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Abstract. The variational model by Landau and Lifshitz is frequently used
in the simulation of stationary micromagnetic phenomena. We consider the
limit case of large and soft magnetic bodies, treating the associated Maxwell
equation exactly via an integral operator P. In numerical simulations of the
resulting minimization problem, difficulties arise due to the imposed side-
constraint and the unboundedness of the domain. We introduce a possible
discretization by a penalization strategy. Here, the computation of P is nu-

merically the most challenging issue, as it leads to densely populated matrices.
We show how an efficient treatment of both P and the corresponding bilinear
form can be achieved by application of H-matrix techniques.

1. Introduction

The simulation of stationary micromagnetic phenomena occurring in static or quasi-
static processes is frequently based on a variational model named after Landau and
Lifshitz. Therein, one minimizes the energy functional

Eα(m) :=

∫

Ω

φ(m) dx−
∫

Ω

f ·m dx+
1

2

∫

Rd

|∇u|2 dx+ α

∫

Ω

|∇m|2 dx(1)

over some set of admissible vector-valued magnetizations m : Ω → R
d on a bounded

Lipschitz domain Ω ⊂ R
d corresponding to the magnet, with m(x) := 0 for x ∈

R
d\Ω and d = 2, 3. Here, φ ∈ C∞(Rd;R+) is the anisotropy density (depending on

properties of the material on a crystalline level), f ∈ L2(Ω;Rd) denotes an applied
exterior magnetic field, 0 ≤ α ≪ 1 is the exchange parameter, and u is the magnetic
potential related to m by Maxwell’s equation

div(−∇u+m) = 0 in D′(Rd).(2)

The model is completed by adding the non-convex constraint

|m(x)| = 1 for a.e. x ∈ Ω.(3)

For large and soft magnets, the parameter α in (1) vanishes. In general, the model
then lacks classical solutions, see [JK90], and hence has to be relaxed either by
considering measure valued solutions [Ped97] or by convexification [DeS93, Tar95].
In fact, for a certain limit configuration of soft-large bodies, E0(m), i.e., (1) with
α → 0 can be justified to be the correct model, see [DeS93]. The corresponding
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convexified problem E∗∗
0 is given by

E∗∗
0 (m) :=

∫

Ω

φ∗∗(m) dx−
∫

Ω

f ·m dx+
1

2

∫

Rd

|∇u|2 dx(4)

subject to (2) and

|m(x)| ≤ 1 for a.e. x ∈ Ω.(5)

Here, φ∗∗ is the convexified density defined by

φ∗∗(x) = sup
{
ϕ(x)

∣∣ϕ : Rd → R convex and ϕ|S ≤ φ
}

for |x| ≤ 1,(6)

where S =
{
x ∈ R

d
∣∣ |x| = 1

}
denotes the unit sphere. Then, the relaxed problem

reads:

Minimize E∗∗
0 over A :=

{
m ∈ L∞(Ω;Rd)

∣∣ ‖m‖L∞(Ω;Rd) ≤ 1
}
.(7)

In contrast to the ill-posed problem E0, the convexification is well-posed [DeS93,
Ped97, CP04b]. In fact, this convexified model provides the mathematical founda-
tion of the so-called phase theory in micromagnetics, cf. [HS98].

Remark 1. For uniaxial materials such as cobalt, the anisotropy energy is given
by φ(x) = 1/2

(
1− (x ·e)2

)
, with |x| = 1 and e ∈ R

d a given fixed unit vector called

the easy axis. A direct calculation shows φ∗∗(x) = 1/2
∑d

j=2(x · zj)2 for |x| ≤ 1

then, where {e, z2, . . . , zd} is an orthonormal basis of Rd.

The numerical treatment of the minimization problem related to E∗∗
0 was initiated

by [CP01] for d = 2, where the authors treat a simplified model obtained by re-

placing R
d in (2) by a bounded Lipschitz domain Ω̂ containing Ω, and solve for

a potential u ∈ H1
0 (Ω̂). Here, as in [CP04b, CP04a, LM92, Ma91, Pra04], (2) is

treated exactly via an integral representation, i.e., u = Lm, where L is a linear
convolution operator. We then set Pm := ∇(Lm), see Theorem 2.1 below, and
reformulate the stray field energy contribution in (4) in terms of P. The advantage
is that in the resulting model, only one discretization for m is required, e.g., by
piecewise constant functions mh.

From a numerical point of view, the computation of Pm for a given magnetization
is the most challenging issue, since it will lead to densely populated matrices. The
aim of the present work is to show how an efficient numerical treatment of both
P and the induced bilinear form a(·, ·) can be achieved by application of H-matrix
techniques.

Remark 2. The treatment of the convexified model (7) requires the explicit knowl-
edge of the convexified anisotropy density φ∗∗, which is, however, in general un-
known even for simple φ, cf. [DeS93]. Both the Young measure relaxation proposed
in [Ped97] and the corresponding discretization [KP01] avoid the computation of
φ∗∗. Note that as far as the computation of the magnetic potential (2) is concerned,
our ideas apply in that setting, as well. Further analysis on stabilized discrete mod-
els, as well as a comparison of the various approaches, can be found in the articles
[CP01] and [KP01], as well as in the survey monograph by Prohl [Pro01].

The remainder of this paper is organized as follows: in Section 2, we give a few
preliminaries and present a possible discretization of (7); Section 3 contains some
interpolation results required for the following analysis; Section 4 motivates the
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concept of hierarchical (H- resp. H2-) matrices; in Section 5, we give two different
approaches for a Galerkin discretization of the potential equation (2) via H-matrix
techniques; Section 6 finally summarizes the results of our numerical experiments.

2. Preliminaries and Discretization

This section is devoted to the reformulation of (7) in terms of the associated Euler-
Lagrange equations and introduces a possible discretization by a penalization strat-
egy.

2.1. Preliminaries. The following Theorem 2.1 gathers some of the properties of
the operator P required in the following. Proofs can be found in [Pra04], although
we expect the result to be known to the experts.

Theorem 2.1 ([LM92, Ma91, Pra04]). Given any m ∈ L∞(Ω;Rd), there exists an
(up to an additive constant) unique magnetic potential u = Lm ∈ H1

ℓoc(R
d) such

that

∇u ∈ L2(Rd;Rd) and div(−∇u+m) = 0 in D′(Rd).(8)

The (extended) operator P : L2(Rd;Rd) → L2(Rd;Rd), m 7→ ∇(Lm) is an L2 or-
thogonal projection. The potential Lm can be represented as a convolution operator

Lm =
d∑

j=1

∂G

∂xj
∗mj ,(9)

where m = (m1, . . . ,md) is trivially extended [by zero] from Ω to R
d (so that the

convolution is formally well-defined). Here G : R
d\{0} → R is the Newtonian

kernel

G(x) :=





1

γ2
log |x|, d = 2,

1

(2− d)γd
|x|2−d, d > 2

(10)

for x 6= 0, where the constant γd := |S| > 0 denotes the surface measure of the unit
sphere (e.g., γ2 = 2π, γ3 = 4π). �

Since the energy functional E∗∗
0 from (4) is convex and (Gâteaux) differentiable,

the minima are equivalently characterized by the corresponding Euler-Lagrange
equations [DeS93]. Thus, problem (RP ) reads: find (λ,m) ∈ L2(Ω) × L2(Ω;Rd)
such that

Pm+Dφ∗∗(m) + λm = f a.e. in Ω,(11)

λ ≥ 0, |m| ≤ 1, λ(1− |m|) = 0 a.e. in Ω.(12)

Existence results for (RP ) can be found in [DeS93, Ped97]; in particular, in the
uniaxial case the solution to (RP ) is unique.

2.2. The Discretized Problem. Let T = {T1, . . . , TN} be a finite family of

pairwise disjoint non-empty open sets Tj which satisfy Ω =
⋃N

j=1 Tj . The space of

all T -piecewise constant functions is denoted by P0(T ); h ∈ P0(T ) is the mesh-size
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function, h|T := hT := diam(T ). For f ∈ L2(Ω), let fT ∈ P0(T ) be the T -piecewise
integral mean given by

fT |T :=
1

|T |

∫

T

f dx for all T ∈ T .

The discrete problem (RPε,h) now reads as follows: given a penalization parameter
ε ∈ P0(T ) with ε > 0, find mh ∈ P0(T )d such that

〈Pmh +Dφ∗∗(mh) + λhmh ; m̃h〉L2(Ω) = 〈f ; m̃h〉L2(Ω) for all m̃h ∈ P0(T )d,

(13)

where λh ∈ P0(T ) is defined by

λh = ε−1 (|mh| − 1)+
|mh|

(14)

with (·)+ := max{·, 0}.

Remark 3. For mh ∈ P0(T )d, the potential Pmh can be computed exactly, as
the associated bilinear form

a(mh, m̃h) := 〈Pmh ; m̃h〉L2(Ω) for all mh, m̃h ∈ P0(T )d(15)

can be evaluated by a closed form formula, cf. Theorem 5.1. The evaluation of Pmh

is, however, computationally demanding, as it typically leads to densely populated
stiffness matrices.

As for the continuous problem, we have existence of discrete solutions and unique-
ness in the uniaxial model case, cf. [CP04b]. Moreover, in that case the a priori
error analysis for (RPε,h) from [CP04b] suggests the choice ε = h for the penaliza-
tion parameter, as there holds

‖Pm− Pmh‖L2(Rd) + ‖Dφ∗∗(m)−Dφ∗∗(mh)‖L2(Ω)

+ ‖λm− λhmh‖L2(Ω) + ‖ελhmh‖L2(Ω)

≤ C
(
‖m−mT ‖L2(Ω) + ‖λm− (λm)T ‖L2(Ω) + ‖ελm‖L2(Ω)

)

with a generic constant C ≥ 0. For (λ,m) sufficiently smooth (e.g., m ∈ H1(Ω;Rd),
λm ∈ H1(Ω;Rd)), the above right-hand side turns out to be of order O(ε+ h).

The stiffness matrix A induced by the bilinear form a(·, ·) from (15) will in the

following be approximated by an appropriate H2-matrix Ã. Given (RPε,h), one

then obtains an approximate discrete model (R̃P ε,h) after replacing A by Ã and
defining the approximate bilinear form ã(·, ·) accordingly.

3. Multidimensional Interpolation of Integral Kernels

The following section contains some results on the multidimensional interpolation
of integral kernels. We restrict ourselves to one particular class of kernel functions
here, known as asymptotically smooth kernels.



APPLICATIONS OF H-MATRIX TECHNIQUES IN MICROMAGNETICS 5

3.1. Asymptotically Smooth Kernels. A kernel function

κ : Rd × R
d → R, (x, y) 7→ κ(x, y)(16)

is said to be asymptotically smooth if there exist constants Casm and casm such that

|∂α
x ∂

β
y κ(x, y)| ≤ Casm(casm|x− y|)−|α|−|β|−s(α+ β)!(17)

for all multi-indices α, β ∈ N
d
0 with |α|+ |β| ≥ 1 and some singularity order s ∈ R,

where x, y ∈ R
d with x 6= y.

Example 3.1. For the Newtonian kernel G defined in (10), κ(x, y) := G(x− y) is

asymptotically smooth for any d ≥ 2, with Casm = γ−1
2 and Casm =

(
(2 − d)γd

)−1

for d = 2 and d ≥ 3, respectively, and casm = 1, see [Gra01].

Remark 4. Note that the derivatives of an asymptotically smooth kernel κ also

are asymptotically smooth: given κ̃ := ∂α̃
x ∂

β̃
y κ, (17) holds with s̃ = s + |α̃| + |β̃|,

c̃asm = casm + ε for ε > 0 arbitrary, and some C̃asm depending on Casm and ε. This
is a consequence of

(
(α+ β) + (α̃+ β̃)

)
! ≤ Casm c|α|+|β|

asm (α+ β)!

with an (|α̃|+ |β̃|)-dependent constant casm. For every choice of casm > 1, there is
a Casm > 0 (depending on casm) such that the above inequality holds. One then

sets C̃asm := CasmCasm and c̃asm := casmcasm, respectively.

3.2. Interpolation Operators in One Dimension. For m ∈ N0, let the space
of m-th order polynomials in one spatial variable be denoted by Pm, and consider
the interpolation operator

Im : C[−1, 1] → Pm, u 7→
m∑

j=0

u(tj)Lj with Lj(t) =

m∏

k=0
k 6=j

t− tk
tj − tk

(18)

acting on the so-called reference element [−1, 1]. Here
(
Lj(t)

)m
j=0

are the Lagrange

polynomials corresponding to the interpolation points (tj)
m
j=0. Note that Im is a

projection, i.e., linear with I2
m = Im.

For m ∈ N0, the Lebesgue constant Λm ∈ R is defined as the operator norm of Im,

Λm := sup
u∈C[−1,1]

u6=0

‖Imu‖∞,[−1,1]

‖u‖∞,[−1,1]
.(19)

Clearly, we have Λm ≥ 1. Moreover, we assume that there are constants λ,Cλ ∈ R
+

such that

Λm ≤ Cλ(m+ 1)λ.(20)

For Chebyshev interpolation, where tj = cos
(
(2j + 1)π/(2(m + 1))

)
, this estimate

holds with λ = 1 = Cλ, cf. [Riv84].

For an arbitrary compact interval I := [a, b] ⊂ R, we define the affine transformation

ΦI : [−1, 1] → I, t 7→ 1

2

(
(a+ b) + t(b− a)

)
.

The transformed interpolation operator II
m is then given by

II
m : C[a, b] → Pm, u 7→

(
Im(u ◦ ΦI)

)
◦ Φ−1

I .
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Obviously, the projection property as well as (20) now carry over from Im to II
m.

3.3. Tensor Interpolation Operators. For a family of closed intervals Ij :=
[aj , bj ] ⊂ R, j ∈ {1, . . . , 2d}, define the axially parallel box B ⊂ R

2d by B :=∏2d
j=1 Ij . Given a family

(
IIj
m

)2d
j=0

of interpolation operators on (Ij)
2d
j=0, the m-th

order tensor product interpolation operator IB
m on B is then defined as

IB
m := II1

m ⊗ · · · ⊗ II2d
m .

In analogy to II
m, IB

m is a projection from C(B) to

Qm := span
{
p1 ⊗ · · · ⊗ p2d

∣∣ pj ∈ Pm, j ∈ {1, . . . , 2d}
}
.(21)

We require the following result on the interpolation error of IB
m adapted from [BG04,

BLM04]:

Theorem 3.2. Let u ∈ C∞(B) such that there are constants Cu, γu ∈ R
+ satisfying

‖∂n
j u‖∞,B ≤ Cuγ

n
un!(22)

for all j ∈ {1, . . . , 2d} and n ∈ N0. Then, we have

‖u− IB
mu‖∞,B ≤ 16edCuΛ

2d
m

(
1 + γudiam(B)

)
(m+ 1)

(
1 +

2

γudiam(B)

)−(m+1)

.

(23)

Proof. The proof is as in [BG04, Theorem 3.2], with the d there replaced by 2d. �

3.4. Local Error Analysis for Asymptotically Smooth Kernels. We now
apply interpolation to obtain an approximate degenerate kernel κ̃ := IB

mκ instead
of the given asymptotically smooth integral kernel κ. Let Bσ, Bτ ⊂ R

d be compact
axially parallel boxes with positive Euclidean distance dist(Bσ, Bτ ) > 0:

Lemma 3.3. An asymptotically smooth kernel κ : Rd × R
d → R satisfies (22) on

B := Bσ ×Bτ , with constants

Cκ = max

{
‖κ‖L∞(Bσ×Bτ ),

Casm(
casmdist(Bσ, Bτ )

)s

}
and γκ =

1

casmdist(Bσ, Bτ )
.

(24)

Provided diam(Bσ ×Bτ ) ≤ η dist(Bσ, Bτ ) with η > 0, there holds in particular

‖κ− I(σ,τ)
m κ‖L∞(Bσ×Bτ ) ≤ c1c2Cκ

(
1 +

2casm
η

)−(m+1)

(25)

with I(σ,τ)
m := IB

m, a numerical constant c1 = 16ed(1 + η/casm), and a constant
c2 = Λ2d

m (m+ 1) with only polynomial increase in m.

Remark 5. Note that the constant Cκ > 0 behaves like dist(Bσ, Bτ )
−s for the

kernels we are interested in, such as κ(x, y) = log |x− y| resp. κ(x, y) = |x− y|−s.

Proof of Lemma 3.3. Direct computation shows that (22) is valid, and Theorem 3.2
yields

‖κ− IB
mκ‖L∞(B) ≤ 16ed

(
1 + γκdiam(B)

)
Λ2d
m (m+ 1)Cκ

(
1 +

2

γκdiam(B)

)−(m+1)

.

Combining this with γκdiam(B) ≤ η/casm, we obtain (25). �
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The proof of Theorem 3.2 is only based on the stability constant Λm defined in (19).
The advantage is that the resulting estimate can be applied to a fairly wide range of
interpolation operators. If one restricts oneself to tensor Chebyshev interpolation
– as we will do in the numerical experiments – one can do better by using the
following error estimate for tensor Chebyshev polynomials adapted from [BH02]:

Lemma 3.4. Provided diam(Bσ ×Bτ ) ≤ η dist(Bσ, Bτ ) with η > 0, an asymptoti-
cally smooth kernel κ on B := Bσ ×Bτ ⊂ R

2d satisfies

‖κ− I(σ,τ)
m κ‖∞,B ≤ dCasmc

−s
asm Λ2d−1

m dist(Bσ, Bτ )
−s 4−mc−(m+1)

asm ηm+1.(26)

Proof. The proof is along the lines of [BH02]. �

Remark 6. Lemma 3.3 ensures (asymptotically) exponential convergence with re-
spect tom irrespective of the choice of η > 0. Nevertheless, the constant c1 obtained
in Lemma 3.3 is too pessimistic, in contrast to the reasonably good approximation
results observed for small m, as well, cf. Section 6. From Lemma 3.4 we obtain
exponential convergence provided at least 4casm > η, with the highly improved
constants c1 = dCasmc

−s
asm ≪ 16ed(1 + η/casm) and c2 = Λ2d−1

m ≪ Λ2d
m (m+ 1).

In the following, we require additional error estimates for tensor Chebyshev polyno-
mials, in particular for the norms of the first and second derivatives of the respective
interpolation errors. For the proofs, we make use of the following well-known one-
dimensional error estimate for Chebyshev interpolation from [BH02],

‖u− IIj
mu‖∞,Ij ≤ 4−m

2(m+ 1)!
|Ij |m+1 ‖u(m+1)‖∞,Ij for u ∈ Cm+1(Ij),(27)

as well as of a result on the first derivative of u−Imu in one dimension taken from
the proof of [BS01, Theorem 3.3.1],

‖(u− Imu)′‖∞,[−1,1] ≤
(

1

(r − 1)!
+

1

r!
C(m)

)
‖u(r)‖∞,[−1,1] for u ∈ Cr[−1, 1],

(28)

with 1 ≤ r ≤ m+1 and C(m) a constant which may be estimated by C(m) ≤ Λmm2,
cf. [BS01]. Affine transformation then yields

‖(u− Imu)′‖∞,Ij ≤ 2−(r−1)|Ij |r−1

(
1

(r − 1)!
+

1

r!
Λmm2

)
‖u(r)‖∞,Ij(29)

for Ij := [aj , bj ] ⊂ R.

Furthermore, we need an estimate for the norms of the derivatives of algebraic
polynomials known as Markov’s Theorem [DL93, Theorem 1.4]:

‖p′‖∞,Ij ≤ m22|Ij |−1‖p‖∞,Ij for p ∈ Pm.(30)

This estimate cannot be improved; in particular, it is sharp for the Chebyshev
polynomials.

To begin with, we state a result concerning the first derivatives of κ− I(σ,τ)
m κ.

Lemma 3.5. Provided diam(Bσ ×Bτ ) ≤ η dist(Bσ, Bτ ) with η > 0, an asymptoti-
cally smooth κ ∈ Cm+2(B) on B := Bσ ×Bτ satisfies

‖∂α(κ− I(σ,τ)
m κ)‖∞,B ≤ c1c22

−mc−(m+1)
asm ηm+1 for 1 ≤ α ≤ 2d,(31)
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where c1 is a numerical constant depending on d, B, and κ and c2 = (Λmm2+m+1)
Λ2d−1
m grows polynomially in m.

Proof. As in [BG04, BH02], we write

‖∂α(κ− I(σ,τ)
m κ)‖∞,B ≤

2d∑

j=1

∥∥∥∥∂α
( j−1⊗

k=1

IIk
m ⊗ (Id− IIj

m )⊗
2d⊗

k=j+1

Id

)
κ

︸ ︷︷ ︸
=:Jjκ

∥∥∥∥
∞,B

;(32)

to obtain estimates for ‖∂αJjκ‖∞,B , we have to consider three cases.

• First, for j < α, an explicit computation gives ∂αJjκ = Jj(∂ακ), whence

‖∂αJjκ‖∞,B ≤ Λj−1
m

∥∥∥∥
( j−1⊗

k=1

Id⊗ (Id− IIj
m )⊗

2d⊗

k=j+1

Id

)
∂ακ

∥∥∥∥
∞,B

≤ Λj−1
m

4−m

2(m+ 1)!
|Ij |m+1‖∂m+1

j ∂ακ‖∞,B ;

here we have used (19) on IIk
m , k < j, and applied the estimate in (27) to Ij . By

exploiting the asymptotic smoothness of κ to estimate ‖∂m+1
j ∂ακ‖∞,B ≤ Casm

(
casm

dist(Bσ, Bτ )
)−(m+2+s)

(m + 2)!, |Ij | ≤ diam(Bσ × Bτ ), and diam(Bσ × Bτ ) ≤ η
dist(Bσ, Bτ ), we get

‖∂αJjκ‖∞,B ≤ Casmc
−(s+1)
asm dist(Bσ, Bτ )

−(s+1)c−(m+1)
asm ηm+1m+ 2

2
4−mΛj−1

m .(33)

• Second, for j = α, it follows from (29) with r = m+ 1 that

‖∂αJακ‖∞,B ≤ Λα−1
m

∥∥∥∥
( α−1⊗

k=1

Id⊗ ∂α(Id− IIα
m )⊗

2d⊗

k=α+1

Id

)
κ

∥∥∥∥
∞,B

≤ Λα−1
m 2−m|Iα|m

(
1

m!
+

m2

(m+ 1)!
Λm

)
‖∂m+1

α κ‖∞,B .

As before, we now obtain

(34) ‖∂αJακ‖∞,B ≤ Casmc
−s
asmdist(Bσ, Bτ )

−sc−(m+1)
asm ηm+1

× (Λmm2 +m+ 1)2−m|Iα|−1Λα−1
m .

• Third, the case j > α is treated by applying Markov’s Theorem (30) to IIα
m and

by using the estimate in (27), whence

‖∂αJjκ‖∞,B ≤ Λj−1
m m22|Iα|−1

∥∥∥∥
( j−1⊗

k=1

Id⊗ (Id− IIj
m )⊗

2d⊗

k=j+1

Id

)
κ

∥∥∥∥
∞,B

≤ Λj−1
m m2 4−m

(m+ 1)!
|Iα|−1|Ij |m+1‖∂m+1

j κ‖∞,B

and

‖∂αJjκ‖∞,B ≤ Casmc
−s
asmdist(Bσ, Bτ )

−sc−(m+1)
asm ηm+1m24−m|Iα|−1Λj−1

m .(35)
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Collecting the estimates in (33), (34), and (35), we finally have

‖∂α(κ− I(σ,τ)
m κ)‖∞,B

≤ Casmdist(Bσ, Bτ )
−sc−(m+1)

asm ηm+1c−s
asm

(
c−1
asm

m+ 2

2
4−mdist(Bσ, Bτ )

−1
∑

j<α

Λj−1
m

+ (Λmm2 +m+ 1)2−m|Iα|−1Λα−1
m +m24−m|Iα|−1

∑

j>α

Λj−1
m

)

≤ c−(m+1)
asm ηm+1(Λmm2 +m+ 1)2−mΛ2d−1

m Casmc
−s
asmdist(Bσ, Bτ )

−s

×
(
(α− 1)c−1

asmdist(Bσ, Bτ )
−1 +

(
2d− (α− 1)

)(
min2dj=1|Ij |

)−1
)
,

which gives the desired result. �

For the second derivatives of κ− I(σ,τ)
m κ, we obtain in a similar fashion:

Lemma 3.6. Under the assumptions of Lemma 3.5, we have

‖∂α∂β(κ− I(σ,τ)
m κ)‖∞,B ≤ c1c22

−(m−1)c−(m+1)
asm ηm+1 for 1 ≤ α, β ≤ 2d,(36)

with a constant c1 depending on d, B, and κ and c2 = (Λmm2 +m+ 1)m2Λ2d−1
m .

Proof. Without loss of generality, we assume 1 ≤ α ≤ β ≤ 2d throughout; similar
reasoning as in the proof of Lemma 3.5, with Jjκ defined as in (32), then implies
the following cases:

• j < α ≤ β: with ∂α∂βJjκ = Jj(∂α∂βκ), one has as in (33)

‖∂α∂βJjκ‖∞,B ≤ Λj−1
m

4−m

2(m+ 1)!
|Ij |m+1‖∂m+1

j ∂α∂βκ‖∞,B

≤ Λj−1
m Casmc

−(s+2)
asm dist(Bσ, Bτ )

−(s+2)c−(m+1)
asm ηm+14−m (m+ 2)(m+ 3)

2
;

• j = α < β: from ∂α∂βJακ = ∂αJα(∂βκ) and (29) for r = m+ 1 it follows that

‖∂α∂βJακ‖∞,B ≤ Λα−1
m 2−m|Iα|m

(
1

m!
+

m2

(m+ 1)!
Λm

)
‖∂m+1

j ∂βκ‖∞,B

≤ Λα−1
m Casmc

−(s+1)
asm dist(Bσ, Bτ )

−(s+1)|Iα|−1c−(m+1)
asm ηm+12−m

× (m+ 2)(1 +m+m2Λm),

cf. (34);
• α < j < β: as ∂α∂βJjκ = ∂αJj(∂βκ), we obtain with (30)

‖∂α∂βJjκ‖∞,B ≤ Λj−1
m m22|Iα|−1 4−m

2(m+ 1)!
|Ij |m+1‖∂m+1

j ∂βκ‖∞,B

≤ Λj−1
m Casmc

−(s+1)
asm dist(Bσ, Bτ )

−(s+1)|Iα|−1c−(m+1)
asm ηm+14−mm2(m+ 2),

see (35);
• j = α = β: to obtain an estimate for ∂2

jJjκ, we proceed as in [BS01, Theorem

3.3.1]: given u ∈ Cm+1[−1, 1] and 1 ≤ r ≤ m+1, let Rr be the remainder term of the
Taylor series expansion of degree r−1 of u about t = 0. Using u−Imu = Rr−ImRr,
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‖Rr‖∞,[−1,1] ≤ 1/r!‖u(r)‖∞,[−1,1], and ‖R′′
r‖∞,[−1,1] ≤ 1/(r − 2)!‖u(r)‖∞,[−1,1], we

have by the triangle inequality and with (30)

‖(u− Imu)′′‖∞,[−1,1] ≤ ‖R′′
r‖∞,[−1,1] + ‖(ImRr)

′′‖∞,[−1,1]

≤ 1

(r − 2)!
‖u(r)‖∞,[−1,1] +m2(m− 1)2Λm

1

r!
‖u(r)‖∞,[−1,1].

By affine transformation it follows for u ∈ Cm+1(Iα) and r = m+ 1 that

‖(u− Imu)′′‖∞,Iα

≤ 2−(m−1)|Iα|m−1

(
1

(m− 1)!
+

1

(m+ 1)!
(m− 1)2m2Λm

)
‖u(m+1)‖∞,Iα ,

whence

‖∂2
αJακ‖∞,B ≤ Λα−1

m

∥∥∥∥
( α−1⊗

k=1

Id⊗ ∂2
α(Id− IIα

m )⊗
2d⊗

k=α+1

Id

)
κ

∥∥∥∥
∞,B

≤ Λα−1
m 2−(m−1)|Iα|m−1

(
1

(m− 1)!
+

1

(m+ 1)!
(m− 1)2m2Λm

)
‖∂m+1

α κ‖∞,B

≤ Λα−1
m Casmc

−s
asmdist(Bσ, Bτ )

−s|Iα|−2c−(m+1)
asm ηm+12−(m−1)

×
(
m(m+ 1) + (m− 1)2m2Λm

)
;

• α < j = β: with ∂α∂βJβκ = ∂α(∂βJβκ), (29) and (30) give

‖∂α∂βJβκ‖∞,B ≤ Λβ−1
m m22|Iα|−12−m|Iβ |m

(
1

m!
+

m2

(m+ 1)!
Λm

)
‖∂m+1

β κ‖∞,B

≤ Λβ−1
m Casmc

−s
asmdist(Bσ, Bτ )

−s|Iα|−1|Iβ |−1c−(m+1)
asm ηm+12−(m−1)

×m2
(
1 +m+m2Λm

)
;

• α ≤ β < j: applying Markov’s Theorem (30) twice yields

‖∂α∂βJjκ‖∞,B ≤ Λj−1
m m22|Iα|−1m22|Iβ |−1 4−m

2(m+ 1)!
|Ij |m+1‖∂m+1

j ∂ακ‖∞,B

≤ Λj−1
m Casmc

−s
asmdist(Bσ, Bτ )

−s|Iα|−1|Iβ |−1c−(m+1)
asm ηm+14−(m−1)m

4

2
.

Let us first consider α < β: by collecting the above estimates, we obtain as in
Lemma 3.5

‖∂α∂β(κ− I(σ,τ)
m κ)‖∞,B

≤ Casmc
−s
asmdist(Bσ, Bτ )

−s(Λmm2 +m+ 1)m22−(m−1)Λ2d−1
m c−(m+1)

asm ηm+1

×
(
(α− 1)c−2

asmdist(Bσ, Bτ )
−2 + (β − α)c−1

asmdist(Bσ, Bτ )
−1

(
min2dj=1|Ij |

)−1

+
(
2d− (β − 1)

)(
min2dj=1|Ij |

)−2
)
,

from which the result follows. An analogous computation for α = β shows that the
estimate then still holds, with the same constants c1 and c2. This concludes the
proof. �
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Remark 7. Lemmas 3.5 and 3.6 ensure exponential convergence with respect to m
provided at least 2casm > η. For κ the Newtonian kernel G, this implies exponential
convergence for η ∈ (0, 2), cf. Remark 4.

4. H2-Matrix Techniques

In this section, we motivate the concept of hierarchical matrices and give the cor-
responding definitions.

4.1. Motivation. We consider a bilinear form a(·, ·) on L2(Ω) given by a double
integration with an asymptotically smooth kernel κ,

a(u, v) :=

∫

Ω

∫

Ω

u(x)κ(x, y)v(y) dy dx for u, v ∈ L2(Ω),(37)

with Ω ⊂ R
d a bounded domain. In the following we require a partition T of Ω and

a block partitioning P of T × T . For η > 0 fixed, a block (σ, τ) ∈ P is then called
admissible provided

diam(Bσ ×Bτ ) ≤ η dist(Bσ, Bτ ),(38)

where Bσ and Bτ denote axially parallel boxes in R
d of minimal size containing

∪σ and ∪τ , respectively; otherwise (σ, τ) is called inadmissible. Here ∪σ :=
{
x ∈

T
∣∣T ∈ σ ⊆ T

}
(resp. ∪τ :=

{
y ∈ T

∣∣T ∈ τ ⊆ T
}
) denotes the union of all

elements T ∈ T contained in σ (resp. in τ). P is thus split into two subsets Pfar

and Pnear: the subset of all admissible blocks is called far field and denoted by Pfar;
the inadmissible blocks are collected in the near field Pnear := P\Pfar.

The approximate bilinear form ã(·, ·) is obtained by replacing the kernel function
on admissible blocks by an approximate but degenerate kernel obtained by inter-
polation. More precisely,

(39) ã(u, v) :=
∑

(σ,τ)∈Pnear

∫

∪σ

∫

∪τ

u(x)κ(x, y)v(y) dy dx

+
∑

(σ,τ)∈Pfar

∫

∪σ

∫

∪τ

u(x)
(
I(σ,τ)
m κ(x, y)

)
v(y) dy dx,

where I(σ,τ)
m denotes the tensor interpolation operator with respect to the bounding

box B := Bσ ×Bτ .

For each τ ⊆ T with corresponding bounding box Bτ , define a family (xτ
j )

Mτ

j=0

of interpolation points plus the associated tensor Lagrange polynomials (Lτ
j )

Mτ

j=0,
where Mτ ∈ N. Given

I(σ,τ)
m κ(x, y) =

Mσ∑

m1=0

Mτ∑

m2=0

κ
(
xσ
m1

, xτ
m2

)
Lσ
m1

(x)Lτ
m2

(y) for (x, y) ∈ ∪σ × ∪τ,

the second term from (39) can then be written as

∑

(σ,τ)∈Pfar

Mσ∑

m1=0

Mτ∑

m2=0

κ
(
xσ
m1

, xτ
m2

)
︸ ︷︷ ︸

=:Sστ
m1m2

∫

∪σ

u(x)Lσ
m1

(x) dx

︸ ︷︷ ︸
=:V σ

m1
(u)

∫

∪τ

v(y)Lτ
m2

(y) dy

︸ ︷︷ ︸
=:V τ

m2
(v)

.(40)
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The advantage of this new representation becomes obvious if we discretize a(·, ·):
consider the basis {ϕ1, . . . , ϕN} of the space P0(T ) of piecewise constant functions
on T given by ϕj := χTj

, where χTj
is the characteristic function on Tj ∈ T and

N = |T |, and define A ∈ R
N×N by Ajk := a(ϕj , ϕk) and the approximate matrix

Ã ∈ R
N×N by Ãjk := ã(ϕj , ϕk) for all 1 ≤ j, k ≤ N . On inadmissible blocks

(σ, τ) ∈ Pnear, we then simply have Ã|σ×τ = A|σ×τ , whereas for (σ, τ) ∈ Pfar, Ã is
given by

Ã|σ×τ = V σSστV τ T ≈ A|σ×τ ,(41)

with V σ
jm1

:= V σ
m1

(ϕj) and V τ
km2

:= V τ
m2

(ϕk) as defined in (40).

4.2. Block Partitioning. A simple method to find a hierarchical partition P of
T × T is to first construct a cluster tree from T by binary space partitioning: one
starts with the root cluster containing all T ∈ T , splits it into two son clusters
and repeats the procedure recursively until each cluster contains less than a given
number of elements Cℓf . Geometrically speaking, for every T ∈ T , one chooses a
coordinate axis and splits the set along this axis.

One can then use the admissibility condition (38) in combination with the cluster
tree structure to construct P: starting with T × T , one splits each pair of clusters
as long as it is not admissible. This gives a P satisfying T × T =

⋃
(σ,τ)∈P

σ × τ .

Clearly, a pair (σ, τ) can only appear in P if it is admissible or if either σ or τ is a
leaf. The above procedure can easily be formalized, see e.g. [BGH03, BH02, HKS00]
for formal definitions and algorithms.

4.3. H-Matrices vs. H2-Matrices. Based on the concepts of cluster tree and
block partitioning, the matrix approximation approach outlined in Section 4.1 can
be generalized by introducing a class of data-sparse matrices, the so-called H-
matrices. Given a block partitioning P of T × T and some k ∈ N, a matrix A ∈
R

N×N is called H-matrix of rank k provided rank(A|σ×τ ) ≤ k for each (σ, τ) ∈ P.
Moreover, if a factorization of the form (41) holds for a family V = (V τ )τ⊆T and
some multiplication matrices Sστ , A is called uniform H-matrix with respect to the
cluster basis V , cf. [BGH03, HKS00].

Additional structure can be gained by considering uniform H-matrices for which
the corresponding cluster bases are nested: if the space Qm defined in (21) is used
for interpolation on all clusters, polynomials corresponding to father clusters can
be expressed exactly in terms of polynomials corresponding to son clusters. For
τ ⊆ T and τ ′ ∈ sons(τ), we have

Lτ
j (x) =

M∑

m=0

Lτ
j

(
xτ ′

m

)
Lτ ′

m(x).(42)

Defining the transfer matrix Bτ ′τ ∈ R
M×M by Bτ ′τ

mj := Lτ
j

(
xτ ′

m

)
, we obtain

(43) V τ
ij =

∫

∪τ

χTj
Lτ
j (x)dx =

∑

τ ′∈sons(τ)

M∑

m=0

Lτ
j

(
xτ ′

m

) ∫

∪τ ′

χTj
Lτ ′

m(x)dx

=
∑

τ ′∈sons(τ)

M∑

m=0

Bτ ′τ
mj V

τ ′

im
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for all i ∈ τ ′ ⊂ τ , i.e., V τ |τ ′ = V τ ′

Bτ ′τ . A is called H2-matrix with respect to V if
it is a uniform H-matrix with respect to V and if V is nested.

Remark 8. For H2-matrices, one only has to store the multiplication matrices Sστ

for all admissible blocks (σ, τ) ∈ Pfar, the cluster matrices V τ for all leaves τ ⊆ T ,

the transfer matrices Bτ ′τ for all father-son pairs, and A|σ×τ on all non-admissible
blocks (σ, τ) ∈ Pnear.

Remark 9. To evaluate (39), fast and efficient algorithms for matrix-vector multi-
plication are required. We assume the underlying partitioning P to be sparse in the

sense of [Gra01], with some sparsity constant Csp. Given an H2-matrix Ã ∈ R
N×N

and x, y ∈ R
N , it can then be shown that the computation of y = Ãx needs only

O(Nmd) operations to complete. Similarly, both the number of operations required
to build an H2-matrix approximation and the amount of storage needed to store
it are of order O(Nmd), cf. [BGH03, Gie01, HKS00]. Note that Csp enters all
the above complexity estimates; for Csp → ∞, the complexity of the problem will
become unbounded, as well. Estimates on Csp can be found in [GH03].

4.4. Global Error Analysis for the Approximate Bilinear Form. By defi-
nition of the admissibility condition (38), one can apply the approximation results
of Section 3.4 on each admissible block (σ, τ) ∈ Pfar. Indeed, given some constant
c3, Lemma 3.4 shows that we can choose an approximation order m ∈ N so that

‖κ− I(σ,τ)
m κ‖L∞(Bσ×Bτ ) ≤ c3

for all (σ, τ) ∈ Pfar.

Theorem 4.1. Under the above assumptions, we have

|a(u, v)− ã(u, v)| ≤ c3‖u‖L1(Ω)‖v‖L1(Ω) ≤ c3|Ω|‖u‖L2(Ω)‖v‖L2(Ω)(44)

for all u, v ∈ L2(Ω).

Proof. For almost all (x, y) ∈ Ω×Ω, we define an integral kernel κ̃(x, y) as follows.
Let S :=

⋃{
∂T

∣∣T ∈ T
}
denote the skeleton of the partition. Note that S ