1) can be interpreted as follows [7]: a cell can exist in n growth states, or classes;
nutrient uptake in class i, followed by biomass synthesis, forces the cell to transition to the next class
i+ 1, where i = 1, . . . , n− 1. Once the cell has reached the highest “threshold” class (n), it divides
into two daughter cells in the “basal” class 1. (Correspondingly, we will typically impose initial
conditions of the form (x1, x2, . . . , xn, u)(0) = (x10, 0, . . . , 0, u0) on (1), with x10 strictly positive.)
Importantly, the “resource allocation parameter”, or “evolvable trait”, rx ∈ (0, 1) determines the
probability of allocating one unit of nutrient towards biomass synthesis; correspondingly, 1− rx is
the probability of the cell opting for the nutrient-use pathway, as detailed in [7, Section 2.2]. The
function ku(rx) represents the rate of nutrient uptake, and is typically assumed to be monotonically
decreasing in rx; following [7], we may assume it to be an inverted Hill-type function of the form

ku(rx) = kmin + (kmax − kmin)
(1− rx)η

(1 +K)η + (1− rx)η
,

with kmin, kmax, and K positive constants and the integer η the so-called Hill coefficient [7, Equa-
tion (2.36)]. Finally, p > 0 denotes the rate at which nutrient is added to the environment, whereas
D > 0 is the “mortality rate” at which both cells and nutrient are removed.

Remark 1. As explained in [7, Section 2.2], each instance of nutrient uptake at stage i results in the
formation of an intermediate species; however, since that species is assumed to be at quasi-steady
state, it is neglected here, as was the case there.
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2.1. Preliminaries. We begin by reasoning that, for physiologically relevant initial conditions, the
total population X(t) :=

∑n
i=1 xi(t) of cells cannot go extinct in Equation (1) unless all classes are

initiated at zero; furthermore, the amount of resource u in the network has to remain bounded –
from both below and above – throughout:

Lemma 1. Let rx ∈ (0, 1), let ku(rx) be defined as above, and assume an initial condition (x1, . . . , xn,
u)(0) = (x10, . . . , xn0, u0) ∈ Rn+ × R+ for Equation (1). Then, the total population X(t) is strictly
positive for all t > 0 unless xi0 = 0 for all i = 1, . . . , n.

Moreover, the solution u(t) to Equation (1c) satisfies

0 < u(t) ≤ max
{
u0,

p

D + ku(rx)χ

}
<∞(2)

for any t > 0, where χ := inft≥0X(t) ≥ 0.

Proof. Solving Equation (1c), which we write as u̇ = p − uD − uku(rx)X, for u by variation of
constants, we find

u(t) = u0e
−

∫ t
0 (D+ku(rx)X(s))ds + p

∫ t

0
e−

∫ t
s (D+ku(rx)X(σ))dσds;

since u0 ≥ 0 and p is positive by assumption, it follows that u(t) > 0 for any t > 0.

Adding Equations (1a) and (1b) for i = 1, . . . , n, we see that X satisfies the equation Ẋ =
uku(rx)rxxn −XD, which has the solution

X(t) = X0e
−Dt +

∫ t

0
u(s)ku(rx)rxxn(s)e−D(t−s)ds,(3)

with initial condition X0 :=
∑n

i=1 xi0. Since u is positive throughout, by the above, it follows that
X(t) ≥ 0 for all t > 0 if we can show that xn is always non-negative, with equality holding if X0 = 0.
To that end, let us assume that xn(t) may become negative, in which case there exists tn ≥ 0 such
that xn(tn) = 0; in particular, let tn be the minimal such time. Thus, Equation (1b) gives ẋn|t=tn =
u(tn)ku(rx)rxxn−1(tn), which can only be negative if xn−1(tn) < 0; however, in that case, there must
exist 0 ≤ tn−1 ≤ tn such that xn−1(tn−1) = 0. Then, ẋn−1|t=tn−1 = u(tn−1)ku(rx)rxxn−2(tn−1),
which can only be negative if xn−2(tn−1) < 0, i.e., if xn−2(tn−2) = 0 for 0 ≤ tn−2 ≤ tn−1. Proceeding
recursively, we finally find ẋ1|t=t1 = u(t1)ku(rx)rx2xn(t1), by (1a), where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn.
Thus, ẋ1(t1) can only be negative if xn(t1) < 0; however, since we assumed tn to be minimal, it
follows that ti =: t∗ must be independent of i = 1, . . . , n. Since xi(t

∗) = 0 = ẋi|t=t∗ then for any
i = 1, . . . , n, it would follow that X(t) ≡ 0 for all t ≥ t∗, in contradiction to (3). Hence, t∗ = 0, as
claimed.

Finally, to show (2), we estimate

e−
∫ t
0 (D+ku(rx)X(s))ds ≤ e−(D+ku(rx)χ)t and e−

∫ t
s (D+ku(rx)X(s))dσ ≤ e−(D+ku(rx)χ)(t−s)

to find

|u(t)| ≤ u0e−(D+ku(rx)χ)t + p

∫ t

0
e−(D+ku(rx)χ)(t−s)ds

= u0e
−(D+ku(rx)χ)t +

p

D + ku(rx)χ

[
1− e−(D+ku(rx)χ)t

]
≤ max

{
u0,

p

D + ku(rx)χ

}
,

as, trivially, 0 ≤ e−(D+ku(rx)χ)t ≤ 1 for all t ≥ 0, and as the function u0e
−(D+ku(rx)χ)t + p/(D +

ku(rx)χ)
[
1− e−(D+ku(rx)χ)t

]
must assume its supremum at either t = 0 or for t→∞. �

It particular, it follows from Lemma 1 that we must have xi(t) ∈ R+ for i = 1, . . . , n and any
t > 0.

Remark 2. For simplicity, we may without loss of generality take χ = 0 in Equation (2) above.
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Figure 1. Dynamics of Equation (1) for n = 4, with p = 0.2, D = 0.02, rx = 0.6,
and ku(rx) = 2 and initial condition (x1, x2, x3, x4, u)(0) = (0.1, 0, 0, 0, 0.5).

2.2. Resident manifolds. Numerical simulation of Equation (1) in various parameter regimes [7]
suggests that the corresponding flow converges to an invariant manifold, the “resident manifold”,
in time, with xi

x1
tending to some constant for i = 2, . . . , n; see Figure 1 for an example with n = 4,

which clearly indicates that xi(t)
x1(t)

(i = 2, 3, 4) approaches a limit after an initial transient. (As t

increases, xi(t) tends to its corresponding steady-state value x∗i .) That intuition is confirmed by
the following result:

Proposition 1. The manifold Mx defined by

xi = 2
1−i
n x1 for i = 2, . . . , n,(4)

with u varying in some compact subinterval of (0,∞), is invariant for the vector field in Equa-

tion (1); in other words, if xi(t0) = 2(1−i)/nx1(t0) for i = 2, . . . , n and some t0 ≥ 0, then

xi(t) = 2(1−i)/nx1(t) for all t ≥ t0.

