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A. Geometric singular perturbation theory

The perturbation technique for the study of singularly perturbed systems of (ordinary) differen-
tial equations that is known as geometric singular perturbation theory was initiated by Fenichel in
a series of groundbreaking articles [5, 6]. We present a brief overview here, referring to [8] for an
accessible review and to [7] for a survey of applications, with a focus on the life sciences.

A.1. Fast-slow systems. We consider systems of first-order autonomous ordinary differential
equations in the general (‘standard’) form

εu̇ = f(u,v, ε),(A.1a)

v̇ = g(u,v, ε);(A.1b)

here, (u,v) ∈ Rk×Rl, with k, l ∈ N, 0 < ε� 1 is a real ‘small’ parameter, and the overdot denotes
differentiation with respect to the ‘slow’ independent variable τ . Moreover, and without loss of
generality, the functions f : Rk × Rl × R+ → Rk and g : Rk × Rl × R+ → Rl are assumed to be
C∞-smooth in all of their arguments.

Rescaling (A.1) by introducing the new, ‘fast’ time t = τ
ε , we obtain the system of equations

u′ = f(u,v, ε),(A.2a)

v′ = εg(u,v, ε).(A.2b)

Equations (A.1) and (A.2) are equivalent for ε positive; however, the singular limit as ε→ 0 yields
two entirely different systems: setting ε = 0 in (A.1), one obtains the ‘reduced problem’

0 = f(u,v, 0),(A.3a)

v̇ = g(u,v, 0),(A.3b)

while Equation (A.2) implies the ‘layer problem’

u′ = f(u,v, 0),(A.4a)

v′ = 0.(A.4b)

In both cases, the fast-slow formulation affords a dimension reduction: Equation (A.3) represents
an algebro-differential system, whereby the flow of v is constrained to lie on the (l-dimensional)
‘critical manifold’ S0 that is defined by f(u,v, 0) = 0; similarly, the analysis of (A.4) is simplified
by the observation that v is merely a parameter which parametrizes the (k-dimensional) flow of
(A.4a), the equilibria of which are located on S0. Correspondingly, u and v are referred to as the
fast and the slow variables, respectively.
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A.2. Fenichel’s Theorems. The aim of geometric singular perturbation theory is to infer the
flow of the ‘slow’ system, Equation (A.1) – or, alternatively, of the equivalent ‘fast’ formulation in
(A.2) – from the simplified dynamics of the corresponding limiting systems, Equations (A.3) and
(A.4). Typically, the following two assumptions are made for the manifold S0 [6, 7, 8]:

(1) S0 is compact and ‘normally hyperbolic,’ i.e., the eigenvalues of the Jacobian Duf(u,v, 0),
evaluated on S0, are uniformly bounded away from the imaginary axis;

(2) S0 can be written as the graph of a (smooth) function U0 : Rl → Rk, with u = U0(v) for
v in some compact domain V ⊂ Rl .

Remark S.1. A manifold is called hyperbolic if the local linearisation about it is structurally
stable; it is normally hyperbolic if, in addition, the expansion or contraction near the manifold in
the transversal (u-)direction is stronger than in the tangential (v-)direction. �

Three theorems due to Fenichel [6] then hold; see also [7, 8]. The first of these theorems concerns
the persistence of the critical manifold S0 for ε positive, but small, as a slow manifold Sε:
Theorem A.1 (Fenichel’s First Theorem). Under the above assumptions, there exists a manifold
Sε, for ε > 0 sufficiently small, that is O(ε)-close, and diffeomorphic, to S0. Moreover, Sε is
(locally) invariant under the flow of (A.1), and can be written as the graph of a (smooth) function
U(v, ε), with U(v, 0) = U0(v).

Theorem A.1 implies, in particular, that the (slow) dynamics on Sε can be obtained as a regular
perturbation of the reduced flow on the critical manifold S0; specifically, the latter is described by
v̇ = g(U(v, 0),v, 0), while the former is given by v̇ = g(U(v, ε),v, ε).

While Fenichel’s First Theorem is local, in that it is restricted to the manifold S0 itself, the
Second Theorem addresses the surrounding phase space. We assume that the Jacobian Duf(u,v, 0)
has ku eigenvalues with negative real parts and ks eigenvalues with positive real parts, where
ks +ku = k; since any point on the critical manifold S0 is an equilibrium point for the layer problem,
Equation (A.4), it then follows that each such point admits a ks-dimensional stable manifold and
a ku-dimensional unstable manifold. Taking the union of these ‘fibres’ over all ‘base points’ on S0,
we may define corresponding stable and unstable manifolds Ws(S0) and Wu(S0), respectively, for
S0, which have dimension ks + l and ku + l, respectively. Fenichel’s Second Theorem implies the
persistence of these manifolds:

Theorem A.2 (Fenichel’s Second Theorem). Under the above assumptions, there exist manifolds
Ws(Sε) and Wu(Sε), for ε > 0 sufficiently small, that are O(ε)-close, and diffeomorphic, to Ws(S0)
and Wu(S0), respectively. Moreover, Ws(Sε) and Wu(Sε) are (locally) invariant under the flow of
(A.1).

Finally, by Fenichel’s Third Theorem, the fibres that constitute Ws(S0) and Wu(S0) also persist
for ε sufficiently small. While the perturbed counterparts of individual fibres are certainly not
invariant, as their base points on Sε evolve under the flow of (A.1), one may prove the invariance
of appropriately defined families of such fibres; details can be found in [7, 8].

Remark S.2. Equation (A.1) would be classified as ‘singularly perturbed’ in the parlance of
asymptotic analysis, as neither of the two ‘singular’ systems, Equations (A.3) and (A.4), can yield
a uniformly valid approximation for the ‘perturbed’ flow of (A.1) when ε is positive, but small; in
fact, the reduction in the order of the differential equation in (A.1a) – from one to zero – as ε→ 0
is a classical warning sign of singularly perturbed behaviour [10]. �

B. Generalised initial conditions

The geometric framework developed in the main text can be applied to approximate the propaga-
tor probabilities Pmn|m0n0

for general (albeit deterministic) initial numbers of mRNA and protein,
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i.e., for non-zero values of m0 and n0, respectively, in Equation (6). Here, we give a representative
sample of results which can thus be obtained; see, in particular, Propositions B.2 through B.4
below.

B.1. Leading-order asymptotics. In this section, we discuss the leading-order asymptotics of
the propagator probabilities Pmn|m0n0

(t, 0) and Pmn|m0n0
(τ, 0) on the fast and the slow time-scales,

respectively, for arbitrary values of m0, n0 ∈ N0.

B.1.1. Fast dynamics. Given Equation (14), it is straightforward to obtain the leading-order asymp-
totics of F : recalling that F0(u0, v0, t) = (1 + u0)m0(1 + v0)n0 , by Equation (17), and substituting
in (u0, v0)(u, v, t, ε) from (23) – truncated at leading order in ε – we find

F0(u, v, t) ≡ F (u, v, t, 0) =

[
1

1− bv
+
(
u− bv

1− bv

)
e−(1−bv)t

]m0

(1 + v)n0 ,(B.1)

which satisfies the normalisation condition F (0, 0, t, 0) = 1, as required. (A similar expression for
F is given in Equation (21) of [3].)

