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Abstract. Stochastic models for gene expression frequently exhibit dynamics on several different
scales. One potential time-scale separation is caused by significant differences in the lifetimes of
mRNA and protein; the ratio of the two degradation rates gives a natural small parameter in the
resulting Chemical Master Equation, allowing for the application of perturbation techniques. Here,
we develop a framework for the analysis of a family of ‘fast-slow’ models for gene expression that
is based on geometric singular perturbation theory. We illustrate our approach by giving a com-
plete characterisation of a standard two-stage model which assumes transcription, translation, and
degradation to be first-order reactions. In particular, we present a systematic expansion procedure
for the probability-generating function that can in principle be taken to any order in the perturba-
tion parameter, allowing for an approximation of the corresponding propagator probabilities to that
same order. For illustrative purposes, we perform this expansion explicitly to first order, both on the
fast and the slow time-scales; then, we combine the resulting asymptotics into a composite fast-slow
expansion that is uniformly valid in time. In the process, we extend, and prove rigorously, results
previously obtained by Shahrezaei and Swain [50] and Bokes et al. [8, 9]. We verify our asymptotics
by numerical simulation, and we explore its practical applicability and the effects of a variation in
the system parameters and the time-scale separation. Focussing on biologically relevant parameter
regimes that induce translational bursting, as well as those in which mRNA is frequently transcribed,
we find that the first-order correction can significantly improve the steady-state probability distribu-
tion. Similarly, in the time-dependent scenario, inclusion of the first-order fast asymptotics results
in a uniform approximation for the propagator probabilities that is superior to the slow dynamics
alone. Finally, we discuss the generalisation of our geometric framework to models for regulated gene
expression that involve additional stages.

1. Introduction

Gene expression in prokaryotic and eukaryotic organisms alike can be a highly stochastic process,
which complicates the modelling of gene regulatory networks; see, e.g., [49] and the references
therein. Yet, stochasticity should be included if models are to describe accurately the dynamics of
gene expression when the abundance of the involved species is low. While stochastic fluctuations can
be either extrinsic or intrinsic, we will focus on intrinsic fluctuations here, i.e., on those generated by
the random timing of chemical reactions. (A more complete discussion of the relationship between
the two types of fluctuation can be found in [10, 48].) In both scenarios, the aim is the derivation
– or accurate approximation – of the probability distributions that describe the numbers of mRNA
and protein which are synthesised over time. These distributions are obtained as solutions of the
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Chemical Master Equation (CME), which constitutes the accepted mathematical description of
reaction processes in general and of gene expression in particular; see, e.g., [21, 22, 50] and the
references therein. However, as the CME can be solved exactly only in special cases [25, 28, 33],
there is a definite need for approximate solution techniques.

In this article, we develop a systematic, perturbative framework for the approximation of proba-
bility distributions in stochastic gene expression under the assumption that the reaction dynamics
occurs on two fundamentally different time-scales; specifically, it is assumed that the degradation
of mRNA is much faster than that of protein. The resulting scale separation between mRNA and
protein is well-documented in many (microbial) organisms that include bacteria [6, 60] and yeast
[50, 57], where the scales typically differ by about an order of magnitude. (It is, however, by no
means generic: thus, it has been found recently that the two scales are often comparable in mam-
malian cells [45].) The presence of a singular perturbation parameter – the inverse of the ratio of
lifetimes of protein and mRNA – allows for the application of perturbative techniques; specifically,
our analysis is based on geometric singular perturbation theory [17, 29].

The application of (singular) perturbation techniques in biological modelling has a long and dis-
tinguished history, starting with the seminal article by Segel and Slemrod [46], where such techniques
were first popularised in the context of the quasi-steady-state approximation (QSSA). The classi-
cal method of matched asymptotic expansions [32] can provide rapid insight into the asymptotics
of singularly perturbed differential equation models, and has been applied widely in mathematical
biology; see, e.g., [39] for examples and references. An alternative, more geometric approach, which
was pioneered by Fenichel [17] and popularised by Jones [29], is based on the well-developed theory
of dynamical systems [2, 47, 59], allowing for a visual interpretation and rigorous justification of
the resulting asymptotic expansions in terms of invariant manifolds, and their foliations, in phase
space. (Intuitively, the former correspond to the slow dynamics, while the latter describe the fast
component of the flow.)

We illustrate our approach by characterising completely the multiple-scale (‘fast-slow’) dynamics
of a two-stage model for stochastic gene expression which was, to the best of our knowledge, first
proposed in [53]; see also [8, 9, 30, 50, 54] and the references therein. As that model has been
studied extensively, we mention four relevant publications here; in particular, we emphasise the
article by Shahrezaei and Swain [50], which provided the motivation for our study. However, while
they proposed a perturbative approximation akin to ours, they merely derived the leading-order
asymptotics of the resulting protein distribution given zero mRNA initially; moreover, they neglected
any transient dynamics in their analysis. (Here, we give a mathematically rigorous justification of
their results, and we extend them substantially in the process.) More recently, Bokes et al. [8]
employed a combination of analytical, asymptotic, and numerical techniques to approximate the
probability-generating function for the joint distribution of mRNA and protein in the above model
in a number of asymptotic regimes; however, they only studied the system at steady state. In
the follow-up article [9], the same authors then focussed on the asymptotic regime considered here;
while they did formulate the ‘inner’ (‘fast’) equations, with the aim of matching them to the ‘outer’
(‘slow’) ones, they only did so to zeroth order in the perturbation parameter. Furthermore, they
did not obtain closed-form expressions for the resulting propagator probabilities of observing certain
numbers of mRNA and protein at a point in time, given some initial numbers thereof; rather,
they integrated their leading-order equations numerically. Finally, in [42], the authors invoked
certain partitioning properties of Poisson processes to map regulatory networks onto appropriately
defined reduced models, which allowed them to obtain both time-dependent and stationary closed-
form expressions for the generating function in the two-stage model considered here. While their
approach seems to be equally applicable to generalised models for stochastic gene expression, like
ours, no expressions – exact or approximate – are given for the resulting probability distributions.
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Thus, our results represent a three-fold advance over previous studies of the standard two-stage
model: first, we develop a systematic approximation procedure for the corresponding propagator
probabilities that can in principle be performed algorithmically, and to any order in the perturbation
parameter; moreover, our approach yields asymptotic formulae in closed form for these propagators,
unlike in [8, 9, 42]. Second, the resulting formulae systematically account for contributions both
from the fast (‘transient’) and the slow (‘long-term’) dynamics, in contrast to [50]; in particular, the
former are vital for the accurate approximation of propagator probabilities in a variety of biologically
relevant parameter regimes, as discussed in detail in Section 5. (For demonstrative purposes, we
restrict ourselves to deriving explicitly the first-order asymptotics here.) Third, and again in contrast
to [8, 50], our approach allows for arbitrary initial numbers of both mRNA and protein. The reader
is referred to Section 5, where the practical implications of these advances are explored numerically
and where, moreover, their biological significance is assessed and interpreted.

This article is organised as follows: in Section 2, we introduce the two-stage model for gene
expression studied here. In Section 3, which is aimed at a mathematically inclined readership, we
construct our geometric framework for the perturbative approximation of an appropriately defined
generating function. In Section 4, we derive first-order expansions for the corresponding probability
distributions on the fast and the slow time-scales, which we then combine into a ‘composite’ fast-
slow expansion that is uniformly valid in time. In Section 5, we verify our results numerically,
and we interpret them from a practitioners’ point of view; crucially, we show that our uniform
propagator significantly outperforms the slow asymptotics alone, both to zeroth and to first order.
Then, in Section 6, we summarise and discuss our findings, and we present potential topics for future
research. Additional material, and mathematical detail, has been relegated to an Online Supplement:
in Section A, we give a brief overview of geometric singular perturbation theory; in Section B, we
quote asymptotic formulae for the propagator probabilities under the assumption that mRNA and
protein numbers are not necessarily zero initially; Section C contains the mathematical proofs which
underlie the asymptotics developed in the main text, while Section D lists the resulting formulae for
the marginal probability distribution of protein in tabular form, for the reader’s convenience.

2. Two-stage model for gene expression

In this section, we briefly introduce the standard two-stage model for unregulated gene expression;
see, e.g., [8, 9, 50, 53] for details. Then, we outline how the corresponding CME can be analysed
via the method of characteristics [61].

2.1. Background. A cartoon illustration of the reaction kinetics underlying the two-stage model
considered in the present article – which is a widely accepted representation of constitutive, or
unregulated, gene expression – can be found in Figure 1(a), while the corresponding reaction scheme
is sketched in Figure 1(b): under the assumption that the promoter region of the modelled gene is
always active, one requires only two stochastic variables, namely, the numbers of mRNA and protein;
that assumption, though simplistic, frequently seems to be reasonable in practice [7, 62]. (In fact,
the two-stage model is capable of complex dynamics such as translational bursting, i.e., of bursts in
protein synthesis that seem to be typical of gene expression in bacteria and yeast; see [9, 30, 37, 50],
as well as Section 5.2 below.) An additional simplification is achieved by the assumption that both
transcription and translation, as well as the degradation of mRNA and protein, can be modelled as
first-order chemical reactions; we denote the corresponding transcription and translation rates by
ν0 and ν1, respectively, and we write d0 and d1 for the respective degradation rates of mRNA and
protein, as illustrated in Figure 1(a).