Proof. We define new variables φi = xi − αix1 for i = 2, . . . , n, with {αi} to be determined
appropriately, and we consider the time evolution of {φi} under the flow of Equations (1a) and
(1b): for i = 3, . . . , n, we find

φ̇i = ẋi − αiẋ1 = uku(rx)(−xi + xi−1)− xiD − αi
[
uku(rx)(−x1 + 2xn)− x1D

]
= −uku(rx)rx

[
φi − xi−1 + 2αixn

]
− φiD

= −uku(rx)rx

[
φi − φi−1 + 2αi

(
xn −

αi−1
2αi

x1

)]
− φiD,

(5)

while for i = 2, an analogous argument shows

φ̇2 = −uku(rx)rx

[
φ2 + 2α2

(
xn −

1

2α2
x1

)]
− φ2D.(6)

To determine the coefficients {αi} (i = 2, . . . , n), we need to express the right-hand sides in Equa-
tions (5) and (6) in terms of the new variables {φi}. Thus, for the final term in square brackets in

4



the last line of (5) to equal 2αiφn, we require αi−1

2αi
= αn for i = 3, . . . , n; similarly, the final term

in square brackets in (6) implies 1
2α2

= αn. It hence follows that

α2

2α3
· α3

2α4
· · · · · αn−1

2αn
= αn−2n or

α2

2n−2
= αn−1n

which, in combination with αn = 1
2α2

, yields αn2 = 1
2 or α2 = 2−1/n and αn = 21/n−1. Proceeding

recursively, we find αi = 2(1−i)/n for i = 3, . . . , n− 1, as claimed.
It then follows that the variables {φi} satisfy the following system of equations,

φ̇2 = −uku(rx)rx
[
φ2 + 21−1/nφn

]
− φ2D,(7a)

φ̇i = −uku(rx)rx
[
φi − φi−1 + 21+(1−i)/nφn

]
− φiD for i = 3, . . . , n,(7b)

which admits a steady state at (φ2, . . . , φn) = (0, . . . , 0) irrespective of the value of u. Hence, the
statement is obtained from the definition of {φi}: if φi(t0) = 0 for some t0 ≥ 0 and i = 2, . . . , n,

then φi(t) ≡ 0 for all t ≥ t0, which implies xi(t) ≡ 2(1−i)/nx1(t) and, thus, the invariance ofMx. �

Clearly, the definition of the variables {φi} (i = 2, . . . , n) in the proof of Proposition 1 is somewhat
arbitrary; in other words, one could equivalently parametrise the manifold Mx in terms of xi for
some i = 2, . . . , n.

Remark 3. The proof of Lemma 1 shows that u must remain bounded – and, in fact, converge
to some steady-state value u∗x – in the large-time limit, i.e., as t→∞ in (1). Hence, it suffices to
assume that u is restricted to some suitably defined compact interval about u∗x in the definition of
Mx above.

Remark 4. The result of Proposition 1 is in agreement with the steady-state distribution for {xi}
derived in [7, Section 2.3]; see, in particular, Equations (2.49) and (2.58) therein. Furthermore, it
allows for the reduction of Equation (1) to a minimal model for the “basal” class 1, which is also
known as the “unstructured model” [7, Section 2.2], on the manifold Mx.

A direct consequence of Proposition 1 is the following; see also [7, Equation (2.62)]:

Lemma 2. The per capita growth rates in Equation (1) are equal, and are given by

ẋi
xi

∣∣∣
Mx

= uku(rx)rx
(
21/n − 1

)
−D for any i = 1, . . . , n,(8)

when evaluated on the manifold Mx.

Proof. Since xn = 21/n−1x1 on Mx, Equation (8) follows from (1a) when i = 1; for i = 2, . . . , n,
we consider (1b) in combination with the fact that

xi−1
xi

=
2

1−(i−1)
n x1

2
1−i
n x1

= 2
1
n

on Mx. �

Next, we show that the resident manifold Mx obtained in Proposition 1 is globally attracting:

Proposition 2. Let rx ∈ (0, 1), and let D > 0. Then, the manifold Mx defined in Propo-
sition 1 is globally attracting under the flow of Equation (1), i.e., given any initial condition
(x10, . . . , xn0, u0) ∈ Rn+ × R+ at t0 ≥ 0, the unique orbit of (1) passing through (x10, . . . , xn0, u0)
converges to Mx as t→∞.
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Sketch of proof. Without loss of generality, we assume that n ≥ 4 here; the simpler cases where
n = 2 or n = 3 are discussed separately in Section 4 below.

Let the variables φi = xi−αix1 (i = 2, . . . , n) be defined as in Proposition 1, where αi = 2(1−i)/n,
let Φ := (φ2, . . . , φn), and let ‖ · ‖ denote the standard Euclidean norm, with

‖Φ(t)‖ :=
√
φ22(t) + · · ·+ φ2n(t).

We begin by rewriting Equation (7) in matrix form, with

Φ̇ =


−uku(rx)rx −D 0 0 · · · −21−1/nuku(rx)rx

uku(rx)rx −uku(rx)rx −D 0 · · · −21−2/nuku(rx)rx
0 uku(rx)rx −ku(rx)rx −D · · · −21−3/nuku(rx)rx
...

...
...

. . .
...

0 0 0 · · · −uku(rx)rx
(
1 + 21/n

)
−D

Φ,

(9)

and we note that d
dt‖Φ‖

2 = 2(φ2φ̇2 + · · ·+ φnφ̇n) = 2ΦT Φ̇. Then, (9) implies

1

2

d

dt
‖Φ‖2 = (φ2, φ3, φ4, . . . , φn)


−(uku(rx)rx +D)φ2 − 21−1/nuku(rx)rxφn

uku(rx)rxφ2 − (uku(rx)rx +D)φ3 − 21−2/nuku(rx)rxφn
uku(rx)rxφ3 − (uku(rx)rx +D)φ4 − 21−3/nuku(rx)rxφn

...

uku(rx)rxφn−1 −
[
uku(rx)rx

(
1 + 21/n

)
+D

]
φn


= −

[
uku(rx)rx

(
1 + 21/n

)
+D

]
‖Φ‖2 + uku(rx)rx

n−1∑
i=2

φiφi+1

+ 21/nuku(rx)rx

n−1∑
i=2

φ2i − 2uku(rx)rx

n−1∑
i=2

2−(i−1)/nφi · φn

≤ −
[
uku(rx)rx

(
1 + 21/n

)
+D

]
‖Φ‖2 + uku(rx)rx

[
1

2

n−2∑
i=2

( φ2i
δi,i+1

+ δi,i+1φ
2
i+1

)
+ 21/n

n−1∑
i=2

φ2i +

n−2∑
i=2

2−(i−1)/n
( φ2i
δin

+ δinφ
2
n

)
+

22/n − 1

2

( φ2n−1
δn−1,n

+ δn−1,nφ
2
n

)]
.

(10)

Here, {δij}, with i = 2, . . . , n− 2 and j = 3, . . . , n, are positive constants that remain to be chosen,
and we have made use of the simple estimate

|uv| =
∣∣∣ u√
δ

(
√
δv)
∣∣∣ ≤ 1

2

(u2
δ

+ δv2
)
,

which follows from 0 ≤
(
u√
δ
±
√
δv)2 = u2

δ ± 2 u√
δ
(
√
δv) + δv2.
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In order to combine the terms in square brackets in (10) into one ‖Φ‖2-dependent term, we need
to fix the constants {δij} so that the coefficients of {φ2i }, which are given by

1

2δ23
+ 21/n + 2−1/n

1

δ2n
for i = 2;

1

2

(
δi−1,i +

1

δi,i+1

)
+ 21/n + 2−(i−1)/n

1

δin
for i = 3, . . . , n− 2;

1

2
δn−2,n−1 + 21/n +

22/n − 1

2

1

δn−1,n
for i = n− 1; and

n−2∑
i=2

2−(i−1)/nδin +
22/n − 1

2
δn−1,n for i = n,

are equal for all i = 2, . . . , n; we will denote the resulting value of these coefficients by ν. In sum,
we therefore have

1

2

d

dt
‖Φ(t)‖2 ≤ −

[
u(t)ku(rx)rx

(
1 + 21/n − ν

)
+D

]
‖Φ(t)‖2.(11)

Since 0 < u(t) <∞ for all t > 0, by Lemma 1, and since it can be shown that 1 + 21/n − ν > 0 for
any n ≥ 2, it follows from Equation (11) that ‖Φ(t)‖2 converges to zero exponentially as t → ∞
with exponential decay rate of at least −D for any initial value ‖Φ(t0)‖2, which implies that Mx

is globally attracting, as claimed. �

While it is possible to derive explicit expressions for the constants {δij} in the proof of Propo-
sition 2, those will become increasingly unwieldy with increasing n; hence, we do not quote them
here.

Remark 5. An alternative proof of Proposition 2 can be given by considering the general stability
theory of non-autonomous linear systems; see, for instance, [1].

2.3. Steady states. The above discussion immediately implies that the steady states of Equa-
tion (1) must be located on Mx:

Proposition 3. Equation (1) admits the two steady states

Ox : (x∗1, x
∗
2, . . . , x

∗
n, u
∗
x) =

(
0, 0, . . . , 0, pD

)
and(12a)

Px : (x∗1, x
∗
2, . . . , x

∗
n, u
∗
x) =

(
ξ∗, 2−1/nξ∗, . . . , 21/n−1ξ∗, D

ku(rx)rx(21/n−1)

)
,(12b)

where

ξ∗ = 2
(
1− 2−1/n

)pku(rx)rx(21/n − 1)−D2

Dku(rx)
;

for ku(rx)rx(21/n−1) < D2/p (ku(rx)rx(21/n−1) > D2/p), the steady state at Ox is asymptotically
stable (unstable), whereas the state at Px is unstable (asymptotically stable). In particular, Px is
an attractor whenever it is physiologically relevant, i.e., when x∗i > 0 for all i = 1, . . . , n.

Proof. Steady states for Equation (1) are obtained by setting ẋi = 0 = u̇ (i = 1, . . . , n) therein. It
is then evident that Ox is a steady state, as claimed.

To show that the only further steady state is found at Px, we note that any steady state must
be located onMx, which implies x∗i = 2(1−i)/nx∗1 for the corresponding steady-state values of {xi},
by (4). Substituting into (1c), we find

0 = p− u∗xD − u∗xku(rx)

n∑
i=1

2
1−i
n x∗1 = p− u∗xD − u∗xku(rx)

1

2

1

1− 2−1/n
x∗1,(13)
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see also [7, Equation (2.61)]. To solve for x∗1, we need to determine u∗x. To that end, we note that

Equation (1a) gives 0 = x∗1
[
u∗xku(rx)rx(−1 + 21/n)−D

]
and, hence,

u∗x =
D

ku(rx)rx(21/n − 1)

at the non-trivial steady state, as x∗1 > 0 by assumption. Substituting for u∗x in (13), we find

x∗1 = 2
(
1− 2−1/n

)pku(rx)rx(21/n − 1)−D2

Dku(rx)
=: ξ∗,(14)

which implies x∗i = 2(1−i)/nξ∗ (i = 1, . . . , n), as claimed.
The stability properties of Ox and Px can be decided by linearisation of (1) about those states;

as was shown in [7, Section 2.3], the relevant Jacobian reads [7, Equation (2.54)]

Jx =



− D
21/n−1 −D 0 2 D

21/n−1 · · · D
x∗1
u∗x

D
21/n−1 − D

21/n−1 −D 0 · · · D
21/3

x∗1
u∗x

0 D
21/n−1 − D

21/n−1 −D · · · D
22/3

x∗1
u∗x

...
...

...
. . .

...
−ku(rx)u∗x −ku(rx)u∗x −ku(rx)u∗x · · · − p

u∗x


.

Since the maximum of the real parts of the eigenvalues of Jx, evaluated at Px, is given by [7,
Equation (2.55)]

D − pku(rx)rx(21/n − 1)

D
,

it follows that Px must be asymptotically stable for ku(rx)rx(21/n − 1) > D2/p and unstable for

ku(rx)rx(21/n− 1) < D2/p, as claimed. Hence, we conclude immediately that the stability of Ox is
determined by reversing these inequalities. Finally, we see directly from (14) that x∗1 – and, hence,
any x∗i with i = 2, . . . , n – will be positive if and only if Px is an attractor, which completes the
proof. �

Propositions 1 through 3 combined show that any solution to (1) with (x1, . . . , xn, u)(0) =
(x10, . . . , xn0, u0) ∈ Rn+ × R+ must remain bounded for all time; see also Lemma 1: all such
solutions are attracted to the invariant manifold Mx in time, and subsequently tend either to the
“extinction” state Ox or to the “survival” state Px. Correspondingly, the stability condition in
Proposition 3 is also known as the survival condition [7, Section 2.3]. In particular, Equation (1)

undergoes a (transcritical) bifurcation when ku(rx)rx(21/n − 1) = D2/p, with the steady states at
Ox and Px colliding and exchanging stability.

Remark 6. It seems natural to suspect that Equation (1) admits higher-dimensional invariant
manifolds, in addition to the ones constructed in Proposition 1; however, for n = 3, an ansatz of
the form φ = x3 − β1x1 − β2x2 in combination with an analogous procedure as in the proof above
only yields a non-physiological invariant hyperplane in that case, as β1 and β2 are both negative.
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3. Resident-mutant model

In this section, we consider the invasion of an established resident population by a mutant, the
classes of which we denote by {yi} (i = 1, . . . , n):

ẋ1 = uku(rx)rx(−x1 + 2xn)− x1D,(15a)

ẋi = uku(rx)rx(−xi + xi−1)− xiD for 2 ≤ i ≤ n,(15b)

ẏ1 = uku(ry)ry(−y1 + 2yn)− y1D,(15c)

ẏi = uku(ry)ry(−yi + yi−1)− yiD for 2 ≤ i ≤ n,(15d)

u̇ = p− uD − uku(rx)
n∑
i=1

xi − uku(ry)
n∑
i=1

yi;(15e)

here, ry ∈ (0, 1) denotes the resource allocation parameter for mutant, where the function ku(ry)
is defined as before. In accordance with [7, Section 2.2], we assume that ry 6= rx; furthermore,
without loss of generality, we make the generic assumption that ku(ry)ry 6= ku(rx)rx.

Remark 7. As resident and mutant in Equation (15) are coupled only through the dynamics of
nutrient u, see (15e), the same argument as in the proofs of Propositions 1 and 2, with {xi} and rx
replaced by {yi} and ry, respectively, will show the existence of an invariant (“mutant”) manifold
My for the subsystem in {(15c),(15d)}.

3.1. Scale separation. We now interpret Equation (15) as a multiple-scale (“fast-slow”) system
of differential equations, which is motivated by the observation that we may expect resident to have
reached steady state before being invaded; see [6, Sections 2.2 and 2.3] and the references therein.
Specifically, we assume that {xi} (i = 1, . . . , n) vary on a “fast” timescale, whereas {yi} evolve on a
“slow” scale, with a (small) parameter ε denoting the ratio of the two scales. Correspondingly, we
also assume that nutrient u reaches steady state on the same scale as {xi}, which is supported by
numerical simulation; recall Figure 1. Moreover, and without loss of generality, we rescale {yi} with
the same parameter ε, writing yi = εỹi, to reflect the initial scarcity of mutant in the environment;
in analogy to the initial conditions imposed on the resident model, Equation (1), we will then have
(ỹ1, ỹ2, . . . , ỹn)(0) = (ỹ10, 0, . . . , 0), where ỹ10 is O(1) and positive.

In sum, we obtain the following augmented resident-mutant model in which the scale separation
is made explicit:

εẋ1 = uku(rx)rx(−x1 + 2xn)− x1D,(16a)

εẋi = uku(rx)rx(−xi + xi−1)− xiD for 2 ≤ i ≤ n,(16b)

˙̃y1 = uku(ry)ry(−ỹ1 + 2ỹn)− ỹ1D,(16c)

˙̃yi = uku(ry)ry(−ỹi + ỹi−1)− ỹiD for 2 ≤ i ≤ n,(16d)

εu̇ = p− uD − uku(rx)

n∑
i=1

xi − εuku(ry)

n∑
i=1

ỹi.(16e)

Equation (16) is in the standard form of geometric singular perturbation theory (GSPT) [3, 6],
written on the “slow” timescale t, with {xi} and u the fast variables and {ỹi} the slow ones.
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Rescaling the time variable via s = t/ε, we obtain the corresponding “fast” system

x′1 = uku(rx)rx(−x1 + 2xn)− x1D,(17a)

x′i = uku(rx)rx(−xi + xi−1)− xiD for 2 ≤ i ≤ n,(17b)

ỹ′1 = ε
[
uku(ry)ry(−ỹ1 + 2ỹn)− ỹ1D

]
,(17c)

ỹ′i = ε
[
uku(ry)ry(−ỹi + ỹi−1)− ỹiD

]
for 2 ≤ i ≤ n,(17d)

u′ = p− uD − uku(rx)
n∑
i=1

xi − εuku(rx)
n∑
i=1

ỹi,(17e)

where the prime now denotes differentiation with respect to s.
The limit of ε→ 0 in Equations (16) and (17) yields two very different singular systems: the “layer

problem” obtained from (17) again gives Equation (1) for the resident states {xi} (i = 1, . . . , n)
and nutrient u, which correspondingly evolve as discussed in Section 2. By contrast, it follows from
ỹ′i = 0 that mutant languishes at its (low) initial population. The “reduced problem” that is found
for ε = 0 in (16), on the other hand, implies that {ỹi} evolve according to Equations (16c) and
(16d), under the additional algebraic constraints

0 = uku(rx)rx(−x1 + 2xn)− x1D,
0 = uku(rx)rx(−xi + xi−1)− xiD for 2 ≤ i ≤ n,

0 = p− uD − uku(rx)
n∑
i=1

xi;

(18)

in other words, {xi} and u have attained their steady-state values {x∗i } and u∗x, respectively, as
defined in Proposition 3. Correspondingly, the reduced flow in {ỹi} evolves on a “critical manifold”
Sx that is defined by (x1, . . . , xn, u) = (x∗1, . . . , x

∗
n, u
∗
x) constant, with {ỹi} varying in some compact

subspace of Rn+; in fact, given Proposition 3, Sx will consist of two branches Ox and Px that
correspond to the steady states at Ox and Px of Equation (1), respectively. Given that u = u∗x
is constant to leading order in ε, we obtain the following linear, constant-coefficient system of
equations for the evolution of {ỹi} under the reduced flow on Sx:

˙̃y1 = u∗xku(ry)ry(−ỹ1 + 2ỹn)− ỹ1D,
˙̃yi = u∗xku(ry)ry(−ỹi + ỹi−1)− ỹiD for 2 ≤ i ≤ n.

(19)

By Fenichel’s Theorem [3, 6], the restriction of the critical manifold Sx to compact subspaces of
Rn+ will persist as a slow manifold for ε positive, but sufficiently small, provided it is normally
hyperbolic; here, normal hyperbolicity follows immediately from Proposition 3, given that the
steady states of Equation (1) are determined precisely from Equation (18). Hence, the two branches
Ox and Px of Sx inherit their stability properties from the steady states at Ox and Px, respectively:

Corollary 1. The critical manifold Sx = Ox∪Px for Equation (16) is normally hyperbolic provided

ku(rx)rx(21/n − 1) 6= D2/p; specifically, for ku(rx)rx(21/n − 1) < D2/p (ku(rx)rx(21/n − 1) >
D2/p), the branch Ox is normally attracting (repelling), whereas the branch Px is normally repelling
(attracting).

3.2. Invasion manifolds. In analogy to the proof of Proposition 1 – with u replaced by u∗x – one
can show that Equation (19) admits a globally attracting invariant manifold M∗ỹ – the so-called
“invasion manifold” for the mutant population – to which the reduced flow on Sx will converge in
a first approximation. Since we consider the dynamics of invasion of a mutant into an established
resident population, we will restrict to the branch Px of Sx, as that branch corresponds to the
survival state Px of resident; correspondingly, we assume ku(rx)rx(21/n − 1) > D2/p here:
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Corollary 2. The manifold M∗ỹ ⊂ Px defined by

ỹi = 2
1−i
n ỹ1 for i = 2, . . . , n,(20)

with u = u∗x
(

= D/
[
ku(rx)rx(21/n − 1)

])
, is invariant for the vector field in Equation (19). More-

over, M∗ỹ is globally attracting under the flow of (19) for any rx, ry ∈ (0, 1) and D > 0.

Proof. The first statement can be shown exactly as in the proof of Proposition 1, with u(t) replaced
by u∗x throughout.

The second statement follows verbatim as in the proof of Proposition 2. �

In analogy to Lemma 2, we have the following result on the per capita growth rates of {ỹi} on
M∗ỹ:

Lemma 3. The per capita growth rates in Equation (19) are equal, and are given by

˙̃yi
ỹi

∣∣∣
M∗

ỹ

= u∗xku(ry)ry
(
21/n − 1

)
−D for any i = 1, . . . , n,

when evaluated on the manifold M∗ỹ ⊂ Px; here, u∗x = D/
[
ku(rx)rx(21/n − 1)

]
.

Remark 8. An analogous result holds for the growth rates of unscaled mutant, as

ẏi
yi

=
ε ˙̃yi
εỹi

=
˙̃yi
ỹi

for i = 2, . . . , n,

at least as long as our assumption of yi = O(ε) is valid.

We emphasise again that persistence of the manifold M∗ỹ for ε positive can only be guaranteed

on suitably defined, compact subsets of Rn+, in accordance with [3, 6].

3.3. Steady states. Since the unique steady state of the reduced problem on Px, Equation (19),
is located at the origin Oỹ : (ỹ1, . . . , ỹn) = (0, . . . , 0), as ku(ry)ry 6= ku(rx)rx by assumption, the
question of whether mutant will invade or, rather, go extinct, reduces to the question of whether Oỹ
is an attractor or a repellor for (19). (While the unscaled resident-mutant model, Equation (15),
will admit other steady states, those are not visible after scaling in the singular limit of ε = 0.)

Proposition 4. The origin Oỹ is an asymptotically stable steady state for Equation (19) on Px
provided ku(ry)ry < ku(rx)rx, whereas it is unstable when ku(ry)ry > ku(rx)rx.

Proof. Linearisation of Equation (19) about Oỹ yields the Jacobian [7, Equation (2.65)]

Jỹ =


−u∗xku(ry)ry −D 0 0 · · · 2u∗xku(ry)ry

u∗xku(ry)ry −u∗xku(ry)ry −D 0 · · · 0
0 u∗xku(ry)ry −u∗xku(ry)ry −D · · · 0
...

...
...

. . .
...

0 0 0 · · · −u∗xku(ry)ry −D

 ,(21)

where u∗x = D/
[
ku(rx)rx(21/n−1)], as before. Since the maximum of the real parts of the eigenvalues

of Jỹ reads [7, Equation (2.66)]

D
(ku(ry)ry
ku(rx)rx

− 1
)
,(22)

the statement follows. �
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Importantly, it follows from Proposition 4 that mutant may invade the resident population when
the invasion condition ku(ry)ry > ku(rx)rx is satisfied. Dynamically, that condition can be inter-
preted as follows: when ku(ry)ry < ku(rx)rx, the origin Oỹ in the reduced problem, Equation (19),
on the branch Px of the critical manifold Sx is asymptotically stable, which implies that mutant
{ỹi} will go extinct as time tends to infinity; for ku(ry)ry > ku(rx)rx, on the other hand, Oỹ is un-
stable, i.e., {ỹi} will grow “without bound” alongM∗ỹ until our scaling of {yi} with ε breaks down

and the persistence of M∗ỹ can no longer be guaranteed. (In fact, after a transitional period where

{yi} and {xi} are of comparable orders of magnitude, a “role reversal” becomes feasible whereby
the resident population is overwhelmed by mutant [2].) In particular, the invasion manifold M∗ỹ
hence corresponds to the weakest stable eigendirection – i.e., to the “weak stable manifold” – of
Oỹ when ku(ry)ry < ku(rx)rx. Conversely, if ku(ry)ry > ku(rx)rx, M∗ỹ corresponds to the unstable
eigendirection – or, equivalently, to the unstable manifold – of Qỹ; by Corollary 2, that manifold
has to be one-dimensional. Finally, the origin undergoes a bifurcation at ku(ry)ry = ku(rx)rx.

Remark 9. Evidently, the per capita growth rates ˙̃yi/ỹi in Lemma 3 equal the maximum real part
of the eigenvalues of Jỹ in (22) when evaluated on Px, which is hence consistent with the resulting
invasion condition.

Furthermore, that condition is equivalent to the requirement that u∗x > u∗y, where u∗y = D/
[
ku(ry)

ry(2
1/n−1)

]
is the steady-state value of u in a mutant-only analogue of Equation (1). Hence, mutant

invades successfully if it is superior at depleting nutrient in the environment, in accordance with
the “competitive exclusion principle”, as observed already in [7, Section 2.2].

4. Illustrative Examples

In this section, we illustrate our findings for the two-class case and the three-class case that result
for n = 2 and n = 3, respectively, in Equations (1) and (16).

4.1. The case n = 2. We first discuss the simplest possible case of n = 2 where two classes are
present in both the resident model and the resident-mutant model.

4.1.1. Resident model. The resident model that is obtained from (1) when n = 2 reads

ẋ1 = uku(rx)rx(−x1 + 2x2)− x1D,(23a)

ẋ2 = uku(rx)rx(−x2 + x1)− x2D,(23b)

u̇ = p− uD − uku(rx)(x1 + x2);(23c)

while the general results in Propositions 1 and 2 apply here, we give an explicit proof of the following
combined result to illustrate the simplification ensuing for n = 2:

Corollary 3. Let rx ∈ (0, 1). Then, the invariant manifold Mx for Equation (23) is defined by

x2 = 2−1/2x1.(24)

Moreover, Mx is globally attracting under the flow of (23) for any D > 0.

Proof. We define the new variable φ2 = x2 − α2x1 and calculate

φ̇2 = ẋ2 − α2ẋ1 = −uku(rx)rx

[
φ2 + 2α2

(
x2 −

1

2α2
x1

)]
− φ2D,(25)

which implies α2 = (2α2)
−1 or α2 = 2−1/2, as claimed. Hence, (25) reduces to φ̇2 = −uku(rx)rx[1+√

2]φ2 − φ2D, which can be integrated for a given initial value φ2(t0) to yield

φ2(t) = φ2(t0) exp

{
−
∫ t

t0

[
u(τ)ku(rx)rx(1 +

√
2) +D

]
dτ

}
.(26)
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In particular, it follows from φ2(t0) = 0 that φ2(t) ≡ 0 for all t ≥ t0 and, hence, that x2(t) ≡
2−1/2x1(t) by the definition of φ2, which shows the invariance of Mx.