Remark S.3. The large-t limit in Equation (B.1) yields

lim
t→∞

F (u, v, t, 0) =
(1 + v)n0

(1− bv)m0
= lim

τ→0+
F (U0(v), v, τ, 0),(B.2)

which depends on v only. (Here, U0(v) = bv
1−bv is defined as in (10).) Correspondingly, the

probability-generating function F will again be independent of u – to lowest order in ε – once
the fast (transient) flow has subsided, as observed previously in Section 4.2.2; see also [12]. �

The relation between F (u, v, t, ε) and Pmn|m0n0
(t, ε) in Equation (32), in combination with the

differentiability of the fast expansion for F with respect to (u, v), recall Equation (14b), gives the
following result on the large-time asymptotics of Pmn|m0n0

on the fast t-scale. (Here, we note that
we may take the limit as t→∞, both in F and in its derivatives: while (14b) is a priori only valid
on finite t-intervals, the application of the transformation in Equation (23) effectively reverses the
direction of time, making that limit well-defined; see also Section B.1.3 below.)

Proposition B.1. Let m,n,m0, n0 ∈ N0, where m0 and n0 denote initial numbers of mRNA and
protein, respectively, with Pmn|m0n0

(0, 0) = δmm0δnn0. Then, the stationary probability distribution
P∞mn|m0n0

(0) := limt→∞ Pmn|m0n0
(t, 0) is given as follows:

(i) for m ∈ N and arbitrary n, m0, n0 ∈ N0, P∞mn|m0n0
(0) = 0;

(ii) for m = 0 and m0 = 0,

P∞0n|0n0
(0) =

{
0 when n0 = 0,

δnn0 when n0 ∈ N

(irrespective of n ∈ N), while

P∞00|0n0
(0) =

{
1 when n0 = 0,

0 when n0 ∈ N;

(iii) finally, when m = 0, m0 ∈ N, and n, n0 ∈ N0,

P∞0n|m0n0
(0) =

{
0 for n0 > n,(
m0−n0+n−1

m0−1

)
bn−n0

(1+b)m0−n0+n for n0 ≤ n.
(B.3)
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Proposition B.1 confirms that the bivariate distribution Pmn|m0n0
is approximated to leading

order by the marginal distribution P0n|m0n0
of protein for large values of t, i.e., that the distribution

of mRNA peaks at zero. (Specifically, it follows from the corresponding proof that Pmn|m0n0
(t, 0)

decays exponentially in time whenever m ∈ N; cf. Section C.3 below for details.) Moreover, we
remark that Equation (B.3) agrees with [3, Equation (23)], where only the case of non-zero m0

was considered; as argued there, (B.3) implies, in particular, that the initial number n0 of protein
is conserved on the fast t-scale, with each of the m0 initial mRNAs giving rise to geometrically
distributed protein numbers.

Remark S.4. Alternatively, the expression for P∞0n|m0n0
(0) in (B.3) can be found by taking the

limit as t → ∞ in F (u, v, t, 0) first – which eliminates any u-dependence to the order considered
here – and by differentiating the resulting expression with respect to v; in other words, the large-t
limit in Equation (B.1) commutes with differentiation of F (u, v, t, 0) with respect to u and v. �

Remark S.5. An explicit expression for P0n|m0n0
(t, 0) for arbitrary n ∈ N can, in principle, be

obtained by applying Faà Di Bruno’s formula [11, Theorem 2]

dn

dxn
f(g(z)) =

∑ n!

k1!k2! · · · kn!
f (k1+k2+···+kn)(g(z))

n∏
j=1

(
g(j)(z)

j!

)kj
to Equation (C.8) below, where the sum is taken over all n-tuples (k1, k2, . . . , kn) such that∑n

j=1 jkj = n. However, the resulting formulae are cumbersome, and are hence omitted here;

see also [2, Section 3]. �

B.1.2. Slow dynamics. Given the definition of P0n|m0n0
(τ, ε) in Equation (37), as well as the lowest-

order approximation

F0(v, τ) ≡ F (U0(v), v, τ, 0) =
(1 + ve−τ )n0

(1− bve−τ )m0

(1− bve−τ

1− bv

)a
(B.4)

for F on this slow τ -scale, asymptotic formulae for the leading-order slow propagator P0n|m0n0
(τ, 0)

can now be derived via several different routes. (Here, we again allow for arbitrary initial numbers
m0 and n0 of mRNA and protein, respectively, in Equation (B.4); moreover, we have applied
the matching condition in (B.2) to fix the constant C0 in Equation (21) accordingly. Finally,
we have made use of the fact that v0(v, τ) = ve−τ in the resulting expression.) Conceptually,
the most straightforward procedure involves the direct differentiation of the above leading-order
approximation for F , which yields

Proposition B.2. Let n,m0, n0 ∈ N0, let ε ∈ [0, ε0], with ε0 > 0 sufficiently small, and assume
that τ � ε. Then, the propagator probabilities P0n|m0n0

(τ, ε) are given by

(B.5) P0n|m0n0
(τ, 0) =

(1− e−τ )n0

(1 + be−τ )m0

Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(1 + be−τ

1 + b

)a
×

n∑
k=0

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)

Γ(a+ n− k)

Γ(a+ n)

Γ(m0 + k)

Γ(m0)

( 1 + b

eτ + b

)k
× 2F1

(
− k,−n0; 1−m0 − k; eτ+b

b(1−eτ )

)
2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

)
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for any m0 ≥ 2, whereas

(B.6) P0n|0n0
(τ, 0) = (1− e−τ )n0

Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(1 + be−τ

1 + b

)a
×

n∑
k=0

(−1)k
Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)

Γ(a+ n− k)

Γ(a+ n)

Γ(n0 + 1)

Γ(n0 − k + 1)

[
1 + b

b(1− eτ )

]k
× 2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

)
for m0 = 0 and

(B.7) P0n|1n0
(τ, 0) =

(1− e−τ )n0

1 + be−τ
Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(1 + be−τ

1 + b

)a
×

n∑
k=0

Γ(n+ 1)

Γ(n− k + 1)

Γ(a+ n− k)

Γ(a+ n)

( 1 + b

eτ + b

)k{
(−1)n0

[
eτ (1 + b)

b(1− eτ )

]n0

+
(−1)k

Γ(k + 2)

Γ(n0 + 1)

Γ(n0 − k)

[
eτ + b

b(1− eτ )

]k+1

2F1

(
1, 1− n0 + k; 2 + k; eτ+b

b(1−eτ )

)}
× 2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

)
for m0 = 1, to leading order in ε. (Here, 2F1 denotes the standard hypergeometric function [1,
Section 15], as before.)

For m0 = 0 = n0 in Equation (B.6), the only non-zero contribution in the sum therein is
obtained for k = 0, as the reciprocal Gamma function 1

Γ is zero whenever its argument is a non-
positive integer. Hence, (B.6) then agrees with Equation (8) of [12], which we quote for future
reference here:

Pn(τ, 0) =
Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(1 + be−τ

1 + b

)a
2F1

(
− n,−a; 1− a− n; 1+b

eτ+b

)
,(B.8)

where we have defined Pn ≡ P0n|00. Moreover, one easily verifies that Equations (B.5) through
(B.7) reduce to [12, Equation (9)] in the (stationary) limit as τ → ∞, irrespective of the chosen
values of m0 and n0. (To that end, one observes that the only contribution in the corresponding
sums is obtained for k = 0 in that limit, as the hypergeometric functions occurring therein reduce
to 2F1(0,−n0; 1−m0;−1

b ) = 1 = 2F1(−n,−a; 1− a− n; 0) and as

2F1(1, 1− n0; 2;−1
b ) =

{
b
n0

[(
1+b
b

)n0 − 1
]

when n0 ∈ N,
b ln 1+b

b when n0 = 0,

respectively, all of which are bounded for any choice of (a, b), (m0, n0), and n; in particular, in
(B.7), the terms in curly brackets then combine to 1 for τ → ∞, as required.) Finally, we note
that the stationary limit now does not commute with differentiation with respect to z, in contrast
to the situation encountered on the fast t-scale; recall Remark S.4.