2.2. Chemical Master Equation (CME). As in [18, 50], we introduce the new dimensionless

parameters a = ν0
d1

, b = ν1
d0

, and γ = d0
d1

; moreover, we rescale time with d1 to obtain a non-
dimensionalised time variable τ . Then, the propagator Pmn|m0n0

– i.e., the probability of observing
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Figure 1. The two-stage model for unregulated gene expression. Panel 1(a) illus-
trates the reaction kinetics in which transcription, translation, and degradation are
modelled as first-order processes. Correspondingly, ν0 and ν1 denote the probabili-
ties per unit time (or rates) of transcription and translation, respectively, while the
degradation rates of mRNA and protein are given by d0 and d1, respectively. In
panel 1(b), the underlying reaction scheme is sketched; the rates νj and dj (j = 1, 2)

have been replaced with three parameters a = ν0
d1

, b = ν1
d0

, and γ = d0
d1

after non-
dimensionalisation.

m mRNA and n protein molecules at time τ , given m0 and n0 of each, respectively, at time zero –
satisfies the non-dimensional CME

d

dτ
Pmn|m0n0

= a
(
Pm−1,n|m0n0

− Pmn|m0n0

)
+ γbm

(
Pm,n−1|m0n0

− Pmn|m0n0

)
+ γ
[
(m+ 1)Pm+1,n|m0n0

−mPmn|m0n0

]
+
[
(n+ 1)Pm,n+1|m0n0

− nPmn|m0n0

]
,

(1)

with m, n, m0, n0 ∈ N0 = N∪{0}; cf. also [50, Equation (1)] and [9, Equation (4)]. For convenience
of notation, we will henceforth write Pmn ≡ Pmn|00 when m0 = 0 = n0.

Given our assumption that γ � 1 in Equation (5), i.e., that the degradation rate of mRNA
is much larger than that of protein, it is natural to introduce ε = γ−1 as a (small) perturbation
parameter. Correspondingly, we may interpret Pmn|m0n0

(τ, ε) as a function of both τ and ε.

2.3. Probability-generating function. Our analysis relies crucially on the probability-generating
function that is induced by the propagator probabilities Pmn|m0n0

; see [38] for a recent exposition.
In the context of the CME, Equation (1), that function is defined as

F (z′, z, τ, ε) =

∞∑
m,n=0

Pmn|m0n0
(τ, ε)(z′)mzn,(2)

where z′, z ∈ C [38, Section 10.4]. We remark that the domain of definition of F must contain any
pairs (z′, z) ∈ C2 for which |z′|, |z| ≤ 1, as well as that the series expansion in (2) is uniformly and
absolutely convergent on that domain. For future reference, we note that the probabilities Pmn|m0n0

can be retrieved from F via

Pmn|m0n0
(τ, ε) =

1

m!

1

n!

∂m

∂(z′)m
∂n

∂zn
F (z′, z, τ, ε)

∣∣∣
(z′,z)=(0,0)

,(3)

as well as that F satisfies the normalisation condition

F (1, 1, τ, ε) = lim
(z′,z)→(1−,1−)

F (z′, z, τ, ε) =
∞∑

m,n=0

Pmn|m0n0
(τ, ε) = 1.(4)
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Finally, introducing the new variables u = z′−1 and v = z−1, we find that F solves the first-order
linear partial differential equation

∂F

∂τ
+ γ[u− b(1 + u)v]

∂F

∂u
+ v

∂F

∂v
= auF ;(5)

see also [50, Equation (2)]. In particular, since Pmn|m0n0
(0, ε) = δmm0δnn0 (irrespective of the value

of ε), the function F must satisfy the condition

F (u, v, 0, ε) = (1 + u)m0(1 + v)n0(6)

for τ = 0. (Here, δjk denotes the Kronecker delta, with δjj = 1 and δjk = 0 for any j 6= k.)

Remark 1. Throughout this article, we will interchangeably consider F to be a function either of
(z′, z) or of (u, v), as required. While our use of notation is thus not entirely precise, its meaning
should be clear in context. �

2.4. ‘Characteristic’ equations. As is well-known [8, 50], the partial differential Equation (5) can
be solved via the method of characteristics; see, e.g., [61, Chapter 2]. Denoting by r the distance
along a characteristic curve whose initial point is located at (u0, v0) ∈ R2 for τ = 0, we obtain the
following ‘characteristic’ system of ordinary differential equations from (5):

dτ

dr
= 1,(7a)

du

dr
=

1

ε
[u− b(1 + u)v],(7b)

dv

dr
= v,(7c)

dF

dr
= auF.(7d)

Equation (7b) becomes a linear non-autonomous equation for u after substitution of the exact
solution for v(v0, r) = v0e

r from (7c), and can hence be solved by introduction of an integrating
factor. However, the resulting integral cannot be evaluated in closed form; cf. also [50, Supporting
Information, Equation (26)]. The existence of an integral-form solution to (7) necessarily follows
from the fact that the scheme in Figure 1(b) contains only first-order reactions; see, e.g., [24, 25]
and the references therein for details. While the CME has been solved exactly in [28] for certain
such (‘unimolecular’) schemes, we emphasise that their results do not apply in the case of catalytic
production which underlies the two-stage model studied in this article; cf. [28, Section 6].

In the following, we will exploit the presence of the perturbation parameter ε in Equation (7) to
apply the perturbative technique known as geometric singular perturbation theory [17, 29]; a brief
overview of the latter can be found in Section A of the Online Supplement. (A related approach
for the approximation of the probability-generating function F is developed in [9, Section 4].) In
fact, the resulting scale separation can be made evident by solving Equation (7) numerically, and is
confirmed by simulation, via Gillespie’s stochastic simulation algorithm (SSA) [20], of the underlying
CME, Equation (1). The geometry of the former is illustrated in Figures 2(a) and 2(b), for varying
values of ε and two regimes for the non-dimensional parameters a and b; one observes convergence
of u to an invariant manifold in (backward) fast time t, with (v, F ) nearly constant for ε sufficiently
small, at which stage the slow flow on that manifold takes over, with (u, v, F ) tending to some steady
state thereon. The time evolution of protein numbers in the two regimes is shown in Figures 2(c)
and 2(d); throughout, one finds that the fast-slow structure of the model becomes more pronounced
with decreasing ε, as is to be expected.
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(a) a = 20, b = 2.5. (b) a = 0.5, b = 100.
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(c) a = 20, b = 2.5.
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(d) a = 0.5, b = 100.

Figure 2. Fast-slow dynamics of the two-stage model for gene expression in the
two parameter regimes considered here, with ε = 1 (dotted green), ε = 0.1 (dotted
red), and ε = 0.01 (dotted blue). Panels 2(a) and 2(b) illustrate the geometry of
Equation (8); the spacing of the dots indicates the time-scale of the flow, with larger
intervals corresponding to faster motion along trajectories, while gridded surfaces
represent ‘critical manifolds’ for Equation (8). Typical time series of protein – as
obtained from stochastic simulation – are displayed in panels 2(c) and 2(d).

3. Geometric framework

In this section, we construct our geometric framework for the analysis of the characteristic system,
Equation (7). In particular, we derive rigorous asymptotics for the characteristic coordinates u and
v, as well as for the probability-generating function F , in the perturbation parameter ε .

3.1. Preliminaries. First, we verify that Equation (7) represents a singularly perturbed fast-slow
system in standard form which satisfies the requirements of Fenichel’s geometric singular pertur-
bation theory [17, 27, 29]; cf. Section A of the Online Supplement for details. Since r(0) = 0,
it follows from (7a) that r ≡ τ , where τ equals the non-dimensionalised time introduced in Sec-
tion 2.2; hence, we may rewrite Equation (7) with τ as the independent variable, thus obtaining the
three-dimensional ‘slow system’

εu̇ = u− b(1 + u)v,(8a)

v̇ = v,(8b)

Ḟ = auF.(8c)
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Here, the overdot denotes differentiation with respect to τ . Recalling the definition of the small
perturbation parameter ε(= γ−1), we conclude that u is a fast variable, whereas v and F are slow
variables; hence, in the notation of Section A, we have k = 1 and l = 2 as well as f = f(u, (v, F ), ε) ≡
f(u, v) = u− b(1 + u)v and g = g(u, (v, F ), ε) ≡ g(u, (v, F )) = (v, auF ). (In particular, we remark
that neither f nor g depend on the parameter ε in our case.) Correspondingly, introducing a new
fast time t = τ

ε in Equation (8), we find the ‘fast system’

u′ = u− b(1 + u)v,(9a)

v′ = εv,(9b)

F ′ = εauF.(9c)

(For future reference, we note that the (u, v)-subsystem decouples both in (8) and in (9).)
Solving the relation f(u, v) = 0 = u− b(1 + u)v for u, we obtain

u = U0(v) =
bv

1− bv(10)

for the (two-dimensional) ‘critical manifold’ S0; see also [50, Equation (5)]. While S0 is a priori
unbounded in (u, v), the definition of the probability-generating function F in (2) assumes (z′, z) ∈
[−1, 1]2 and, correspondingly, (u, v) ∈ [−2, 0]2; thus, we may restrict ourselves to a closed and
bounded (compact) subset D ⊂ [−2, 0]2 of R2. (We remark that D certainly has to contain the point
(u, v) = (−1,−1); recall Equation (3).) It then follows that the representation in Equation (10) is
well-defined in the v-regime that is relevant to us, as the singularity at v = b−1 of the function U0

is excluded by our definition of D.
Next, rewriting the representation for S0 in (10) in terms of v, we find

∂f

∂u

∣∣∣
S0

= 1− bv
∣∣∣
v= u

b(1+u)

=
1

1 + u
6= 0

for the linearisation of f about the critical manifold S0; here, we note that u 6= −1 on S0, by
Equation (10). Hence, the manifold S0 is normally hyperbolic; specifically, since v ∈ [−2, 0] implies

u ∈
[
− 2b

1+2b , 0
]
⊂ [−1, 0], and since ∂f

∂u

∣∣
S0 > 0 for u > −1, S0 is normally repelling in the (u, v)-

regime considered here. In particular, it follows that ks = 0 and ku = 1, in the notation of Section A
of the Online Supplement, which, together with l = 2, implies the existence of a three-dimensional
unstable manifold Wu(S0) for S0 in that regime.

The above observations, in combination with Theorems A.1 and A.2 of the Online Supplement,
yield the following result on the persistence of the critical manifold S0, as well as of its associated
unstable manifold Wu(S0), under the flow that is induced by (8):

Proposition 3.1. Let ε ∈ [0, ε0], with ε0 > 0 sufficiently small, let (u, v) ∈ D ⊂ [−2, 0]2, as above,
and let K ∈ N be arbitrary, but fixed. Then, the following statements hold:

(i) The manifold S0 perturbs to a locally invariant, CK-smooth slow manifold Sε that is O(ε)-
close to S0.

(ii) The manifold Sε can be written as the graph of a (CK-smooth) function U(v, ε), with

u = U(v, ε) =
K∑
k=0

Uk(v)εk +O(εK+1);(11)

here, Uk(v) = ηk(bv)
(1−bv)2k+1 for k = 1, . . . ,K, with ηk(bv) =

∑k
j=1 ηkj(bv)j a polynomial of

degree k in bv. In particular, U0(v) = bv
1−bv , cf. Equation (10), while

U1(v) =
bv

(1− bv)3
.(12)
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(iii) The flow on Sε is given by

v̇ = v,(13a)

Ḟ = aU(v, ε)F,(13b)

to any order in ε.
(iv) The line ` : {(u, v, F ) = (0, 0, F0)}, with F0 non-negative and constant, is contained in Sε

for any ε ∈ [0, ε0]; in particular, any point on ` is an equilibrium state of (8).
(v) The manifold Wu(S0) perturbs to a locally invariant, CK-smooth unstable manifold Wu(Sε)

for Sε that is O(ε)-close to Wu(S0).

Proposition 3.1(i) implies, in particular, that Sε is a regular perturbation of S0; correspondingly,
the series expansion for U(v, ε) in Equation (11) can be taken to arbitrary (fixed) order in ε, with
coefficient functions Uj that are, in fact, C∞-smooth for v ∈ [−2, 0], by (12). Moreover, given (iii),
the ‘reduced flow’ on S0 then perturbs to the corresponding flow on Sε in a regular fashion. Finally,
by Proposition 3.1(iv), the generating function F can be made to satisfy the normalisation condition,
Equation (4), to any order in ε, as (0, 0, 1) ∈ `.

Remark 2. The slow manifold Sε – or, rather, its representation in (11) – is unique only up to

exponentially small terms in ε, i.e., terms of the form O(e−
κ
ε ), where κ is some positive constant.

Mathematically, this non-uniqueness is caused by the ‘cut-off’ that needs to be applied to S0 outside
of D ⊂ R2 to enforce its boundedness; see [17, 29] for details. �

In the remainder of this section, we will approximate the slow flow on the manifold Sε, as well as
the fast dynamics on its unstable manifoldWu(Sε), to first order in ε. By Proposition 3.1, both com-
ponents of the flow can be obtained by regular perturbation off the respective singular dynamics that
is obtained in the limit as ε→ 0; hence, we may assume asymptotic series expansions for u and F ,
which will need to satisfy the fast and the slow Equations (8) and (9), respectively, order-by-order in
ε. (An alternative procedure would involve a transformation of the governing equations into normal
form (Fenichel) coordinates [29]; however, as that approach seems more involved computationally,
we do not pursue it here.)

3.2. Fast dynamics. In this subsection, we derive the asymptotics of u and F on the fast t-scale,
i.e., under the flow that is induced by Equation (9).

Our analysis is simplified by the observation that Equation (9b) can be solved explicitly, with
v(v0, t, ε) = v0e

εt, which immediately yields an expansion for v to any order in ε; in particular,
v(v0, t, ε) = v0 + εv0t + O(ε2). From Proposition 3.1(v), in combination with standard results on
the smooth dependence of solutions of ordinary differential equations on their initial conditions and
parameters [1], it then follows that u and F admit asymptotic expansions of the form

u(u0, v0, t, ε) =
K∑
k=0

Uk(u0, v0, t)εk + ∆U(u0, v0, t, ε), with ∆U = O(εK+1), and(14a)

F (u0, v0, t, ε) =

K∑
k=0

Fk(u0, v0, t)εk + ∆F(u0, v0, t, ε), with ∆F = O(εK+1),(14b)

for any K ∈ N. (Here, we note that any dependence of F on its initial value F0 may be eliminated
in (14b), as F (u0, v0, 0, ε) = (1 + u0)

m0(1 + v0)
n0 is a function of u0 and v0 only, by Equation (6).)

For illustrative purposes, we restrict ourselves to the case where K = 1 in (14): substituting into
Equations (9a) and (9c) and collecting like powers of ε in the resulting equations, we find that the
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coefficient functions Uj and Fj (j = 0, 1) solve the recursive (linear) system

U ′0 = U0 − b(1 + U0)v0, with U0(0) = u0;(15a)

F ′0 = 0, with F0(0) = (1 + u0)
m0(1 + v0)

n0 ;(15b)

U ′1 = U1 − bU1v0 − b(1 + U0)v0t, with U1(0) = 0;(15c)

F ′1 = aU0F0, with F1(0) = 0.(15d)

Here, the prime denotes differentiation with respect to t, as before, and we have suppressed any
dependence on the latter, as well as on the initial values u0 and v0, for convenience of notation.

Solving Equations (15a) and (15b), we obtain

U0(u0, v0, t) =
bv0

1− bv0
+
(
u0 −

bv0
1− bv0

)
e(1−bv0)t(16)

and

F0(u0, v0, t) = (1 + u0)
m0(1 + v0)

n0(17)

for u and F , respectively, to lowest order in ε. (We remark that the (U0,F0)-subsystem in (15) is
equivalent to the so-called ‘layer problem’ that is found in the limit as ε → 0+ in Equation (9);
cf. Section A of the Online Supplement.)

Finally, we derive the first-order correction in ε on this fast t-scale: substituting the above ex-
pressions for U0 and F0 into (15c) and (15d) and solving, we have

U1(u0, v0, t) =
bv0

(1− bv0)3
[
1− e(1−bv0)t

]
+

bv0
(1− bv0)2

t− bv0
2

(
u0 −

bv0
1− bv0

)
t2e(1−bv0)t(18)

and

F1(u0, v0, t) =
a

1− bv0

{
bv0t−

(
u0 −

bv0
1− bv0

)[
1− e(1−bv0)t

]}
(19)

for the coefficients U1 and F1 in (14).

3.3. Slow dynamics. Next, we consider the asymptotics of u and F on the slow τ -scale, to first
order in ε.

We observe that, by Proposition 3.1(ii), an expansion for u is provided by the representation
for the slow manifold Sε postulated in Equation (11); it then follows immediately that u(v, ε) =
U0(v) + εU1(v) +O(ε2), where U0 and U1 are defined as in Equations (10) and (12), respectively.

Similarly, Proposition 3.1(iv) implies that F admits a regular asymptotic expansion on Sε, to
any order in ε. Hence, dividing (13b) formally by (13a) to rewrite Equation (13) with v as the

independent variable, making the Ansatz F (v, ε) =
∑K

k=0 Fk(v)εk + ∆F (v, ε), with ∆F = O(εK+1),
substituting in the corresponding expressions for U0 and U1, and collecting like powers of ε in the
resulting equation, we obtain the system

dF0

dv
=

ab

1− bvF0,(20a)

dF1

dv
=

ab

1− bv

[
F1 +

1

(1− bv)2
F0

]
(20b)

for the coefficient functions Fj (j = 0, 1). We note that any free constants arising in the solution
of the above equations will be fixed by the requirement that the slow (outer) asymptotics of F
agrees with the fast (inner) asymptotics determined in the previous subsection on some ‘domain of
overlap,’ as is also the case in asymptotic matching [32]. (Geometrically speaking, one hence needs
to describe the flow on the unstable manifold Wu(Sε) in a neighbourhood of the slow manifold Sε
to the appropriate order in ε.)
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Solving Equation (20a), we find that the generating function F defined in (2) satisfies

F0(v) =
C0

(1− bv)a
(21)

on the slow τ -scale, to lowest order in ε. Here, C0 denotes a constant that is as yet undetermined.
(We remark that the expression in (21) agrees with the solution of the corresponding so-called
‘reduced problem’ which is obtained in the limit as ε → 0+ in Equation (8), as does the leading-
order approximation U0 for u; recall (10).)

It remains to determine the coefficient function F1: substituting the (known) expressions for U0,
U1, and F0 into Equation (20b) and solving, we obtain

F1(v) =
a

2

C0

(1− bv)a+2
+

C1

(1− bv)a
,(22)

where C1 is again a free constant.

4. Asymptotic analysis

In this section, we derive the first-order asymptotics (in ε) of the ‘inverse characteristic transfor-
mation’ – which expresses the initial points (u0, v0) of characteristic curves for the partial differential
Equation (5) in terms of the coordinates u and v – as well as of the generating function F . Then, we
deduce corresponding expansions for the propagator probabilities Pmn|m0n0

of observing m mRNAs
and n proteins at some point in time, given m0 and n0 of each initially, respectively. Finally, we
approximate the resulting marginal probability distributions of protein, to first order in ε.

To that end, we will first study the fast and the slow dynamics separately, as is also frequently done
in matched asymptotics [32]. Second, we will ‘match’ the resulting ‘inner’ and ‘outer’ expansions by
requiring that their respective first-order truncations agree on some domain of overlap between the
two scales. Third, we will construct composite expansions which are hence uniformly valid in time,
both on the fast and the slow time-scales, up to an O(ε2)-error.

While we only consider explicitly the first-order asymptotics of Pmn|m0n0
, we emphasise that the

perturbative procedure outlined here can be extended, in a systematic fashion, to arbitrary order
in ε. For the sake of exposition, we will again restrict ourselves to the case where m0 = 0 = n0
in Pmn|m0n0

; the general case of m0, n0 ∈ N, which is significantly more involved algebraically, is
discussed in Section B of the Online Supplement.

4.1. Inverse characteristic transformation. In this subsection, we derive asymptotic expansions
for the transformation (u, v) 7→ (u0, v0), to first order in ε.

4.1.1. Inner (‘fast’) asymptotics. Combining Equations (16) and (18), noting that v0 = v(1− εt) +
O(ε2), expanding the resulting expression in ε, and solving for u0, we find

(23) (u0, v0)(u, v, t, ε) =

(
bv

1− bv + ε
bv

(1− bv)3
+

[
u− bv

1− bv − ε
bv

(1− bv)3

]
e−(1−bv)t

− ε bv

(1− bv)2
t− ε1

2
bv
(
u− bv

1− bv
)
t2e−(1−bv)t +O(ε2), v − εvt+O(ε2)

)
on the fast t-scale. (By the Implicit Function Theorem, Equation (23) defines a CK-diffeomorphism
for any K ∈ N and ε positive, but sufficiently small – and, in fact, even a C∞-diffeomorphism.)
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4.1.2. Outer (‘slow’) asymptotics. Evaluation of the first-order truncation of the asymptotics of the
invariant slow manifold Sε, as given in Equation (11), at v = v0, in combination with the fact that
v0(v, τ) = ve−τ , directly implies that the transformation (u, v) 7→ (u0, v0) reads

(u0, v0)(u, v, τ, ε) =

(
bve−τ

1− bve−τ
+ ε

bve−τ

(1− bve−τ )3
+O(ε2), ve−τ

)
(24)

on the slow τ -scale.

4.1.3. Uniform (‘fast-slow’) asymptotics. Finally, we combine the inner and outer asymptotics of
u0, as given in Equations (23) and (24), respectively, into a composite asymptotic series that is
uniformly valid both on the fast and the slow time-scales.

We note that the terms which are common to the two expansions are obtained as
(

bv
1−bv+ε bv

(1−bv)3−
ε bv
(1−bv)2 t, v − vεt

)
up to an O(ε2)-error, as is best seen by expanding Equation (24) in terms of t.

Thus, we find

(25) (u0, v0)(u, v, τ, t, ε) =

(
bve−τ

1− bve−τ
+ ε

bve−τ

(1− bve−τ )3
+

[
u− bv

1− bv − ε
bv

(1− bv)3

]
e−(1−bv)t

− ε1

2
bv
(
u− bv

1− bv
)
t2e−(1−bv)t +O(ε2), ve−τ

)
for the inverse characteristic transformation (u0, v0)(u, v, τ, t, ε). We emphasise that the limit as
t→∞ – or, equivalently, as τ →∞ – in Equation (25) is well-defined, since 1− bv ∈ [1, 1+2b] when
v ∈ [−2, 0]: while the manifold Sε is repelling for (u, v) ∈ D, recall Section 3.1, (u0, v0) is obtained
by solving the characteristic system in (7) in ‘backward time,’ given some fixed choice of (u, v).

Equation (25) implies, in particular, that u0(u, v) can be written as the sum of a τ -dependent
contribution, which lies on the invariant slow manifold Sε and which is represented by the first two
terms therein, and of a t-dependent remainder that arises through the fast flow towards Sε. In other
words, for any coordinate pair (u, v) ∈ D, the initial point (u0, v0) of the corresponding characteristic
curve converges to the point (U(v0, ε), v0) on the slow manifold Sε as t→∞, with τ fixed, i.e., after
the initial (fast) transient has decayed. (Consequently, Equation (25) reduces to (24) in that limit;
similarly, substituting τ = εt into (25) and expanding in ε, one finds agreement with Equation (23)
for ε→ 0, with t fixed.)

Remark 3. Since 1− bv ∈ [1, 1 + 2b] for v ∈ [−2, 0], it follows that e−(1−bv)t = e−(1−bv)
τ
ε = O(e−

1
ε )

for τ = O(1) in Equation (25). The corresponding terms are hence exponentially small (in ε), and
can be safely neglected; in fact, since the manifold Sε itself is unique only up to exponentially small
terms, recall Remark 2, it would certainly be inconsistent to retain them in (25) when τ is large, as
one can always choose a representative for Sε for which they cancel. �

4.2. Generating function. In this subsection, we derive the first-order asymptotics (in ε) of the
generating function F .

4.2.1. Inner (fast) asymptotics. To describe the fast asymptotics of the generating function F up
to an O(ε2)-error, we consider the expansion for F (u0, v0, t, ε) from Equation (14b), truncated at
first order in ε. Applying the transformation defined in (23) to eliminate any dependence on (u0, v0)
from F1, cf. Equation (19), expanding the result in ε, and retaining first-order terms, we find

F (u, v, t, ε) = 1 + ε
a

1− bv

{
bvt+

(
u− bv

1− bv
)[

1− e−(1−bv)t
]}

+O(ε2)

= F0(u, v, t) + εF1(u, v, t) +O(ε2).

(26)
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We emphasise that, since F (u, v, t, ε)
∣∣
(u,v)=(1,0)

= 1 + εau[1 − e−(1−bv)t] + O(ε2), the marginal

distribution of mRNA – which is defined as Pm =
∑∞

n=0 Pmn – satisfies

P∞m (ε) =


1− εa when m = 0,

εa when m = 1,

0 when m ≥ 2

in the stationary limit as t → ∞; clearly, the above formulae are consistent with the well-known
exact Poissonian distribution for P∞m [8, Equation (32)] for ε sufficiently small, up to an O(ε2)-error.

For future reference, we note that the validity of the fast asymptotics derived in this subsection
is restricted to εt = O(1), as the expansions for u0, v0, and F in Equations (23) and (26) become
inconsistent when t = O(ε−1) due to the presence of ‘secular’ terms [32, 55] therein.

4.2.2. Outer (slow) asymptotics. The initial condition in the leading-order approximation F0 for F ,
Equation (21), can be determined by a ‘matching’ argument, which fixes the constant C0: we note
that limt→∞F0(u, v, t) must equal limτ→0+ F0(v, τ) for any (u, v) ∈ D; cf. also [9, Section 4]. Here,
F0(v, τ) ≡ F (U0(v), v, τ, 0) corresponds to the leading-order term in an expansion for the generating
function F of the form

F (u, v, τ, ε) =

K∑
k=0

Fk(u, v, τ)εk + ∆F (u, v, τ, ε), with ∆F = O(εK+1),(27)

whose existence is guaranteed by Proposition 3.1(iv) and standard smoothness results for ordinary
differential equations [1]. Hence, Equation (17) implies that F0(v0) = 1 in Equation (21), which gives
C0 = (1− bv0)a. Rewriting the resulting expression as a function of v and τ , via v0(v, τ) = ve−τ , we
conclude that

F0(v, τ) =
(1− bve−τ

1− bv
)a

;(28)

see also [50, Equation (7)].
To fix the constant C1 in Equation (22), we match the truncated first-order slow expansion F0+εF1

to its fast counterpart F0 + εF1; in fact, expanding the coefficient function F0 in terms of the fast
time t and comparing the two resulting expansions, one finds that the relation a

1−bv
(
u − bv

1−bv
)

=
a
2

1
(1−bv0)2 + C1

(1−bv0)a must hold. (Here, we emphasise that the presence of a u-dependent term is

due to the structure of the inverse characteristic transformation, Equation (23), which induces a
t-independent such term in (26).) Substituting into (22) and eliminating any v0-dependence therein,
we obtain

F1(u, v, τ) = a

{
1

2

[
1

(1− bv)2
− 1

(1− bve−τ )2

]
+

1

1− bv
(
u− bv

1− bv
)}(1− bve−τ

1− bv
)a
.(29)

The first-order asymptotics (in ε) of the generating function F is now obtained by substituting
the expressions for F0 and F1 from Equations (28) and (29), respectively, into the expansion in (27);
recalling that m0 = 0 = n0, we find

F (u, v, τ, ε) =

{
1 + ε

a

2

[
1

(1− bv)2
− 1

(1− bve−τ )2

]
+ ε

a

1− bv
(
u− bv

1− bv
)}(1− bve−τ

1− bv
)a

+O(ε2)

(30)

for ε positive, but sufficiently small, and τ � ε. We remark that Equation (30) satisfies the
normalisation condition F (0, 0, τ, ε) = 1 to the order O(ε2), as required by Equation (4). Moreover,
in the stationary limit as τ →∞, F reduces to F∞(u, v, ε) ≡ limτ→∞ F (u, v, τ, ε) = (1− bv)−a

{
1 +

ε a
1−bv

[
u − 1

2
(bv)2

1−bv
]}

+ O(ε2). Finally, since F (u, v, τ, ε)
∣∣
(u,v)=(1,0)

= 1 + εau + O(ε2), the marginal
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mRNA distribution obtained from (30) again agrees with the asymptotics of the corresponding exact
distribution, up to an O(ε2)-error.

We emphasise that the leading-order generating function F (u, v, τ, 0) is independent of u on this
slow τ -scale, as both the flow on the critical manifold S0 and the corresponding stationary limit
of F (u, v, t, 0) on the fast t-scale are u-independent. (The latter assertion, while trivial in the case
of m0 = 0 = n0 considered here, can be shown to be valid for any m0, n0 ∈ N0; cf. Section B
of the Online Supplement.) However, no such claim can be made at first order in ε: clearly, the
expansion for F in Equation (30) depends not only on v, τ , and ε, but also on u. This u-dependence
is introduced by the requirement that the fast and the slow expansions for F agree to first order in
ε on some domain of overlap, which implies that the free constant C1 in the general solution for F1

has to account for the contribution from the ‘boundary layer’ coefficient F1; in other words, mere
knowledge of the flow induced by Equation (8) on the slow manifold Sε is insufficient.

That same argument can be generalised to any order (in ε): the higher-order asymptotics of
F on the slow τ -scale – as encoded in the coefficient functions Fj (j ∈ N) – can be derived by
observing that the flow on the slow manifold Sε is a regular perturbation of the singular (reduced)
dynamics that is obtained in the limit as ε→ 0, as was done in Section 3.3. However, contributions
from the fast flow will be introduced via the free constants that arise in the solution: while these
constants must be τ -independent, they will typically depend on u (as well as on v), as one cannot
expect the u-dependence of the coefficient functions Fj to have subsided in the large-t limit once the
inverse characteristic transformation (u0, v0) 7→ (u, v) has been applied. (Correspondingly, the point
(u, v) = (−1,−1) at which, by Equation (3), F and its derivatives need to be evaluated, will not
generically lie on Sε.) The resulting dependence of F on both u and v implies that the distribution
Pmn will, in general, be non-zero when m ≥ 1 at higher orders in ε; specifically, we conjecture that
Pmn(τ, ε) = O(εm) will hold for any m ∈ N0.

4.2.3. Uniform (‘fast-slow’) asymptotics. Finally, a uniform expansion for the generating function F
may be obtained by combining the fast and the slow asymptotics given in Equations (26) and (30),
respectively, taking into account that the corresponding common terms are given by 1 +ε a

1−bv
(
bvt+

u− bv
1−bv

)
, up to an O(ε2)-error. Thus, we find

F (u, v, τ, t, ε) = F0(v, τ) + ε
[
F1(u, v, τ) + F ′1(u, v, t)

]
+O(ε2),(31)

where the coefficient functions Fj (j = 0, 1) are defined as in Equation (30) and where, moreover,

F ′1(u, v, t) = − a
1−bv

(
u− bv

1−bv
)
e−(1−bv)t. The resulting composite (fast-slow) expansion for F in τ and

t is uniformly valid for t ∈ [0, t∗], with t∗ > 0 arbitrary, but fixed – or, equivalently, for τ ∈ [0, τ∗],
where τ∗ = εt∗, with ε positive and sufficiently small; see, e.g., [32, 55].

4.3. Probability distributions. In this subsection, we derive the first-order asymptotics (in ε) of
the probability distributions Pmn(t, ε) and Pmn(τ, ε) on the fast and the slow time-scales, respectively,
as well as of the corresponding marginal distributions of protein. Then, we deduce a composite
expansion for the marginal protein distribution Pn(τ, t, ε) that is uniformly valid in time.

4.3.1. Inner (fast) asymptotics. Recalling Equation (3), rewritten in terms of the translated coordi-
nates u and v and the fast time t and evaluated at m0 = 0 = n0, we find

Pmn(t, ε) =
1

m!

1

n!

∂m

∂um
∂n

∂vn
[
F0(u, v, t) + εF1(u, v, t)

]∣∣∣
(u,v)=(−1,−1)

+O(ε2)(32)

for the relationship between F and Pmn. (Here, we allow for m,n ∈ N0 = N ∪ {0}, as before.)
We emphasise that the relation in (32) is, in fact, well-defined to arbitrary order in ε, which is
due to the differentiability of the expansion for F in Equation (14b) with respect to both u and
v, in combination with the regularity of the inverse characteristic transformation (u, v) 7→ (u0, v0);
cf. Section 4.1. Moreover, well-known uniqueness properties of asymptotic expansions [32] imply that
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the derivatives ∂m

∂um
∂n

∂vnF may be approximated by differentiation of Equation (14b) with respect to
(u, v), for any 1 ≤ m ≤M and 1 ≤ n ≤ N with M,N ∈ N.

In particular, the first-order asymptotics of the probability distribution Pmn(t, ε) can now be
derived by differentiating the corresponding expansion for F , as given in Equation (26), repeatedly
with respect to u and v, and by evaluating the result at (u, v) = (−1,−1):

Proposition 4.1. Let m,n ∈ N0, let ε ∈ [0, ε0], with ε0 > sufficiently small, and assume that
t� ε−1, i.e., let εt = O(1). Then, the probability distribution Pmn(t, ε) ≡ Pmn|00(t, ε) is given by

P00(t, ε) = 1− ε a

1 + b

{
bt+

1

1 + b

[
1− e−(1+b)t

]}
+O(ε2)(33)

for m = 0 = n and by

(34) P0n(t, ε) =
ε

Γ(n+ 2)
abntn+1

×
{
1F1

(
n+ 1;n+ 2;−(1 + b)t

)
t− n+ 1

1 + b

[
1F1

(
n+ 1;n+ 2;−(1 + b)t

)
− e−(1+b)t

]}
+O(ε2)

for m = 0 and any n ∈ N. When m = 1,

P1n(t, ε) =
ε

Γ(n+ 2)
abntn+1

1F1

(
n+ 1;n+ 2;−(1 + b)t

)
+O(ε2)(35)

for arbitrary n ∈ N0; here, Γ and 1F1 denote the standard Gamma function [3, Section 6] and the
confluent hypergeometric function [3, Section 13], respectively. For m ≥ 2, Pmn(t, ε) ≡ 0 to the order
considered here.

Proposition 4.1 affirms, in particular, that Pmn(t, ε) = 0 to leading order in ε unless m = 0 = n, as
F (u, v, t, 0) ≡ 1 when m0 = 0 = n0; for a detailed discussion, the reader is referred to Section B of the
Online Supplement, where the large-t asymptotics of the leading-order fast propagator Pmn|m0n0

(t, 0)
is studied for arbitrary values of m0 and n0. For future reference, we emphasise that the statement
of Proposition 4.1 is only valid for t � ε−1, as the expansion for F in (26) breaks down when
εt = O(1); in other words, the limit as t → ∞ in Pmn(t, ε) is undefined at first order in ε. Finally,
it follows from Equations (33) through (35) that P0n(0, ε) = δ0n, with n ∈ N0, while P1n(0, ε) = 0
throughout, which is consistent with our assumption that Pmn|m0n0

(0, ε) = δmm0δnn0 .

Remark 4. The fact that Pmn(t, ε) ≡ 0 for m 6= 0, 1 in Proposition 4.1 agrees with findings reported
in Section B.B of [42], where only transitions from 0 to 1 mRNAs were considered in the two-stage
model for gene expression studied here, as well as with [9, Section 3]. (In [42, Section B.C], the
resulting generating function was expressed in terms of a confluent hypergeometric function 1F1,
which also appears in Proposition 4.1.) Related results were obtained in Section 2 of [8], where the
stationary generating function of the joint distribution of mRNA and protein was represented as a
Kummer function [3, Section 13]. �

Finally, we approximate the fast marginal distribution of protein Pn(t, ε) =
∑∞

m=0 Pmn(t, ε), up
to an O(ε2)-error: as non-zero contributions to Pn are only obtained for m = 0 and m = 1 to that
order, by Proposition 4.1, it follows that Pn(t, ε) = P0n(t, ε) + P1n(t, ε) +O(ε2), which gives

Pn(t, ε) =


1− ε ab

1+b

{
t− 1

1+b

[
1− e−(1+b)t

]}
+O(ε2) for n = 0,

ε
(n+1)!ab

ntn+1
{

(t+ 1)1F1

(
n+ 1;n+ 2;−(1 + b)t

)
−n+1

1+b

[
1F1

(
n+ 1;n+ 2;−(1 + b)t

)
− e−(1+b)t

]}
+O(ε2) for n ∈ N,

(36)

after some simplification; see also Section B.2.1 of the Online Supplement, where the more general
case of n0 6= 0 is considered. (Alternatively, the above expansion can be obtained by evaluating the
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first-order generating function F , as given in Equation (26), at u = 0, and by differentiating the
result repeatedly with respect to v.)

4.3.2. Outer (slow) asymptotics. Next, we consider the asymptotics of the distribution Pmn on the
slow time-scale τ : by Equation (3), we have

Pmn(τ, ε) =
1

m!

1

n!

∂m

∂um
∂n

∂vn
[
F0(v, τ) + εF1(u, v, τ)

]∣∣∣
(u,v)=(−1,−1)

+O(ε2)(37)

to first order in ε, with m,n ∈ N0, as before. Moreover, we remark that the relation in (37) is again
well-defined, as the asymptotic expansion for the generating function F in Equation (27) can be
differentiated arbitrarily often with respect to u and v [1, 32]; recall Section 4.3.1.

As was done there, we may hence make use of the first-order approximation for F obtained in the
previous subsection to approximate the distribution Pmn(τ, ε) on the slow τ -scale:

Proposition 4.2. Let n ∈ N0, let ε ∈ [0, ε0], with ε0 > 0 sufficiently small, and assume that τ � ε.
Then, the probability distribution Pmn(τ, ε) ≡ Pmn|00(τ, ε) is given by

(38) P0n(τ, ε) =
Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(1 + be−τ

1 + b

)a
×
{

2F1

(
− n,−a; 1− a− n; 1+b

eτ+b

)
− ε

2

a

(1 + b)2

n∑
k=0

Γ(n+ 1)

Γ(n− k + 1)

Γ(a+ n− k)

Γ(a+ n)

× (k + 1)

[
1 +

( 1 + b

eτ + b

)k+2
e2τ
]
2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

)}
+O(ε2)

when m = 0 and by

(39) P1n(τ, ε) = ε
Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(1 + be−τ

1 + b

)a a

1 + b

n∑
k=0

Γ(n+ 1)

Γ(n− k + 1)

Γ(a+ n− k)

Γ(a+ n)

× 2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

)
+O(ε2)

when m = 1; here, 2F1 denotes the standard hypergeometric function [3, Section 15]. For m ≥ 2,
Pmn(τ, ε) ≡ 0 to the order considered here.

We remark that the leading-order contribution Pn(τ, 0) ≡ P0n(τ, 0) was previously derived in [50,
Equation (9)], as well as that the expression for P1n in (39) is consistent with [8, Equation (13)].

Moreover, we emphasise that Pmn(τ, 0) ≡ 0 for any m ∈ N, i.e., that the marginal distribution of
mRNA peaks at zero to leading order in ε, as was noted already in [50]; see also [9, Equations (9)
and (10)]. Specifically, the bivariate distribution P0n equals the marginal protein distribution Pn
when ε = 0, as Pn(τ, 0) =

∑
m∈N0

Pmn(τ, 0) = P0n(τ, 0). At first order in ε, we have Pn(τ, ε) =

P0n(τ, ε) + P1n(τ, ε) +O(ε2) for the marginal distribution of protein on the slow τ -scale, recall the
discussion towards the end of Section 4.3.1, which implies

(40) Pn(τ, ε) =
Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(1 + be−τ

1 + b

)a
×
(

2F1

(
− n,−a; 1− a− n; 1+b

eτ+b

)
+
ε

2

a

(1 + b)2

n∑
k=0

Γ(n+ 1)

Γ(n− k + 1)

Γ(a+ n− k)

Γ(a+ n)

×
{

2(1 + b)− (k + 1)

[
1 +

( 1 + b

eτ + b

)k+2
e2τ
]}

2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

))
+O(ε2),

for any n ∈ N0. (Again, the expression in (40) can equivalently be derived directly from the first-
order slow asymptotics of F ; recall Equation (30).)
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4.3.3. Stationary limit. The result of Proposition 4.2 simplifies substantially in the stationary limit
as τ →∞ in (38):

Corollary 4.1. Let m,n ∈ N0, and let ε ∈ [0, ε0], with ε0 > 0 sufficiently small. Then, the stationary
probability distribution P∞mn(ε) := limτ→∞ Pmn(τ, ε) is given by

P∞0n(ε) =
Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(
1− b

1 + b

)a{
1− ε

2

[
(a+ n+ 1)(a+ n)

(1 + b)2(a+ 1)
+ a

]}
+O(ε2)(41)

when m = 0 and by

P∞1n(ε) = ε
Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(
1− b

1 + b

)aa+ n

1 + b
+O(ε2)(42)

when m = 1, for arbitrary n ∈ N0. For m ≥ 2, Pmn(ε) ≡ 0 to the order considered here.

Given Corollary 4.1, it is straightforward to determine the stationary marginal protein distribution
P∞n (ε), by taking the limit as τ →∞ in Equation (40):

(43) P∞n (ε) =
Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(
1− b

1 + b

)a
×
[
1− ε(a+ 1)ab2 − 2(a+ 1)bn+ n(n− 1)

2(a+ 1)(1 + b)2

]
+O(ε2).

4.3.4. Uniform (fast-slow) asymptotics. Finally, we derive a composite first-order expansion (in ε)
for the marginal protein distribution Pn that is uniformly valid both on the fast and the slow time-
scales. We have the following result:

Proposition 4.3. Let ε ∈ [0, ε0], with ε0 > 0 sufficiently small, let t∗ > 0 be arbitrary, but fixed,
and let τ∗ = εt∗. Up to an O(ε2)-error, the uniform marginal protein distribution Pn(τ, t, ε) is then
given by

(44) Pn(τ, t, ε) = Pn(τ, ε) + εa
bn

(1 + b)n+2

[
n− b− (1 + b)t

]
+

ε

(n+ 1)!
abntn+1

×
{

1F1

(
n+ 1;n+ 2;−(1 + b)t

)
t− 1

1 + b

[
(n− b)1F1

(
n+ 1;n+ 2;−(1 + b)t

)
− (n+ 1)e−(1+b)t

]}
,

for any t ∈ [0, t∗] and τ ∈ [0, τ∗]. (Here, Pn(τ, ε) is defined as in Equation (40).)

The proof of Proposition 4.3 is based on repeated differentiation, with respect to u and v, of the
corresponding uniform expansion, Equation (31), for the probability-generating function F ; recall
Equations (3) and (32). Details can be found in Section C of the Online Supplement.

Since Γ(n+ 1, z) = zne−z
[
1 +O(z−1)

]
, by [3, Equation 6.5.32], it follows that limz→∞

[
(b− n+

z)Γ(n + 1, z)− zn+1e−z
]

= 0 and, hence, that Pn(τ, t, ε) reduces to its slow counterpart Pn(τ, ε) in
the large-t limit, as required. Moreover, Equation (43) above then implies that the large-τ limit in
Equation (44) is well-defined; in other words, we may take the time intervals [0, t∗] and [0, τ∗] on
which the uniform (fast-slow) distribution Pn(τ, t, ε) is valid to be unbounded.

The first-order asymptotics of the uniform propagator Pn|n0
(τ, t, ε) is illustrated in Figure 3 for

varying values of τ = εt, as well as of n0 ∈ N. (We remark that, for n0 = 0, Pn ≡ Pn|0 is approximated
in Equation (44), while the corresponding result for general n0 ∈ N can be found in Proposition B.7
of the Online Supplement.) Throughout, we consider the two parameter regimes proposed in [50],
with either a = 20 and b = 2.5 or a = 0.5 and b = 100, which will henceforth be labelled ‘regime I’
and ‘regime II,’ respectively; moreover, we set γ = 10 in both cases.

In Figure 3(a), we note a pronounced shift (with time) towards increasing protein numbers, as
the large value of a in regime I implies high levels of mRNA synthesis. By contrast, in regime II,
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(d) Regime II (m0 = 0, n0 = 50)

Figure 3. The uniform propagator Pn|n0
(τ, t, ε), as well as the corresponding first-

order correction alone, for γ = 10, m0 = 0, and varying values of n0. Here, a = 20 and
b = 2.5 in panels 3(a) and 3(b) (‘regime I’), while a = 0.5 and b = 100 in panels 3(c)
and 3(d) (‘regime II’); moreover, Pn|n0

(τ, t, ε) is described in Propositions 4.3 and
B.7 for n0 = 0 and n0 ∈ N, respectively. We note that, in regime II, the distribution
evolves towards n = 0 due to the corresponding low value of a, whereas the large-τ
limit in regime I appears near-symmetric, with a peak close to ab(= 50). The negative
probabilities observed for small τ in panel 3(a) indicate that Pn|n0

is inconsistent for
γ = 10 in regime I; cf. Section 5 below for details.

mRNA is synthesised only infrequently due to a being small; hence, the initial sharp peak seen at
n0(= 50) in Figure 3(c) rapidly abates to zero. An in-depth discussion of the dependence of Pn|n0

on the two parameters a and b is given in Section 5 below. Finally, in Figures 3(b) and 3(d), the
first-order correction alone – which can be expressed as limε→0+

[
Pn|n0

(τ, t, ε) − P0n|0n0
(τ, 0)

]
ε−1 –

is depicted; here, P0n|0n0
(τ, 0) is defined as in Proposition B.2. In both parameter regimes, one

confirms the convergence of the propagator Pn|n0
to the corresponding stationary distribution P∞n

with increasing τ .

5. Verification and application

In this section, we present a numerical verification of the asymptotics derived in Section 4; then, we
discuss the practical applicability thereof. Specifically, we compare the accuracy of the asymptotic
series expansions for the marginal protein distributions Pn|n0

and P∞n obtained in this article with a
stochastic simulation of the CME, Equation (1). The latter relies on Gillespie’s stochastic simulation
algorithm (SSA) [20], which was implemented using the software package StochKit [51]; again, we
focus predominantly on the two parameter regimes I (a = 20 and b = 2.5) and II (a = 0.5 and
b = 100) which were also studied in [50].
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While we find that the first-order correction to Pn|n0
gives an improvement over the leading-order

asymptotics in many parameter regimes both at steady state and in the time-dependent case, the
accuracy of the resulting approximation will depend crucially on the singular perturbation parameter
ε = γ−1 and the non-dimensionalised system parameters (a, b), as specified in detail below. (The
dependence on the respective initial numbers m0 and n0 of mRNA and protein is less pronounced,
and is discussed briefly in the Online Supplement.)

5.1. Stationary protein distribution. To investigate systematically the significance of the first-
order correction in ε(= γ−1) for the asymptotics of the protein distribution Pn, Equation (44), we
compared the corresponding stationary limit P∞n , as approximated to zeroth and to first order in γ−1

in Corollary 4.1, with a stochastic simulation of the underlying two-stage model; recall Figure 1(a).
We first considered regimes I and II with γ = 10 and γ = 1, respectively; representative time series

of both mRNA and protein are presented in Figures 4(a) and 4(c) and in Figures 4(b) and 4(d),
respectively, while the corresponding protein distributions at steady state are shown in Figures 4(e)
and 4(f). These distributions were generated from 2 · 106 samples each, which were taken from
simulated trajectories at uncorrelated time points; to ensure non-correlation, we determined the
typical de-correlation time of the system – as the time where the autocorrelation of the trajectories
drops to 0.5 – to be about 1d1 in regime I, and about 2d2 in regime II.

As is obvious from Figure 4(b), the small value of a – the average number of mRNA molecules
synthesised during a protein lifetime – in regime II implies that only very few mRNAs are typically
generated. However, as b is large in that case, each such event results in a rapid ‘burst’ in protein
numbers; cf. Figure 4(d). We note the negativity of the first-order correction in that regime at low
protein levels, which is consistent with bursting, i.e., with a bias towards large numbers of protein
that is correctly accounted for by our asymptotics. (In fact, since the mean time between bursts is
ν−10 = d1a

−1, one may expect a burst to appear for τ = O(1), as is also observed in Figure 3(d);
the reader is referred to [37, 50] for a detailed discussion of translational bursting in the two-stage
model for gene expression studied here.) By contrast, in regime I, a is moderately large, while b –
the mean burst size – is small; hence, considerable numbers of mRNA are synthesised throughout,
as seen in Figure 4(a). Consequently, the fast-slow structure of the system seems less pronounced,
which is confirmed by Figure 4(c); cf. also Figure 2 above.

Finally, in Figures 4(g) and 4(h), the (averaged) Kullback-Leibler divergence – or ‘relative en-
tropy’ [14] – between the simulated steady-state distribution and our perturbative approximation
for P∞n is shown for varying γ. (Specifically, we evaluated the Kullback-Leibler divergence as∑

n Pn(γ) log2
Pn(γ)
Qn(γ) , where Pn and Qn denote the ‘true’ distribution obtained via SSA and the

first-order expansion quoted in Corollary 4.1, respectively; to ensure the numerical stability of our
implementation, we extracted the distribution at steady state from 2 · 106 uncorrelated samples and
then determined the Kullback-Leibler divergence up to the 99th percentile of that simulated distri-
bution, disregarding terms with absolute simulated probabilities below γ−2.) In both regimes, our
first-order expansion consistently outperforms the leading-order approximation alone for ‘moderately
large’ values of 1 < γ < 10, whereas no discernible difference is seen when γ > 10. (We remark that
the Kullback-Leibler divergence of the leading-order approximation is lower in regime I than it is in
regime II when γ = O(1), while the situation is reversed at first order, in agreement with Figure 1D
of [50].)

To assess more generally the dependence of our perturbative approximation for the stationary
probability distribution P∞n , Equation (43), on the values of the dimensionless parameters a = ν0

d1
and b = ν1

d0
, we performed a series of numerical experiments, the outcome of which is summarised in

Figure 5.
The inconsistency of the first-order expansion for P∞n , as observed in some parameter regimes in

Figure 5(a), agrees with a result known as Pawula’s Theorem [44, Section 4.3], whereby asymptotic
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(d) Regime II (γ = 1).
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Figure 4. Comparison of the first-order steady-state distribution P∞n (ε) with sto-
chastic simulation. Panels 4(a) and 4(b) illustrate representative mRNA time series
in regime I (a = 20, b = 2.5) and regime II (a = 0.5, b = 100) with γ = 10 and γ = 1,
respectively; the corresponding protein series are displayed in panels 4(c) and 4(d).
We note pronounced protein bursts and low levels of mRNA expression in regime II,
as opposed to regime I. In panels 4(e) and 4(f), we compare the resulting steady-
state protein distributions (solid blue) with the asymptotics to zeroth order (dashed
black) and to first order (solid black). The first-order correction clearly improves
the predicted protein distribution in both parameter regimes. Finally, panels 4(g)
and 4(h) show the Kullback-Leibler divergence of our perturbative approximation at
steady state for varying values of γ: the asymptotics to first order outperforms the
zeroth-order approximation when 1 < γ < 10 in both regimes I and II, while there
appears to be no significant difference for γ > 10.
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(b) Accuracy of P∞n .

Figure 5. Consistency and accuracy of the first-order steady-state distribution
P∞n (ε). While our O(γ−1)-correction can lead to inconsistent (negative) protein prob-
abilities in some parameter regimes, as seen in panel 5(a), these probabilities can be
safely set to zero, as they are within the O(γ−2)-error incurred by Equation (43).
The Kullback-Leibler divergence between simulated steady-state distributions and
the first-order asymptotics of P∞n is shown in panel 5(b); comparison with the cor-
responding zeroth-order approximation reveals that the expansion in (43) is closer
to simulation throughout. (Parameter regimes I and II, with γ = 10 and γ = 1,
respectively, are indicated by dashed-edged squares.)

expansions for probability distributions do not necessarily satisfy the non-negativity conditions re-
quired of the ‘full’ distributions; cf. [24] for a recent application. (For completeness, we note that the
leading-order approximation Pn(τ, 0) is, in fact, a distribution in its own right, by the normalisation
condition in Equation (4).)

The accuracy of our first-order asymptotics is assessed in Figure 5(b): for each parameter triple
(a, b, γ), we approximated the distribution at steady state by averaging over 102 simulation runs
of length 400d−11 . Sampling protein numbers in time steps of 2d−11 , which we verified to exceed
the typical de-correlation time of the system, we then calculated the Kullback-Leibler divergence
between the resulting numerical distribution – truncated at its 99th percentile – and the expansion
in Equation (43). (Here, ν0 and ν1 denote the rates of transcription and translation, respectively,
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with d0 and d1 the respective degradation rates of mRNA and protein; recall Section 2.2.) These
experiments also support our expectation that the first-order expansion for P∞n significantly outper-
forms the zeroth-order approximation over a wide range of values of a and b provided 1 < γ < 10 is
at most ‘moderately large.’ Corresponding parameter regimes have been observed experimentally in
a variety of organisms: in bacteria and yeast, representative γ-values often seem to range between
about 1 and 10 [6, 50, 57], while moderately large values of b (between about 5 and 20) have been
reported in [37, 53, 60]. (In fact, for budding yeast, experimental data presented in [50, Figure 4],
suggests that γ is reliably larger than 1, but smaller than 10, in a vast majority of genes.) Regimes
in which b is large, while a and γ are small, on the other hand, seem to be relevant for protein
expression in mammalian cells, as reported in [45] for mouse fibroblasts.

Finally, and as indicated already by Figure 4, the distinction between the first-order expansion for
P∞n and the zeroth-order asymptotics becomes insignificant in an increasing number of parameter
regimes as γ is increased. In fact, our perturbative approximation, Equation (41), is most probably
not convergent, being an asymptotic series in ε(= γ−1). Hence, inclusion of the first-order correction
in the expansion will not necessarily improve its accuracy uniformly in γ, i.e., the optimal truncation
for γ = O(10) may well involve the calculation of higher-order terms in the series. (The issue is
almost certainly exacerbated by the fact that the coefficients in an asymptotic series can increase in
magnitude through repeated differentiation, as is done here.) The corresponding optimal truncation
point can potentially be determined by considering the Gevrey properties [4, 12] of the probability-
generating function F . While we expect a ‘truncation to the least term’ to be optimal, in accordance
with standard theory [32], a detailed investigation is beyond the scope of this work.

5.2. Uniform (fast-slow) propagation. By definition, the steady-state analysis presented thus
far does not account for any fast (transient) dynamics: to evaluate the significance of the latter to
first order in γ−1, we considered the uniform marginal probability distribution of protein, as given
in Proposition 4.3. Throughout, our focus is on the case where n0 = 0 in Pn|n0

, which was studied
in detail in Section 4.

In Figure 6, a simulated marginal protein distribution is compared at different points in time
both with the zeroth-order slow approximation and the uniform (composite) first-order distribution
Pn(τ, t, ε) in regime I, for γ = 100; specifically, given initial numbers of mRNA and protein – which
are, in our case, both assumed to be zero – are propagated in time τ = εt according to Equation (44).
As is seen in Figure 6(a), the uniform distribution achieves excellent agreement between simulation
and asymptotics throughout. The corresponding Kullback-Leibler divergence is shown in Figure 6(b):
again, our uniform first-order expansion for Pn clearly outperforms the zeroth-order approximation
derived in [50]. In particular, the peak in the divergence which is seen to zeroth order for small
times is eliminated, which implies that the contribution from the fast dynamics – i.e., from the
fast marginal distribution Pn(t, ε) defined in (36) – cannot be neglected in regime I; cf. also [50,
Figure 2C]. (The slight increase in divergence observed at about log10 τ = −2 is probably due to
the fact that the corresponding τ -value roughly represents the point in time at which the dynamics
‘switches’ between the fast and the slow scales.)

However, the agreement between Pn(τ, t, ε) and the simulated probability distribution deteriorates
for γ = O(10) in regime I (data not shown), which is due to a breakdown of the underlying assump-
tion of a scale separation between mRNA and protein lifetimes in that regime for moderately large
γ; recall Figure 3(a). (Mathematically, the uniform expansion in (44), while asymptotically correct
to O(ε2), can become numerically inaccurate unless ε is sufficiently small, as the contribution from
Pn(τ, ε) therein contains higher-order terms in εt when considered on the fast t-scale.)

Analogous results have been obtained in regime II, where we have additionally assumed n0 = 50,
as in Figure 3 above. (The relevant expansion for Pn|n0

can be found in Section B of the Online
Supplement.) However, since the agreement between simulation and asymptotics is excellent – to the
point of the respective curves being entirely indistinguishable down to γ = O(1) – we have opted not
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Figure 6. Comparison of the uniform (fast-slow) propagator Pn|n0
(τ, t, ε) with sto-

chastic simulation. In panel 6(a), we compare the time evolution of the simulated
probability distribution Pn (solid blue) in regime I for γ = 100 – and zero mRNAs
and proteins initially – with the zeroth-order slow approximation (dotted) and the
uniform distribution (solid). As shown in panel 6(b), the peak in the Kullback-Leibler
divergence between simulation and asymptotics that is observed for the zeroth-order
slow distribution alone (dashed) is eliminated by considering the uniform propagator
(solid), which is equally superior to the first-order fast (dashed grey) and slow (long-
dashed grey) asymptotics alone. Panel 6(c) illustrates the corresponding Kullback-
Leibler divergence in regime II for γ = 10 and n0 = 50; again, the uniform propagator
outperforms the slow asymptotics, both to zeroth and to first order.

to include a detailed comparison here. The corresponding Kullback-Leibler divergence is presented
in Figure 6(c); we note that, unlike in regime I, inclusion of the fast flow does not dramatically lower
the divergence initially, as compared to the zeroth-order approximation alone. Still, Figure 6(c) also
implies that the uniform first-order expansion for the propagator Pn|n0

is superior to the zeroth-order
asymptotics in regime II for larger times and, hence, that it can significantly improve the description
of translational bursting in the two-stage model for gene expression studied here.

This reduced significance of the transient dynamics in regime II can be motivated geometrically:
as is evident from Figure 2(b) above, the point (u, v) = (−1,−1) at which the derivatives of the
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generating function F are evaluated, by the definition of Pn|n0
, lies close to the critical manifold

S0; in other words, the fast (layer) flow is almost instantaneous. (Correspondingly, at first order in
ε, the slow asymptotics alone – while inferior – remains valid in regime II for short times, unlike
in regime I; cf. again Figures 6(b) and 6(c). It seems plausible that a similar reasoning will apply
whenever b is large (but finite) even if γ = O(1); here, we remark that γb – which, according to the
reaction scheme in Figure 1(b), denotes the non-dimensionalised rate of translation – can possibly
be interpreted as an effective perturbation parameter in such regimes. Consequently, the validity
of the uniform propagator Pn|n0

(τ, t, ε) is then likely to extend to moderate γ-values for which the
assumption of a scale separation between mRNA and protein lifetimes becomes blurred.

Finally, it can be shown that the contribution from the transient (fast) dynamics becomes less
significant in both regimes I and II with increasing γ > 100, as is to be expected: as mRNA lifetime
decreases, the system is ever more accurately described in terms of the slow protein dynamics alone
(data not shown). A similar observation was made in Section 4 of [9], where the corresponding inner
and outer solutions to a pair of reduced CMEs were matched numerically in their domain of overlap
for varying values of ε(= γ−1).

6. Discussion and Outlook

In this article, we have developed a systematic procedure for approximating the propagator prob-
abilities Pmn|m0n0

– i.e., the probabilities of observing m mRNAs and n proteins, given m0 of the
former and n0 of the latter initially – in a standard two-stage model for unregulated gene expression
[8, 50, 53]. Our approximation is given by a perturbative (asymptotic) series expansion in terms of ε,
the inverse of the ‘large’ (dimensionless) ratio γ of the degradation rates of mRNA and protein; the
presence of the ‘small’ parameter ε in the (singularly perturbed) ‘characteristic’ system of ordinary
differential equations in (7) that is induced by the partial differential Equation (5) for the probability-
generating function F allows for the application of Fenichel’s geometric singular perturbation theory
[17, 29], as shown in Section 3. Corresponding expansions for Pmn|m0n0

can then be obtained by
repeated differentiation of the resulting asymptotic series for F . In Section 4, we have implemented
our approach to first order in ε, under the additional simplifying assumption that no mRNAs or
proteins are present initially. (A detailed study of the general case, with arbitrary initial numbers of
mRNA and protein, can be found in the Online Supplement.) As in classical matched asymptotics
[32], we have derived inner and outer expansions for F , and we have subsequently matched them
in some overlap domain between the fast and the slow scales. Subsequently, we have formulated
a composite fast-slow expansion which incorporates both components of the flow, and we have de-
duced a corresponding uniform approximation for the marginal protein distribution Pn(τ, t, ε). The
resulting asymptotic procedure is constructive and can, of course, be extended to arbitrary order in
ε; in the parlance of geometric singular perturbation theory, both the slow manifold Sε and the fast
foliation which yields its unstable manifoldWu(Sε) will then need to be expanded to the appropriate
order. (While the requisite generalisation is conceptually straightforward, the algebra involved in
the calculation of higher-order terms may become too cumbersome to allow for the analytical eval-
uation of arbitrary derivatives of F .) Perhaps most significantly, in Section 5, we have shown that
the uniform first-order asymptotics derived here yields a marked improvement over the zeroth-order
slow approximation alone in a number of biologically relevant parameter regimes, including in two
specific regimes considered in [50], both in the stationary and the time-dependent scenarios.

In sum, our results thus represent a three-fold extension of those reported in [8, 50], where the
correction to F due to the fast (transient) flow in t was neglected and where, moreover, only the
leading-order slow expansion (in τ) was derived under the assumption that no mRNA is present
initially, whereas our asymptotics is valid for any choice of m0 and n0; see the Online Supplement
for details. (We remark that these generalised initial conditions are still deterministic, as they
correspond to Dirac-δ functions that are centred on m0 and n0, respectively; an extension of our
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results to initial (stochastic) distributions can be accomplished by superposition, as was also done
in [28, Section 2.2].) Finally, and in contrast to [9, 42], we have obtained closed-form asymptotic
formulae for the propagator probabilities Pmn|m0n0

, to first order in ε.

A substantial limitation of the procedure developed in this article is due to the fact that the method
of characteristics [61] can, in general, only be applied to first-order partial differential equations.
Our approach will hence a priori be restricted to reaction schemes that consist solely of first-order
processes; in other words, they must not contain nonlinear kinetics. However, we emphasise that it
does allow for the treatment of (auto)catalytic production as well as of ‘splitting’ reactions, both of
which had to be excluded in [28]; recall the discussion at the end of Section 2. We remark that one
could attempt a ‘direct’ perturbative solution of the partial differential equation for the probability-
generating function F in the fully nonlinear case; potentially relevant asymptotic techniques can,
e.g., be found in [61, Chapter 9]. However, to the best of our knowledge, no analogue of geometric
singular perturbation theory is available for infinite-dimensional dynamical systems, such as those
defined by Equations (1) and (5). Hence, the applicability of the method of characteristics seems
indispensable in the context of our approach.

A vast array of methodologies – both analytical and numerical – have been developed for the
approximate solution of the CME; we refer the reader to [24] for a recent review, and comparison,
of some of these. Thus, ideas from singular perturbation theory have been applied by Mastny et
al. [36] directly to the CME, without the detour via the probability-generating function F ; given
the correspondence between the latter and the resulting probability distributions, their approach
may be equivalent to ours when restricted to first-order reaction processes. A different perturbative
technique, which was proposed in [35], does target generating functions; however, their perturbation
parameter is given by the inverse of the (large) reaction volume. Finally, in recent work by Thomas
et al. [54], an accurate stochastic reduction of biochemical networks with time-scale separation was
developed under the additional assumption that the probability distribution allows for a Gaussian
(or ‘linear noise’) approximation. It remains to be seen if and how these alternative approaches can
be related to ours.

A conceptually straightforward extension of the results obtained in this article can be achieved by
considering more complex, and, hence, potentially biologically more relevant models for regulated
gene expression that account for additional stages in the process. Thus, a three-stage model has
been suggested in which the promoter region of the gene of interest can transition between two
states, one active and one inactive. Transcription can only occur if promoter is active, allowing, in
particular, for transcriptional bursting which is characterised by transient periods of activity that
lead to rapid mRNA synthesis; cf. [9, 37, 50] and the references therein. A geometric analysis of that
generalised model will be the topic of an upcoming publication [41]: while we expect the framework
developed in the present article to remain applicable, the added dimension may limit the extent to
which analytical expressions can be obtained for the resulting probability distributions.

The three-stage model for gene expression can be augmented further; specifically, a four-stage
model has been proposed [26, 40, 52] which includes a prolonged inactive (‘refractory’) state following
periods of active transcription. Other extensions and generalisations [23, 43] may be feasible both
biologically and mathematically, and will be explored in future research. Proceeding as in [25] –
where the corresponding generating function was made to satisfy a pair of first-order equations
– one could thus investigate the applicability of our geometric framework to models that include
regulatory circuits, such as feedback from protein to DNA (‘autoregulation’) and to mRNA (‘post-
transcriptional regulation’). (While the CME is solved exactly in [25] for a reaction scheme that
involves a regulatory feedback loop, such solutions are exceedingly rare in general, which makes
the development of efficient approximation techniques, such as the one presented in this article, all
the more relevant.) Finally, one could consider systems with variable reaction rates; the resulting
multiple-parameter singular perturbation problems are bound to display interesting dynamics.
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Since a direct comparison with well-converged stochastic simulation will arguably be intractable
in such generalised models, a verification of the resulting asymptotics will almost certainly have to
rely on sophisticated numerical techniques, such as those developed in [11, 13, 16, 58]. (As is evident
from Section 5, a straightforward implementation of SSA on the basis of the StochKit package [52]
was sufficient for the standard two-stage model considered here.)

Another natural-seeming generalisation concerns the reverse asymptotic regime of short protein
lifetimes, in which the ratio γ of the degradation rates of mRNA and protein itself represents the
small perturbation parameter. Preliminary analysis indicates the presence of lines of non-hyperbolic
singularities in that regime, which precludes the application of geometric singular perturbation
theory. A loss of normal hyperbolicity can often be remedied via the desingularisation technique
known as ‘blow-up’ [15, 31]; however, since the large-γ asymptotics obtained in this article remains
valid for γ = O(1) in a number of relevant parameter regimes, cf. Section 5.1, the practical value of
an in-depth study of the small-γ regime may appear questionable [19].

On a related note, we emphasise that the asymptotic analysis performed in the present article
assumes the system parameters a and b to be constant, i.e., γ-independent, as the asymptotically
small perturbation parameter is naturally given by the ratio γ−1 of the lifetimes of mRNA and
protein in our case. A perturbation in a and b instead of, or in addition to, γ could be considered
biologically realistic, and may in fact lead to refined asymptotics in specific parameter regimes.
Again, the requisite analysis is left for future work.

A phenomenon that has attracted much recent attention is the transition from unimodal to bi-
modal behaviour in the stochastic modelling of biological networks; see again [25] and the references
therein for details. The case of ‘noise-induced bistability,’ whereby a probability distribution can
be bimodal even if the corresponding deterministic (rate) equations do not admit bistable solutions,
is particularly intriguing in this context. While the two-stage model for gene expression does not
allow for bimodality in the large-γ regime considered in this article, bimodal distributions have been
documented in the generalised three-stage model [50]. It would be interesting to see if our approach
can shed additional light on the transition to multimodality in that model and, in particular, on the
question whether the former can occur at higher orders in the perturbation parameter.

In the long term, we envision that the geometric framework developed in this article – and, in
particular, the proposed generalisation to multi-stage models for gene expression – will enable life sci-
entists to obtain reliable estimates for molecular parameters from single-cell, time-lapse microscopy
data of fluorescence reporters or fusion proteins; the availability of such data is increasing rapidly,
particularly due to the adoption of microfluidic techniques [5, 34]. Experimentally, the expression of
a given protein over time is monitored by repeated measurement of the light intensity of a fluorescent
reporter. After segmentation and quantification of the cell signal, a time series for the fluorescent
intensity is deduced in intervals of the measurement frequency.

Previous approaches for the inference of parameter likelihoods from time series data have relied on
various ad hoc approximations. Thus, Harper et al. [26] introduced stochastic differential equations
and the corresponding propagator probabilities to describe the protein dynamics during active and
inactive periods of DNA expression. The likelihood of the complete time series was calculated by
introducing reversible jumps between these two states; finally, an intricate Markov chain Monte
Carlo model determined optimal parameters and jump points for given time series. By contrast,
Suter and collaborators [52] employed a fully stochastic description of a two-stage model to describe
gene expression in the active state. The transition between active and inactive states was assumed
to be random, resulting in a so-called telegraph signal model. In a two-step procedure, the authors
first estimated optimal parameters for each time series via an expectation-maximisation algorithm,
and then found optimal paths for the states using a Viterbi algorithm [56].

Closed-form asymptotic formulae for the propagator probabilities, such as the ones derived in this
article, would allow for the direct estimation of control parameters, as well as for the inference of
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molecular mechanisms, from experimental data, thus reducing the dependence of the fitting process
on fine-tuned and computationally intensive algorithms. In particular, the uniform (fast-slow) prop-
agation introduced here should prove useful, as contributions from the fast (transient) dynamics
may be significant in numerous biologically relevant parameter regimes. Ultimately, we thus hope
that our framework will assist life scientists in comparing competing multiple-scale models for gene
expression – and the error incurred by them – in a systematic, accurate, and efficient manner.
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