Finally, since 0 < u(τ) <∞ for all τ > 0, by Lemma 1, we have 0 < D < u(τ)ku(rx)rx(1+
√

2)+D
uniformly in τ in (26); it follows that

0 ≤ |φ2(t)| ≤ |φ2(t0)|e−D(t−t0) → 0 as t→∞

for any D > 0. Hence, |φ(t)| → 0 exponentially for t → ∞ irrespective of the choice of φ2(t0),
which implies that Mx is globally attracting, as claimed. �

Remark 10. An alternative proof for the existence and stability of the invariant manifold Mx

when n = 2 is based on a transformation of Equation (23) to the well-known Riccati equation [13,
Section 1.2]: to that end, we define the new variable ψ2 = x2

x1
; then,

ψ̇2 =
ẋ2x1 − x2ẋ1

x21
= uku(rx)rx[1− 2ψ2

2],(27)

where we have made use of (23a) and (23b) and rewritten the resulting equation in terms of ψ2.
Now, we note that the factor uku(rx)rx in (27) is always positive; hence, we may introduce a
t-dependent rescaling of time, with d

dt = u(t)ku(rx)rx
d
dτ , where τ denotes the new rescaled time.

(That rescaling effectively introduces a factor of uku(rx)rx on the left-hand side of (27), allowing
us to divide it out; moreover, it does not alter the phase portrait of (27), as it only affects the time
parametrisation of solutions.) Solving the resulting equation with some initial value ψ2(τ0) = ψ20,
we find

ψ2(τ) =
1√
2

(
√

2ψ20 + 1)e2
√
2(τ−τ0) +

√
2ψ20 − 1

(
√

2ψ20 + 1)e2
√
2(τ−τ0) −

√
2ψ20 + 1

;(28)

since (28) implies that ψ2(τ) → 2−1/2, its steady-state value, as τ → ∞, the above argument
constitutes an alternative proof of Corollary 3 when n = 2. (That conclusion could equally be
drawn by rewriting (27) as an equivalent linear second-order equation [13, Section 0.1.4].)

In Figure 2, we illustrate the dynamics of (23) numerically in the two scenarios where either the
extinction state Ox : (0, 0, pD ) or the survival state

Px :

(√
2(
√

2− 1)
pku(rx)rx(

√
2− 1)−D2

ku(rx)D
, (
√

2− 1)
pku(rx)rx(

√
2− 1)−D2

ku(rx)D
,

D

ku(rx)rx(
√

2− 1)

)(29)

is an attractor, i.e., for ku(rx)rx(
√

2− 1) < D2/p or ku(rx)rx(
√

2− 1) > D2/p.

4.1.2. Resident-mutant model. For n = 2, the resident-mutant model in Equation (16) reduces to

εẋ1 = uku(rx)rx(−x1 + 2x2)− x1D,(30a)

εẋ2 = uku(rx)rx(−x2 + x1)− x2D,(30b)

˙̃y1 = uku(ry)ry(−ỹ1 + 2ỹ2)− ỹ1D,(30c)

˙̃y2 = uku(ry)ry(−ỹ2 + ỹ1)− ỹ2D,(30d)

εu̇ = p− uD − uku(rx)(x1 + x2)− εuku(ry)(ỹ1 + ỹ2),(30e)

where rx, ry ∈ (0, 1). The relevant branch Px of the critical manifold Sx is defined by x1, x2, and u
taking their steady-state values x∗1, x

∗
2, and u∗x, respectively, at Px, as defined in (29), with {ỹ1, ỹ2}
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Ox

Mx

x1

x2

(a) Extinction: p = 0.1 and D = 0.3.

Ox

Px

Mx

x1

x2

(b) Survival: p = 0.2 and D = 0.02.

Figure 2. Dynamics of Equation (23) for rx = 0.6 and ku(rx) = 2: resident man-
ifold Mx (blue), representative orbit (red) with initial condition (x1, x2, u)(0) =
(0.4, 0, 1), extinction state Ox (solid square), and survival state Px (solid circle). We
note that Px is not shown in panel (a), as it is physiologically irrelevant there.

varying in a suitably defined compact subspace of R2
+. The reduced flow on Px, which is obtained

for ε = 0 in (30), reads

˙̃y1 = u∗xku(ry)ry(−ỹ1 + 2ỹ2)− ỹ1D,
˙̃y2 = u∗xku(ry)ry(−ỹ2 + ỹ1)− ỹ2D.

(31)

In sum, it follows as in the proof of Corollary 3 that Equation (30) admits a globally attracting
invariant manifold M∗ỹ, the “invasion manifold”. Furthermore, the stability of the steady state at

the origin Oỹ on M∗ỹ again depends on the relative magnitudes of ku(ry)ry and ku(rx)rx; recall
Proposition 4:

Corollary 4. The manifold M∗ỹ ⊂ Sx defined by

ỹ2 = 2−1/2ỹ1,

with u = u∗x
(

= D/
[
ku(rx)rx(

√
2−1)

])
, is invariant for the vector field in Equation (31). Moreover,

M∗ỹ is globally attracting under the flow of (31) for any rx, ry ∈ (0, 1) and D > 0.

Finally, the origin Oỹ is an asymptotically stable (unstable) steady state for Equation (31) when
ku(ry)ry < ku(rx)rx (ku(ry)ry > ku(rx)rx).

Proof. The first two statements follow verbatim as in the proof of Corollary 3.
The third statement is obtained as in the proof of Proposition 4: evaluating the Jacobian Jỹ for

n = 2, we find [
−u∗xku(ry)ry −D 2u∗xku(ry)ry

u∗xku(ry)ry −u∗xku(ry)ry −D

]
,

which has trace tr(Jỹ) = −2[u∗xky(ry)ry + D] and determinant det(Jỹ) = D2 + 2u∗xku(ry)ryD −
(u∗xku(ry)ry)

2. Now, we recall that u∗x = D
ku(rx)rx(

√
2−1) ; then, tr(Jỹ) = −2D

[
ky(ry)ry

ku(rx)rx(
√
2−1) + 1

]
is
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Oỹ

M∗ỹ

Px

x1ỹ1

ỹ2

(a) Extinction: ry = 0.3 and ku(ry) = 1.

Oỹ

M∗ỹ

Px

x1ỹ1

ỹ2

(b) Invasion: ry = 0.7 and ku(ry) = 2.

Figure 3. Dynamics of Equation (30) for p = 0.2, D = 0.02, rx = 0.6, ku(rx) = 2,
and ε = 0.05: critical manifold Px (blue), invasion manifold M∗ỹ (yellow), and

representative orbit (red) with initial condition (x1, x2, ỹ1, ỹ2, u)(0) = (0.4, 0, 1, 0, 1).

clearly negative, while

det(Jỹ) = −D2

[
ku(ry)ry
ku(rx)rx

− 1

]
·
[

(
√

2 + 1)ku(ry)ry

(
√

2− 1)ku(rx)rx
+ 1

]
is positive (negative) for ku(ry)ry < ku(rx)rx (ku(ry)ry > ku(rx)rx). Hence, the origin Oỹ is
asymptotically stable in the former case, whereas it is unstable in the latter, as claimed. �

In accordance with Proposition 4, the invasion manifold M∗ỹ for n = 2 corresponds to the weak

stable manifold of the origin in (31) when ku(ry)ry < ku(rx)rx, whereas it equals the unstable
manifold thereof for ku(ry)ry > ku(rx)rx; one easily verifies that the eigenvector associated with

the less negative of the two real eigenvalues of Jỹ is (
√

2, 1)T . In Figure 3, we illustrate the dynamics
of Equation (30) in these two scenarios, which result in extinction of mutant and successful invasion,
respectively.

4.2. The case n = 3. Next, we consider both the resident model and the resident-mutant model
for the three-class case where n = 3. Not unexpectedly, the analysis of the resulting dynamics is
more involved algebraically than in the two-class case discussed in the previous subsection.

4.2.1. Resident model. For n = 3, the system of equations in (1) evaluates to

ẋ1 = uku(rx)rx(−x1 + 2x3)− x1D,(32a)

ẋ2 = uku(rx)rx(−x2 + x1)− x2D,(32b)

ẋ3 = uku(rx)rx(−x3 + x2)− x3D,(32c)

u̇ = p− uD − uku(rx)(x1 + x2 + x3).(32d)

Propositions 1 and 2 then imply the following result:
15



Corollary 5. Let rx ∈ (0, 1). Then, the invariant manifold Mx for Equation (32) is defined by

x2 = 2−1/3x1 and x3 = 2−2/3x1.(33)

Moreover, Mx is globally attracting under the flow of (32) for any D > 0.

Proof. The first statement is immediate from Proposition 1.
The second statement can be shown by making the procedure in the proof of Proposition 2

explicit for n = 3. To that end, we note that

1

2

d

dt
‖Φ‖2 = (φ2, φ3)

[
−uku(rx)rx −D −22/3uku(rx)rx

uku(rx)rx −uku(rx)rx
(
1 + 21/3

)
−D

](
φ2
φ3

)
= −

[
uku(rx)rx(1 + 21/3) +D

]
‖Φ‖2 + uku(rx)rx

[
21/3φ22 +

(
1− 22/3

)
φ2φ3

]
≤ −

[
uku(rx)rx(1 + 21/3) +D

]
‖Φ‖2 + uku(rx)rx

[(
21/3 +

22/3 − 1

2δ

)
φ22 +

22/3 − 1

2
δφ23

]
,

where we have again used the estimate |uv| ≤ 1
2(u

2

δ + δv2), with δ > 0. Fixing δ in the last line

above so that 21/3 + 22/3−1
2δ = 22/3−1

2 δ, we find the unique (positive) solution

δ =
21/3 +

√
24/3 + 1− 22/3

22/3 − 1
,

which implies

22/3 − 1

2
δ = 21/3 +

(
22/3 − 1

)2
2
(
21/3 +

√
24/3 + 1− 22/3

) =: ν,

in the notation of Proposition 2; hence,

1

2

d

dt
‖Φ(t)‖2 ≤ −

[
u(t)ku(rx)rx

(
1 + 21/3 − ν

)
+D

]
‖Φ(t)‖2.

Since 1 + 21/3 − ν = 1 −
(
22/3 − 1

)2
/
[
2
(
21/3 +

√
24/3 + 1− 22/3

)]
≈ 0.9349 > 0, while 0 <

u(t)ku(rx)rx < ∞ for all t > 0, see Lemma 1, it follows that ‖Φ(t)‖2 decays to zero exponentially
for any initial value ‖Φ(t0)‖2 and any D > 0, which implies global asymptotic stability of Mx, as
claimed. �

Remark 11. The estimate in Corollary 5 is sharper than the general one resulting from Proposi-
tion 2, as the expression for δ2n therein combines with that for δn−1,n to yield δ; regardless, both
estimates imply exponential decay of ‖Φ(t)‖2 as t→∞.

The dynamics of Equation (32) is illustrated in Figure 4; again, we consider both the sce-

nario where resident goes extinct (ku(rx)rx(21/3 − 1) < D2/p) and the one where it survives

(ku(rx)rx(21/3 − 1) > D2/p).

4.2.2. Resident-mutant model. When n = 3, the resident-mutant model in (16) reads

εẋ1 = uku(rx)rx(−x1 + 2x3)− x1D,(34a)

εẋ2 = uku(rx)rx(−x2 + x1)− x2D,(34b)

εẋ3 = uku(rx)rx(−x3 + x2)− x3D,(34c)

˙̃y1 = uku(ry)ry(−ỹ1 + 2ỹ3)− ỹ1D,(34d)

˙̃y2 = uku(ry)ry(−ỹ2 + ỹ1)− ỹ2D,(34e)

˙̃y3 = uku(ry)ry(−ỹ3 + ỹ2)− ỹ3D,(34f)

εu̇ = p− uD − uku(rx)(x1 + x2 + x3)− εuku(ry)(ỹ1 + ỹ2 + ỹ3),(34g)
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Ox

Mx

x1x2

x3

(a) Extinction: p = 0.1 and D = 0.3.

Ox

Px

Mx

x1x2

x3

(b) Survival: p = 0.2 and D = 0.02.

Figure 4. Dynamics of Equation (32) for rx = 0.6 and ku(rx) = 2: resident mani-
fold Mx (blue), representative orbit (red) with initial condition (x1, x2, x3, u)(0) =
(0.4, 0, 0, 0), extinction state Ox (solid cube), and survival state Px (solid sphere).
We note that Px is not shown in panel (a), as it is physiologically irrelevant there.

with rx, ry ∈ (0, 1), as before. In analogy to the case where n = 2, we consider the singular limit
as ε→ 0 in (34), which yields the reduced flow

˙̃y1 = u∗xku(ry)ry(−ỹ1 + 2ỹ3)− ỹ1D,
˙̃y2 = u∗xku(ry)ry(−ỹ2 + ỹ1)− ỹ2D,
˙̃y3 = u∗xku(ry)ry(−ỹ3 + ỹ2)− ỹ3D

(35)

on the branch Px of the critical manifold Sx that is obtained by evaluating x1, x2, x3, and u at
the survival steady state Px defined in Proposition 3; in particular, u∗x = D/

[
ku(rx)rx(21/3− 1)

]
in

that case.

Corollary 6. The manifold M∗ỹ defined by

ỹ2 = 2−1/3ỹ1 and ỹ3 = 2−2/3ỹ1,

with u = u∗x
(

= D/
[
ku(rx)rx(21/3−1)

])
, is invariant for the vector field in Equation (35). Moreover,

M∗ỹ is globally attracting under the flow of (35) for any rx, ry ∈ (0, 1) and D > 0.

Finally, the origin Oỹ is an asymptotically stable (unstable) steady state for Equation (35) when
ku(ry)ry < ku(rx)rx (ku(ry)ry > ku(rx)rx).

Proof. The first statement again follows from Proposition 1, while the second statement is obtained
as in the proof of Corollary 5, with u(t) replaced by u∗x.
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The third statement follows by evaluating the Jacobian Jỹ of (35) about the origin Oỹ, −u∗xku(ry)ry −D 0 2u∗xku(ry)ry
u∗xku(ry)ry −u∗xku(ry)ry −D 0

0 u∗xku(ry)ry −u∗xku(ry)ry −D

 ,
where u∗x is defined as above. One easily finds that tr(Jỹ) = −3D

[
ku(ry)ry

ku(rx)rx(21/3−1)
+ 1
]

is always

negative, while

det(Jỹ) = D3

[
ku(ry)ry
ku(rx)rx

− 1

]
·
[
k2u(ry)r

2
y

k2u(rx)r2x

1

(21/3 − 1)3
+
ku(ry)ry
ku(rx)rx

4− 3 · 21/3

(21/3 − 1)3
+ 1

]
.

Since the second factor in square brackets in the above expression is always positive, it follows that
det(Jỹ) is positive (negative) for ku(ry)ry > ku(rx)rx (ku(ry)ry < ku(rx)rx). Now, since tr(Jỹ) is
always negative, Jỹ has precisely one eigenvalue with positive real part and two eigenvalues with
negative real part in the former case, which implies that Oỹ is unstable then; it remains to show
that all three eigenvalues have strictly negative real part in the latter case, which implies stability.
To that end, we note that the maximum of the real parts of the eigenvalues of Jỹ is given by

D
(
ku(ry)ry
ku(rx)rx

− 1
)

; recall the proof of Proposition 4. Since that expression becomes negative when

ku(ry)ry < ku(rx)rx, the assertion follows. �

As before, the proof of Corollary 6 implies that the invasion manifoldM∗ỹ for n = 3 coincides with

the eigendirection (22/3, 21/3, 1)T at the origin in (35), which is stable when ku(ry)ry < ku(rx)rx,
whereas it is unstable for ku(ry)ry > ku(rx)rx; in fact, one can show explicitly that the correspond-
ing eigenvalue is real, as well as that Jỹ additionally admits a pair of complex-conjugate eigenvalues
with negative real part now.

5. Discussion

In this article, we have studied invariant manifolds in a family of class-structured models from
adaptive dynamics. Under the simplifying assumption that the mortality rate (D) is independent
of class, i.e., of i = 1, . . . , n, we have shown that the resident-only model defined in Equation (1)
admits a “resident” manifold Mx that is globally attracting under the corresponding flow, and on
which the system converges to a steady state (x∗1, . . . , x

∗
n, u
∗
x) which may be either the extinction

state or a survival state at which all classes coexist. In particular, we have shown that the survival
state is only physiologically relevant, with the steady-state values {x∗i } of all classes being positive,
when it is an attractor, and we have derived a corresponding condition on the model parameters
p, D, rx, and ku(rx). Our analysis implies, in particular, that the significance of the manifold Mx

for the dynamics of (1) decreases with increasing number of classes (n), given thatMx is always a
line in an n-dimensional phase space – neglecting the dynamics of u – and, hence, that trajectories
will generically approach steady state directly for n large.

While we have not studied the augmented resident-mutant model, Equation (16), in full gener-
ality, we have considered the regime where mutant is scarce, and we have recovered a condition
for when it may invade the resident population that is based on a scale separation in the gov-
erning equations. Specifically, we have assumed that resident has reached quasi-steady state at
(x∗1, . . . , x

∗
n, u
∗
x); under that assumption, we have identified a transient regime on a critical manifold

in the resulting “reduced problem”, with mutant evolving along an invasion manifoldM∗ỹ, while the
resident population is fixed in a first approximation. The manifoldM∗ỹ is again globally attracting
within the ambient critical manifold and, hence, determines the dynamics of mutant after an initial
transient. In that sense, we have obtained a dynamical and highly intuitive interpretation of inva-
sion into an established cell population. As Fenichel’s Theorem [3, 6] a priori only guarantees the
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persistence of compact submanifolds ofM∗ỹ, our analysis does not describe the long-term evolution

of the mutant population; by interpreting our rescaling of {yi} with ε as the “rescaling chart” in
an appropriately defined geometric “blow-up” [8], one may be able to establish a connection with
the regime where yi = O(1) as ε→ 0.

Remark 12. As an aside, we note that the invasion manifold is equal, in {yi}, to the mutant
manifold My that exists for the mutant-only model, i.e., for xi replaced by yi (i = 1, . . . , n) in
Equation (1). (The corresponding u-value will differ, of course, with u fixed to u∗x in the former
case, but varying in some compact subinterval of (0,∞) in the latter; however, that difference is
inconsequential to our proofs of Proposition 1 and Corollary 2, respectively.)

Finally, we have illustrated our results for the two-class case and the three-class case, with n = 2
and n = 3, respectively, in which much of the underlying analysis simplifies.

While our study hence provides rigorous insight into the phase space geometry of the resident
model and the resident-mutant model in Equations (1) and (16), respectively, various generalisations
naturally suggest themselves.

Thus, we have assumed throughout that mortality is independent of class. If the mortality
rates in Equation (1) are allowed to differ, our proofs are no longer valid as they stand. However,
numerical simulation suggests that globally attracting invariant manifolds will continue to exist in
that scenario and, in particular, that invasion manifolds can be defined on normally hyperbolic
critical manifolds. Preliminary analysis indicates that our proofs can be adapted accordingly; the
persistence of critical manifolds as slow manifolds will again follow by standard theory provided the
defining steady states can be shown to be globally asymptotically stable. Interestingly, we expect
that the resulting invasion manifolds will differ from the corresponding mutant manifolds when
mortality rates are different between classes.

Similarly, when considering the invasion of mutant, it may be reasonable to introduce two dis-
tinct perturbation parameters in Equation (16), with ε denoting the timescale separation between
resident and mutant, as before, and a separate small parameter scaling the mutant population to
reflect the initial scarcity of mutant.

In the case where n = 2, we provided an alternative proof for the existence and global stability
of the resident manifold Mx by transformation of the (x1, x2)-subsystem in Equation (23) to an
equivalent Riccati equation. It would be interesting to investigate whether that analysis can be
extended to the general n-class scenario.

We have not considered the “open” system corresponding to Equation (1) in which the “bound-
ary” class n has been removed. We expect that, in the limit as n→∞, the“closed” system studied
here will converge to its open counterpart, in the sense that higher classes will become insignificant
in that limit. In the steady-state regime, our expectation is supported by the observation that
x∗n → 0 as n→∞; recall Proposition 3. However, as much of the analysis presented in Sections 2
and 3 seems to degenerate then, we have opted not to consider the “open” counterpart to (1)
further here.

Finally, it would be interesting to study extensions of the simplistic models in Equations (1)
and (15) that allow for alternative metabolic pathways and multiple nutrients, as discussed in
Sections 2.5 and 4.3 of [7], respectively. Given the algebraically involved structure of the resulting
equations, the general theory of normally hyperbolic invariant manifolds developed, for instance,
in [9] may prove beneficial in that context.
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