The leading-order expansion for the propagator Pmn|m0n0
(τ, 0), as given in Proposition B.2, is

illustrated in Figure S.1 for varying initial numbers m0 and n0 of mRNA and protein, respectively.
One observes that the dependence of Pmn|m0n0

on (m0, n0) diminishes rapidly with increasing τ ; in
other words, the effects of non-zero initial mRNA and protein numbers are only relevant for short
times.

Specifically, for m0 6= 0, the corresponding propagator probabilities differ markedly for small
values of τ , as the initial presence of mRNA translates into higher protein numbers initially; see
Figures S.1(b) and S.1(d). However, for τ large, mRNA has decayed to a sufficient degree for
the probabilities to be indiscernible from those found for m0 = 0; recall Figure 3. Similarly, it
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(a) Regime I (m0 = 0 = n0)
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(b) Regime I (m0 = 10, n0 = 0)
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(c) Regime II (m0 = 0, n0 = 50)
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(d) Regime II (m0 = 1, n0 = 50)

Figure S.1. The zeroth-order propagator probabilities P0n|m0n0
(τ, 0) defined in

Equation (B.5) for varying values of m0 and n0; here, a = 20 and b = 2.5 in
panels 1(a) and 1(b) (‘regime I’), while a = 0.5 and b = 100 in panels 1(c) and
1(d) (‘regime II’). (We note that, for τ = 10, the curves almost coincide with the
stationary probability distribution obtained in [12, Equation (9)]; see also Equa-
tion (B.8).)

follows from Figures S.1(a) and S.1(c) that a change in n0 results in a shift of the peak of the initial
distribution away from zero, which again merely alters the transient dynamics, i.e., the convergence
behaviour of the propagator probabilities to the stationary marginal protein distribution P∞n that
is obtained in the limit as τ →∞; cf. [12, Equation (9)].

Alternatively to the differentiation procedure applied in the proof of Proposition B.2 – which is
algebraically rather cumbersome, as seen in Section C.3 below – one can combine the leading-order
asymptotics of Pn in Equation (B.8) with the approximation for F in (B.4) to approximate P0n|m0n0

for general (non-zero) m0, n0 ∈ N via a summation argument. We have the following result:

Proposition B.3. Let the assumptions of Proposition B.2 be satisfied; then, the propagator prob-
abilities P0n|m0n0

(τ, ε) are given by

(B.9) P0n|m0n0
(τ, 0) =

(1− e−τ )n0

(1 + be−τ )m0

∞∑
s=0

(
m0 + s− 1

m0 − 1

)( b

1 + be−τ

)s
×

n0∑
r=0

(
n0

r

)
1

(1− e−τ )r
Pn−(r+s)(τ, 0)e−(r+s)τ ,

to leading order in ε. (Here, Pn−(r+s)(τ, 0) = P0,n−(r+s)|00(τ, 0), with Pn−(r+s) as defined in Equa-
tion (B.8).)
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As before, one easily verifies that Equation (B.9) reduces to the stationary probability distribu-
tion given in [12, Equation (9)] as τ →∞, independent of (m0, n0); see also Equation (43).

Finally, we quote a representation for P0n|m0n0
which is only valid under additional assumptions

on the parameters a and m0:

Proposition B.4. Let the assumptions of Proposition B.3 be satisfied, and assume that, addition-
ally, ã := a−m0 > 0; then, the propagator probabilities P0n|m0n0

(τ, ε) are given by

P0n|m0n0
(τ, 0) =

(1− e−τ )n0

(1 + b)m0

∞∑
s=0

(
m0 + s− 1

m0 − 1

)( b

1 + b

)s n0∑
r=0

(
n0

r

)
1

(1− e−τ )r
P̃n−(r+s)(τ, 0)e−rτ ,

(B.10)

to leading order in ε. (Here, the parameter a in Pn−(r+s) has been replaced with the modified

parameter ã in P̃n−(r+s).)

While we have confirmed numerically that all formulae for P0n|m0n0
derived in this subsection

are in agreement as long as any potential restrictions on a and m0 are satisfied (data not shown),
numerical simulation also suggests that the implementation of Proposition B.2 involves the least
computational effort. One reason is certainly that the infinite summation which needs to be per-
formed explicitly in the evaluation of Equations (B.9) and (B.10) is avoided. (While the Gamma
functions occurring in (B.5) do involve infinite sums, efficient algorithms for evaluating these func-
tions are implemented in all commercial computer algebra packages.) A further reduction in com-
putational effort is due to the fact that the infinite series representation for the hypergeometric
function 2F1(α1, α2;β; z) terminates [1, Section 15.4] – i.e., that it reduces to a polynomial of finite
degree in z – when at least one of the parameters α1 or α2 is a negative integer, as is the case in
Equations (B.5) through (B.7).

B.1.3. Large-time limit. Not surprisingly, the above analysis confirms our intuition that the large-
time limit of the leading-order probability-generating function F , as well as of its derivatives with
respect to u and v, is well-defined: on the fast t-scale, Equation (B.2) implies the existence of
limt→∞ F (u, v, t, 0), while it follows immediately from Proposition B.1 that limt→∞ Pmn|m0n0

(t, 0)
exists. Similarly, on the slow τ -scale, Equation (B.4) shows that the stationary generating function
F∞(v) ≡ limτ→∞ F0(v, τ) = (1 − bv)−a is well-defined, while Proposition B.2 yields the well-
definedness of the resulting probability distribution. (In particular, since v0 = ve−τ is a dynamic
variable on the slow τ -scale, any (m0, n0)-dependence in F must vanish in that limit.)

In fact, it follows from standard geometric singular perturbation theory – and, indeed, from
conventional asymptotic techniques for ordinary differential equations – that limt→∞ F (u, v, t, 0)
must equal limτ→0+ F (U0(v), v, τ, 0), where U0 is defined as in Equation (10). While that relation
cannot, in general, be expected to hold for the corresponding derivatives with respect to u and v,
we do find limt→∞ Pmn|m0n0

(t, 0) = limτ→0+ Pmn|m0n0
(τ, 0) here, which is best verified by compar-

ing the respective asymptotics of Pmn|m0n0
, as given in Propositions B.1 and B.3. (It should be

equally possible to refer to Proposition B.2; however, since the argument eτ+b
b(1−eτ ) in some of the

hypergeometric functions therein becomes unbounded for τ = 0, a detailed study of the small-τ
asymptotics of Equations (B.5) through (B.7) may be required in that case.)

B.2. First-order asymptotics. Given the leading-order approximation for the propagator proba-
bilities Pmn|m0n0

for general values of (m0, n0), as derived in the previous section, the corresponding
first-order correction (in ε) can again be determined via the perturbative procedure developed in
Section 4. We discuss one particular regime here, restricting ourselves to the case where m0 = 0
and n0 ∈ N; as in Section 4, we first describe separately the asymptotics of Pmn|0n0

on the fast and
7



the slow time-scales, which we then combine into a ‘composite’ expansion for the propagator Pn|n0

that is uniformly valid in time.

B.2.1. Fast dynamics. In analogy to Section 4.2.1, we consider the generating function F (u, v, t, ε)
on the fast t-scale, up to an O(ε2)-error; however, in contrast to Equation (26), we now allow for
general n0 ∈ N:

F (z′, z, t, ε) = zn0

{
1− ε

[
n0
z − 1

z
t− a

1− b(z − 1)

(
b(z − 1)t

+

[
z′ − 1

1− b(z − 1)

]{
1− e−[1−b(z−1)]t

})]}
+O(ε2).

(Here, we have again abused notation, replacing (u, v) with (z′, z); moreover, we remark that the
above expansion is regular at z = 0 due to our restriction on n0.) As in the proof of Proposition 4.1,
the fast propagator Pmn|0n0

(t, ε) can then be approximated by repeated differentiation of F with
respect to z′ and z:

Proposition B.5. Let m,n ∈ N0 and n0 ∈ N, and let ε ∈ [0, ε0], with ε0 > 0 sufficiently small;
moreover, assume that t� ε−1, i.e., let εt = O(1). Then, the propagator probabilities Pmn|0n0

(t, ε)
are given by

P0n|0n0
(t, ε) =



0 when n < n0 − 1,

εn0t when n = n0 − 1,

1− ε a
1+b

{(
1+b
a n0 + b

)
t+ 1

1+b

[
1− e−(1+b)t

]}
when n = n0,

ε
Γ(n−n0+2)ab

n−n0tn−n0+1

×
{

1F1(n− n0 + 1;n− n0 + 2;−(1 + b)t)t

−n−n0+1
1+b

[
1F1

(
n− n0 + 1;n− n0 + 2;−(1 + b)t

)
− e−(1+b)t

]}
when n > n0

(B.11)

for m = 0 and by

P1n|0n0
(t, ε) =

{
0 when n < n0,

ε
Γ(n−n0+2)ab

n−n0tn−n0+1
1F1

(
n− n0 + 1;n− n0 + 2;−(1 + b)t

)
when n ≥ n0

(B.12)

for m = 1, up to an O(ε2)-error. (Here, 1F1 denotes the confluent hypergeometric function [1], as
before.) For m ≥ 2, Pmn|0n0

(t, ε) ≡ 0 to the order considered here.

The proof is lengthy, but straightforward, and is based on a combination of the techniques
and identities that were previously applied in proving Propositions 4.1 and B.1. (In the case
where n = n0, one additionally makes use of the identity 1F1(1; 2;−z) = 1

z (1 − e−z); see, e.g., [1,
Equation 13.6.14].) We emphasise that P0n|0n0

is always zero – at least to the order considered
here – when n < n0− 1, as well as that the expression found for n = 0, which is again best derived
separately, can now be subsumed under the case of general n ∈ N if one takes into account that
the only non-zero contribution is obtained for n = n0 − 1 then:

P00|0n0
(t, ε) =

{
εt when n0 = 1,

0 when n0 ≥ 2.

Moreover, we note that, when n0 = 0, Equations (B.11) and (B.12) reduce to their respective
counterparts, Equations (33) through (35), in the statement of Proposition 4.1.
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Finally, given Proposition B.5, we have the following approximation for the marginal protein
distribution Pn|n0

= P0n|0n0
+ P1n|0n0

:

Pn|n0
(t, ε) =



0 when n < n0 − 1,

εn0t when n = n0 − 1,

1− ε ab
1+b

{(
1+b
ab n0 + 1

)
t− 1

1+b

[
1− e−(1+b)t

]}
when n = n0,

ε
Γ(n−n0+2)ab

n−n0tn−n0+1

×
{

(t+ 1)1F1

(
n− n0 + 1;n− n0 + 2;−(1 + b)t

)
−n−n0+1

1+b

[
1F1

(
n− n0 + 1;n− n0 + 2;−(1 + b)t

)
− e−(1+b)t

]}
when n > n0,

up to an O(ε2)-error. (As expected, the above formulae again reduce to their counterpart, Equa-
tion (36), when n0 = 0.)

B.2.2. Slow dynamics. Next, we derive the first-order asymptotics of the propagator Pmn|0n0
–

i.e., of the probability of observing m mRNAs and n proteins, given 0 and n0 of each initially,
respectively – on the slow τ -scale:

Proposition B.6. Let n ∈ N0 and n0 ∈ N, and let ε ∈ [0, ε0], with ε0 > 0 sufficiently small;
moreover, assume that τ � ε. Then, the propagator probabilities Pmn|0n0

(τ, ε) are given by

(B.13) P0n|0n0
(τ, ε) =

(
1− e−τ

)n0 Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(1 + be−τ

1 + b

)a
×

n∑
k=0

Γ(n+ 1)

Γ(n− k + 1)

Γ(a+ n− k)

Γ(a+ n)
2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

)
×
{

(−1)k

Γ(k + 1)

Γ(n0 + 1)

Γ(n0 − k + 1)

[
1 + b

b(1− eτ )

]k
− ε

2

a

(1 + b)2
(k + 1)

×
[

2F1

(
− k,−n0;−1− k; 1+b

b(1−eτ )

)
+
( 1 + b

eτ + b

)k+2
e2τ

2F1

(
− k,−n0;−1− k; eτ+b

b(1−eτ )

)]}
when m = 0 and by

(B.14) P1n|0n0
(τ, ε) = ε

(
1− e−τ

)n0 Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(1 + be−τ

1 + b

)a a

1 + b

×
n∑
k=0

Γ(n+ 1)

Γ(n− k + 1)

Γ(a+ n− k)

Γ(a+ n)
2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

)
×
{

(−1)n0

[
1 + beτ

b(1− eτ )

]n0

+(−1)k
Γ(n0 + 1)

Γ(k + 2)Γ(n0 − k)

[
1 + b

b(1− eτ )

]k+1

2F1

(
1, 1−n0+k; 2+k; 1+b

b(1−eτ )

)}
when m = 1, up to an O(ε2)-error. For m ≥ 2, Pmn|0n0

(τ, ε) ≡ 0 to the order considered here.

The proof of Proposition B.6 is largely analogous to that of Proposition 4.2, and is hence omitted
here. (While the two hypergeometric functions occurring in the last line of Equation (B.13) may
be eliminated via the relation 2F1(−k,−n0;−1−k; z) = − 1

k+1(1− z)n0−1[(−n0 +k+ 1)z− (k+ 1)],

the resulting expression seems unnecessarily cumbersome.) We remark that, for n0 = 0, (B.13) and
(B.14) reduce to Equations (38) and (39), respectively, in the statement of Proposition 4.2; see the
discussion below Proposition B.2 for details.

Finally, we emphasise that the marginal protein distribution on this slow τ -scale is again defined
as Pn|n0

= P0n|0n0
+ P1n|0n0

, to first order in ε.
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B.2.3. Uniform (fast-slow) dynamics. We conclude our discussion with the first-order asymptotics
of the uniform (composite) propagator Pn|n0

that is valid both on the fast and the slow time-scales,
for arbitrary n0 ∈ N0; cf. Equation (44):

Proposition B.7. Let n ∈ N0, let ε ∈ [0, ε0], with ε0 > 0 sufficiently small, let t∗ > 0 be arbi-
trary, but fixed, and let τ∗ = εt∗. Up to an O(ε2)-error, the uniform marginal protein distribution
Pn|n0

(τ, t, ε) is then given by Pn|n0
(τ, t, ε) ≡ Pn|n0

(τ, ε) when n < n0 and by

(B.15) Pn|n0
(τ, t, ε) = Pn|n0

(τ, ε) + εa
bn−n0

(1 + b)n−n0+2

[
n− n0 − b− (1 + b)t

]
+

ε

Γ(n− n0 + 2)
abn−n0tn−n0+1

{
1F1

(
n− n0 + 1;n− n0 + 2;−(1 + b)t

)
t

− 1

1 + b

[
(n− n0 − b)1F1

(
n− n0 + 1;n− n0 + 2;−(1 + b)t

)
− (n− n0 + 1)e−(1+b)t

]}
when n ≥ n0, for any t ∈ (0, t∗] and τ ∈ (0, τ∗]. (Here, Pn|n0

(τ, ε) is defined as in the previous
subsection.)

The proof is analogous to that of Proposition 4.3, and is hence omitted here. (The restriction to
positive times in Equation (B.15) is necessitated by the fact that the expressions in Equations (B.13)
and (B.14) are a priori undefined at τ = 0; however, their validity may be extended asymptotically
to that point via the formulae found in Section 15.12 of [4].)

C. Full mathematical proofs

In this section, we collect the mathematical proofs that underlie the asymptotic analysis presented
in Sections 3 and 4 of the main text, as well as in Section B above.

C.1. Proofs for Section 3.

Proof of Proposition 3.1. The first statement follows directly from Theorem A.1.
The second statement can be obtained by making the Ansatz in (11) for Sε; since the manifold Sε

is (locally) invariant, u = U(v, ε) must then satisfy Equation (8a): by the Chain Rule, u̇ = ∂U
∂v (v, ε)v̇,

which, together with ∂U
∂v (v, ε) = dU0

dv + dU1
dv ε+ · · ·+ dUK

dv ε
K +O(εK+1) and (8b), yields

ε

[
dU0

dv
+
dU1

dv
ε+ · · ·+ dUK

dv
εK +O(εK+1)

]
v = U0 + U1ε+ · · ·+ UKε

K +O(εK+1)

− b
[
1 + U0 + U1ε+ · · ·+ UKε

K +O(εK+1)
]
v.

Comparing terms in like powers of ε in the above relation, we find a system of recursive equations
for Uk(v), k = 0, . . . ,K:

O(1) : 0 = U0 − b(1 + U0)v,(C.1a)

O(εk) :
dUk−1

dv
v = Uk − bUkv for k = 1, . . .K.(C.1b)

To leading order in ε, we hence recover the expression for S0 in Equation (10) from (C.1a), as

required. Next, given dU0
dv = b

(1−bv)2
, we find U1 = bv

(1−bv)3
for k = 1, as claimed. The general

expression for Uk when k ∈ N then follows from (C.1b) in combination with an induction argument,
which implies the second statement.

The third statement follows trivially from (8b) and (8c), in combination with (11).
10



The fourth statement is evident from the fact that any point on ` is an equilibrium state for
Equation (8) irrespective of ε; hence, the line ` itself must be contained in the invariant manifold
Sε.

Finally, the fifth statement is an immediate consequence of Theorem A.2. �

C.2. Proofs for Section 4.

Proof of Proposition 4.1. Rewriting Equation (26) in terms of z′ = 1 + u and z = 1 + v, one finds

F (z′, z, t, ε) = 1 + ε
a

1− b(z − 1)

(
b(z − 1)t+

[
z′ − 1

1− b(z − 1)

]{
1− e−[1−b(z−1)]t

})
+O(ε2);

(C.2)

hence, ∂m

∂(z′)mF (z′, z, t, ε) = 0 for m ≥ 2, at least to first order in ε, which implies Pmn(t, ε) ≡ 0

then. Thus, it only remains to consider the cases where m = 0 or m = 1.
We first present the proof for m = 0: evaluating (C.2) at z′ = 0, we have

F (0, z, t, ε) = 1 + ε
ab(z − 1)

1− b(z − 1)
t− ε a

[1− b(z − 1)]2
{

1− e−[1−b(z−1)]t
}

+O(ε2).

Setting z = 0 in the above expression, we immediately obtain P00, as given in Equation (33).
To derive the asymptotics of P0n for n ≥ 1, we differentiate F (0, z, t, ε) repeatedly with respect

to z; recall Equation (32). The derivative of the first (t-dependent) term can be evaluated by noting

that ∂n

∂zn
b(z−1)

1−b(z−1)

∣∣
z=0

= n! bn

(1+b)n+1 , where n ∈ N. Writing [1− b(z − 1)]−2 = (1 + b)−2(1− b
1+bz)

−2,

we then have ∂k

∂zk
[1 − b(z − 1)]−2

∣∣
z=0

= (1 + b)−2Γ(k + 2)( b
1+b)

k for any k ∈ N0, which implies,

in particular, ∂n

∂zn [1 − b(z − 1)]−2
∣∣
z=0

= (n + 1)! bn

(1+b)n+2 . Next, we make use of the fact that

∂k

∂zk
e−[1−b(z−1)]t

∣∣
z=0

= bktke−(1+b)t for k ∈ N0 as well as of the Product Rule, obtaining

∂n

∂zn

{
1

[1− b(z − 1)]2
e−[1−b(z−1)]t

}∣∣∣∣
z=0

=
1

(1 + b)2

n∑
k=0

(
n

k

)
∂k

∂zk
1(

1− b
1+bz

)2 · ∂n−k∂zn−k
e−[1−b(z−1)]t

∣∣∣∣
z=0

=
bn

(1 + b)2

n∑
k=0

(
n

k

)
(k + 1)!

tn−k

(1 + b)k
· e−(1+b)t

and, hence, in sum

P0n(t, ε) = ε
abn

(1 + b)n+2

[
(1 + b)t− (n+ 1) +

n∑
k=0

k + 1

(n− k)!
(1 + b)n−ktn−k · e−(1+b)t

]
+O(ε2).(C.3)

Finally, we note that
n∑
k=0

k + 1

(n− k)!
zn−k =

1

n!

[
(n+ 1− z)Γ(n+ 1, z)ez + zn+1

]
and

Γ(n+ 1, z) = n!− zn+1

n+ 1
1F1(n+ 1;n+ 2;−z);(C.4)

cf. [1, Equation 6.5.12]; here, Γ(α, z) and 1F1(α;β; z) denote the incomplete Gamma function
and the confluent hypergeometric function, respectively, which are, for instance, defined in [1,
Equations 6.5.3 and 13.1.2]. (In particular, since β = n + 2 is a positive integer here, we may
assume 1F1 to be the first standard solution of Kummer’s equation; see again [1, Section 13] for
details.) Observing that z = (1 + b)t in our case, substituting into Equation (C.3), simplifying, and
rearranging, we find the expression in (34).
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The proof in the case where m = 1 is similar: differentiating Equation (C.2) with respect to z′

and evaluating the result at z′ = 0 (which is vacuous in our case), we have

∂

∂(z′)
F (z′, z, t, ε)

∣∣∣
z′=0

= ε
a

1− b(z − 1)

{
1− e−[1−b(z−1)]t

}
+O(ε2).(C.5)

Noting that ∂n

∂zn [1− b(z− 1)]−1
∣∣
z=0

= n! bn

(1+b)n+1 for any n ∈ N0 and applying the Product Rule, as

before, we find

∂n

∂zn

{
1

1− b(z − 1)
e−[1−b(z−1)]t

}∣∣∣∣
z=0

= bn
n∑
k=0

(
n

k

)
k!

tn−k

(1 + b)k+1
· e−(1+b)t;

hence,

P1n(t, ε) = ε
abn

(1 + b)n+1

[
1−

n∑
k=0

1

(n− k)!
(1 + b)n−ktn−k · e−(1+b)t

]
+O(ε2).

Finally, we make use of the identity
∑n

k=0
1

(n−k)!z
n−k = Γ(n+1,z)

n! ez, which we combine with (C.4)

to obtain Equation (35), as claimed. (While that equation is valid for any n ∈ N0, we remark that

(C.5) directly implies P10(t, ε) = ε a
1+b

[
1− e−(1+b)t

]
+O(ε2) for n = 0.) �

Proof of Proposition 4.2. We first discuss the case where m = 0, verifying Equation (38). Abusing
notation, as above, we rewrite the expansion for F in Equation (30) in terms of z, and we evaluate
the result for m0 = 0 = n0 and z′ = 0 to find

F (0, z, τ, ε) =

(
1− εa

2

{
1

[1− b(z − 1)]2
+

1

[1− b(z − 1)e−τ ]2

})[
1− b(z − 1)e−τ

1− b(z − 1)

]a
+O(ε2)

= F0(z, τ) + εF1(0, z, τ) +O(ε2).

(C.6)

Given the definition of P0n(τ) = 1
n!

∂n

∂znF (0, z, τ, ε)
∣∣
z=0

, we hence need to determine the n-th deriv-

ative of (C.6) for arbitrary n ∈ N. The derivation of the leading-order term ∂n

∂znF0 can be found
in [12, Supporting Information]; cf. also Equation (B.8). For the derivatives of the O(ε)-correction

F1, we recall that [1− b(z− 1)]−2 = (1 + b)−2
(
1− b

1+bz
)−2

, which implies ∂k

∂zk
[1− b(z− 1)]−2

∣∣
z=0

=

(1+b)−2Γ(k+2)
(

b
1+b

)k
; see the proof of Proposition 4.1. Similarly, we may write [1−b(z−1)e−τ ]−2 =

(1+be−τ )−2
(
1− b

eτ+bz
)−2

to find ∂k

∂zk
[1−b(z−1)e−τ ]−2

∣∣
z=0

= (1+be−τ )−2Γ(k+2)
(

b
eτ+b

)k
. Applying

the Product Rule and making again use of Equation (B.8), we then calculate

∂n

∂zn
F1(0,z, τ)

∣∣∣
z=0

= − ∂n

∂zn

(
a

2

{
1

[1− b(z − 1)]2
+

1

[1− b(z − 1)e−τ ]2

}[
1− b(z − 1)e−τ

1− b(z − 1)

]a)∣∣∣∣
z=0

= −a
2

n∑
k=0

(
n

k

)
∂k

∂zk

{
1

[1− b(z − 1)]2
+

1

[1− b(z − 1)e−τ ]2

}
∂n−k

∂zn−k

[
1− b(z − 1)e−τ

1− b(z − 1)

]a∣∣∣∣
z=0

= −a
2

n∑
k=0

(
n

k

)
Γ(k + 2)bk

[
1

(1 + b)k+2
+

e2τ

(eτ + b)k+2

]
× Γ(a+ n− k)

Γ(a)

( b

1 + b

)n−k(1 + be−τ

1 + b

)a
2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

)
= −n!

a

2

bn

(1 + b)n+2

(1 + be−τ

1 + b

)a n∑
k=0

k + 1

(n− k)!

Γ(a+ n− k)

Γ(a)

[
1 +

( 1 + b

eτ + b

)k+2
e2τ

]
× 2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

)
,
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which concludes the verification of (38).

Next, we consider the case where m = 1: since ∂
∂z′F (z′, z, τ, ε)

∣∣
z′=0

= ε a
1−b(z−1)

[1−b(z−1)e−τ

1−b(z−1)

]a
,

by Equation (30), and since we can show as above that

∂n

∂zn

{
a

1− b(z − 1)

[
1− b(z − 1)e−τ

1− b(z − 1)

]a}∣∣∣∣
z=0

= a
n∑
k=0

(
n

k

)
∂k

∂zk
1

1− b(z − 1)
· ∂

n−k

∂zn−k

[
1− b(z − 1)e−τ

1− b(z − 1)

]a∣∣∣∣
z=0

= n!a
bn

(1 + b)n+1

(1 + be−τ

1 + b

)a n∑
k=0

1

(n− k)!

Γ(a+ n− k)

Γ(a)
2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

)
,

we obtain Equation (39).
Finally, since ∂m

∂(z′)mF ≡ 0 to first order in ε whenever m ≥ 2, again by Equation (30), it follows

that Pmn(τ, ε) ≡ 0 then, as claimed, which concludes the proof. �

Proof of Corollary 4.1. We first consider the case where m = 0. The leading-order term in Equa-
tion (41) can then be found in [12, Equation (9)]; to determine the ε-dependent first-order correc-
tion, we take the limit as τ →∞ in (38), noting that 2F1(−k,−a; 1−a−k; 1+b

eτ+b)→ 1 in that limit.
Making use of the identity

n∑
k=0

k + 1

(n− k)!
Γ(a+ n− k) =

(a+ n+ 1)(a+ n)

(a+ 1)a

Γ(a+ n)

Γ(n+ 1)

(which can be verified directly), as well as of the fact that

lim
τ→∞

( 1 + b

eτ + b

)k+2
e2τ = (1 + b)2δk0 for k = 0, . . . , n,

where δjk denotes the Kronecker delta, as before, we obtain Equation (41).

Similarly, for m = 1, we note that
∑n

k=0
Γ(a+n−k)

(n−k)! = a+n
a

Γ(a+n)
Γ(n+1) in (39), which yields Equa-

tion (42), as claimed. �

Proof of Proposition 4.3. We recall the uniform expansion for the generating function F in Equa-
tion (31), as well as the fact that only contributions from m = 0 and m = 1 have to be taken into
account to the order considered here. As Pn(τ, t, ε) is obtained by repeated differentiation of (31)
with respect to v, and as the contribution from ∂n

∂zn

[
F0(z, τ)+εF1(z′, z, τ)

]∣∣
(z′,z)=(1,0)

therein yields

precisely Pn(τ, ε), cf. Equation (40), it only remains to determine ∂n

∂znF
′
1(z′, z, t)

∣∣
(z′,z)=(1,0)

. (Here,

we have again abused notation, replacing (u, v) with (z′, z).) To that end, we note that

∂n

∂zn
F ′1(1, z, t) = a

∂n

∂zn

{
b(z − 1)

[1− b(z − 1)]2
e−[1−b(z−1)]t

}∣∣∣∣
z=0

= a

n∑
k=0

(
n

k

)
∂k

∂zk
b(z − 1)

[1− b(z − 1)]2
∂n−k

∂zn−k
e−[1−b(z−1)]t

∣∣∣∣
z=0

= −n!a
bn

(1 + b)n+2

n∑
k=0

b− k
(n− k)!

(1 + b)n−ktn−k · e−(1+b)t,
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where we have made use of the relations ∂k

∂zk
b(z−1)

[1−b(z−1)]2

∣∣
z=0

= −k! b
k(b−k)

(1+b)k+2 and ∂k

∂zk
e−[1−b(z−1)]t

∣∣
z=0

=

bktke−(1+b)t, with k ∈ N; recall the proof of Proposition 4.1. Finally, we may verify directly that
n∑
k=0

b− k
(n− k)!

zn−k =
1

n!

[
(b− n+ z)Γ(n+ 1, z)ez − zn+1

]
.

Combining the above identity with Equation (C.4), we obtain (44), as claimed. �

C.3. Proofs for Section B.

Proof of Proposition B.1. Rewriting Equation (B.1) in terms of z′ = 1+u and z = 1+v, we obtain
(with an abuse of notation)

F0(z′, z, t) =

{
1

1− b(z − 1)
+

[
z′ − 1

1− b(z − 1)

]
e−[1−b(z−1)]t

}m0

zn0 ;(C.7)

see also [3, Equation (21)]. Given Equation (C.7), the relation in (32) then immediately implies
Pmn|m0n0

(t, 0) ≡ 0 for any m > m0 ≥ 0 and arbitrary n0 ∈ N0; hence, P∞mn|m0n0
(0) ≡ 0 in that

case, as well. For m0 ≥ m ≥ 1, on the other hand, we exploit the fact that

∂m

∂(z′)m
F0(z′, z, t) = m!

{
1

1− b(z − 1)
+

[
z′ − 1

1− b(z − 1)

]
e−[1−b(z−1)]t

}m0−m
zn0e−m[1−b(z−1)]t,

i.e., that each differentiation with respect to z′ yields an additional factor of e−[1−b(z−1)]t, irrespec-
tive of n0 ∈ N0. Thus, we conclude that Pmn|m0n0

(t, 0) then decays to zero exponentially as t→∞,
which shows (i).

To prove (ii), we note that (C.7) reduces to F0(z) ≡ zn0 when m0 = 0; hence, it follows trivially
that P0n|00(t, 0) ≡ 0, while the statement for n0 ∈ N is obtained from the identity dn

dzn z
n0
∣∣
z=0

=
δnn0n0!.

Finally, it remains to derive Equation (B.3). For n < n0, Equation (C.7), in combination
with P0n|m0n0

(t, 0) = 1
n!

∂n

∂znF0(0, z, t)
∣∣
z=0

, implies that P0n|m0n0
(t, 0) ≡ 0; hence, in particular,

P∞0n|m0n0
(0) ≡ 0. To derive the expression for n ≥ n0, we note that

P0n|m0n0
(t, 0) =

1

n!

n∑
k=0

(
n

k

)
∂k

∂zk

(
1

1− b(z − 1)

{
1− e−[1−b(z−1)]t

})m0 ∂n−k

∂zn−k
zn0

∣∣∣∣
z=0

=
1

(n− n0)!

∂n−n0

∂zn−n0

(
1

1− b(z − 1)

{
1− e−[1−b(z−1)]t

})m0
∣∣∣∣
z=0

=
1

(n− n0)!

n−n0∑
j=0

(
n− n0

j

)
∂j

∂zj
1

[1− b(z − 1)]m0

∂n−n0−j

∂zn−n0−j
{

1− e−[1−b(z−1)]t
}m0

∣∣∣∣
z=0

=

n−n0∑
j=0

(
m0 + j − 1

m0 − 1

)
bj

(1 + b)m0+j

1

(n− n0 − j)!
∂n−n0−j

∂zn−n0−j
{

1− e−[1−b(z−1)]t
}m0

∣∣∣∣
z=0

,(C.8)

where we have again used the fact that dn−k

dzn−k
zn0
∣∣
z=0

= δn−k,n0n0!, as well as the relation

∂j

∂zj
[1− b(z − 1)]−m0

∣∣∣
z=0

= (1 + b)−m0
∂j

∂zj

(
1− b

1 + b
z
)−m0

∣∣∣
z=0

=
(m0 + j − 1)!

(m0 − 1)!

bj

(1 + b)m0+j
;

here, the last equality follows from ∂j

∂zj
(1 − qz)−a

∣∣
z=0

= Γ(a+j)
Γ(a) qj , where Γ stands for the Gamma

function [1, Section 6]; see [12, Supporting Information, Equation (37)]. Noting that only j = n−n0

in (C.8) gives a contribution in the limit as t→∞ and evaluating the resulting expression at z = 0,
we find P∞0n|m0n0

(0), as stated, which completes the proof of (iii). �
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Proof of Proposition B.2. We begin by recalling the leading-order asymptotics of F from (B.4),
rewritten in terms of z = 1 + v:

F0(z, τ) =
[1 + (z − 1)e−τ ]n0

[1− b(z − 1)e−τ ]m0

[
1− b(z − 1)e−τ

1− b(z − 1)

]a
;(C.9)

consequently,

P0n|m0n0
(τ, 0) =

1

n!

n∑
k=0

(
n

k

)
∂k

∂zk
[1 + (z − 1)e−τ ]n0

[1− b(z − 1)e−τ ]m0

∂n−k

∂zn−k

[
1− b(z − 1)e−τ

1− b(z − 1)

]a∣∣∣∣
z=0

(C.10)

to lowest order in ε, by Equation (37).
Next, we note that 1+(z−1)e−τ =

(
1− 1

1−eτ z
)
(1−e−τ ) and 1−b(z−1)e−τ =

(
1− b

eτ+bz
)
(1+be−τ );

hence,

[1 + (z − 1)e−τ ]n0

[1− b(z − 1)e−τ ]m0
=

(1− e−τ )n0

(1 + be−τ )m0

(
1− b

eτ+bz
)−m0(

1− 1
1−eτ z

)−n0
.(C.11)

Making again use of the relations ∂k

∂zk
(1− qz)−a

∣∣
z=0

= Γ(a+k)
Γ(a) qk and

∂k

∂zk
f(z)

g(z)
= k!

k∑
j=0

∂k−j

∂zk−j
f(z)

j∑
i=0

(−1)i(j + 1)g(z)−(i+1)

(i+ 1)!(k − j)!(j − i)!
∂j

∂zj
g(z)i,

cf. [12, Supporting Information, Equations (37) and (38)], we then calculate

∂k

∂zk

(
1− b

eτ+bz
)−m0(

1− 1
1−eτ z

)−n0

∣∣∣∣
z=0

= k!
k∑
j=0

Γ(m0 + k − j)
Γ(m0)

( b

eτ + b

)k−j
×

j∑
i=0

(−1)i(j + 1)

(i+ 1)!(k − j)!(j − i)!
Γ(in0 + j)

Γ(in0)

1

(1− eτ )j
.

Noting that the reciprocal Gamma function 1
Γ is zero for in0 = 0, as well as that

j∑
i=1

(−1)iΓ(in0 + j)

Γ(in0)(i+ 1)!(j − i)!
=

(−1)jΓ(n0 + 1)

Γ(n0 − j + 1)(j + 1)!
,

by [12, Supporting Information, Equation (40)], we may apply the identity [4, Equation 15.2.4]

2F1(−k, α2;β; z) =
k∑
j=0

(−1)j

j!
zj

Γ(k + 1)

Γ(k − j + 1)

(α2)j
(β)j

(C.12)

to obtain

∂k

∂zk

(
1− b

eτ+bz
)−m0(

1− 1
1−eτ z

)−n0

∣∣∣∣
z=0

=
( b

eτ + b

)k k∑
j=0

(−1)j

j!

[
eτ + b

b(1− eτ )

]j k!

(k − j)!
Γ(n0 + 1)

Γ(n0 − j + 1)

Γ(m0 + k − j)
Γ(m0)

=
Γ(m0 + k)

Γ(m0)

( b

eτ + b

)k
2F1

(
− k,−n0; 1−m0 − k; eτ+b

b(1−eτ )

)
.

(C.13)

(Here, we have made use of the identities Γ(m0 + k − j) = Γ(m0+k)
(−1)j(1−m0−k)j

and Γ(n0 − j + 1) =
Γ(n0+1)

(−1)j(−n0)j
, where (z)j = Γ(z+j)

Γ(z) are Pochhammer symbols [1, Equation 6.1.22], keeping in mind
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that 1
Γ(n0−j+1) = 0 when n0−j+1 is a negative integer; moreover, we remark that, since 1−m0−k =

−k + l, with l ∈ N0, we need to assume a generalised definition of 2F1 via

2F1(α1, α2;β; z) = lim
β→1−m0−k

[
lim

α1→−k
2F1(α1,−n0;β; z)

]
;

see [12, Supporting Information, Equation (43)] and [4, Equation 15.2.5], respectively.) Combining
Equations (C.10), (C.11), and (C.13) with the expression for Pn given in Equation (B.8) and noting

that, by the definition of Pn, the latter equals n! ∂
n

∂zn

[1−b(z−1)e−τ

1−b(z−1)

]a∣∣
z=0

, we find (B.5), as claimed.

Finally, we emphasise that the validity of Equation (B.5) is restricted to m0 ≥ 2, as the identity
in (C.13) no longer holds as stated when m0 = 0 or m0 = 1. However, a slight adaptation of the
above argument yields the corresponding Equations (B.6) and (B.7) in these cases, where we again
follow the convention that the function 1

Γ vanishes whenever its argument is a negative integer. �

Proof of Proposition B.3. The proof is based on an adaptation of an argument that can be found
in [12, Supporting Information]; see their Equations (45) through (47). However, while they derive
propagators for m0 = 0 only, we extend their result to arbitrary (positive) values of both m0 and
n0.

Recalling that
∑∞

n=0 Pn(τ, 0)zn =
[1−b(z−1)e−τ

1−b(z−1)

]a
and following [12], we have

F (z, τ) =
[1 + (z − 1)e−τ ]n0

[1− b(z − 1)e−τ ]m0

∞∑
n=0

Pn(τ, 0)zn =
∞∑
n=0

P0n|m0n0
(τ, 0)zn;(C.14)

see also Section 2.3 and, in particular, Equation (2). By the Binomial Theorem, we can write
[1+(z−1)e−τ ]n0 =

∑n0
r=0

(
n0

r

)
(1−e−τ )n0−r(ze−τ )r; moreover, since |z| ≤ 1 and, hence,

∣∣ b
eτ+bz

∣∣ < 1,

we may apply a version of Newton’s generalised Binomial Theorem [9] to expand

1

[1− b(z − 1)e−τ ]m0
=

1

(1 + be−τ )m0

1

(1− b
eτ+bz)

m0
=

1

(1 + be−τ )m0

∞∑
s=0

(
m0 + s− 1

m0 − 1

)( b

eτ + b

)s
zs

=
1

(1 + be−τ )m0

∞∑
s=0

(
m0 + s− 1

m0 − 1

)( b

1 + be−τ

)s
(ze−τ )s.

Substituting into (C.14), changing summation indices, and noting that Pn(τ) ≡ 0 if n < 0, we
obtain (B.9), which completes the proof. (In particular, the validity of our argument for m0 = 0
follows from a generalised definition of the binomial coefficient that can be found in [9].) �

Proof of Proposition B.4. We rewrite Equation (C.9) as

F (z, τ) =
[1 + (z − 1)e−τ ]n0

[1− b(z − 1)]m0

[
1− b(z − 1)e−τ

1− b(z − 1)

]a−m0

=
[1 + (z − 1)e−τ ]n0

[1− b(z − 1)]m0

∞∑
n=0

P̃n(τ, 0)zn;

cf. (C.14). (In other words, the generating function F , as well as the resulting distribution Pn,
are now interpreted as being dependent on ã, instead of on a.) Applying the generalised Binomial

Theorem to expand [1− b(z− 1)]−m0 = (1 + b)−m0
(
1− b

1+bz
)−m0 in the above expression, as in the

proof of Proposition B.3, we obtain Equation (B.10), as stated. �

D. Table of probability distributions

Finally, in this section, we list the first-order asymptotic formulae for the marginal probability
distribution of protein whose validity is investigated in detail in Section 5 of the main text. (For
the reader’s convenience, the list is given in tabular form below.)
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Fast asymptotics (Equation (36)):

Pn(t, ε) ∼


1− ε ab

1+b

{
t− 1

1+b

[
1− e−(1+b)t

]}
for n = 0,

ε
(n+1)!ab

ntn+1
{

(t+ 1)1F1

(
n+ 1;n+ 2;−(1 + b)t

)
−n+1

1+b

[
1F1

(
n+ 1;n+ 2;−(1 + b)t

)
− e−(1+b)t

]}
for n ∈ N

Slow asymptotics (Equation (40)):

Pn(τ, ε) ∼ Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(1 + be−τ

1 + b

)a(
2F1

(
− n,−a; 1− a− n; 1+b

eτ+b

)
+
ε

2

a

(1 + b)2

×
n∑
k=0

Γ(n+ 1)

Γ(n− k + 1)

Γ(a+ n− k)

Γ(a+ n)

{
2(1 + b)− (k + 1)

[
1 +

( 1 + b

eτ + b

)k+2
e2τ

]}
× 2F1

(
− n+ k,−a; 1− a− n+ k; 1+b

eτ+b

))
Stationary limit (Equation (43)):

P∞n (ε) ∼ Γ(a+ n)

Γ(n+ 1)Γ(a)

( b

1 + b

)n(
1− b

1 + b

)a[
1− ε(a+ 1)ab2 − 2(a+ 1)bn+ n(n− 1)

2(a+ 1)(1 + b)2

]
Uniform asymptotics (Equation (44)):

Pn(τ, t, ε) ∼ Pn(τ, ε) + εa
bn

(1 + b)n+2

[
n− b− (1 + b)t

]
+

ε

(n+ 1)!
abntn+1

×
{

1F1

(
n+ 1;n+ 2;−(1 + b)t

)
t− 1

1 + b

×
[
(n− b)1F1

(
n+ 1;n+ 2;−(1 + b)t

)
− (n+ 1)e−(1+b)t

]}
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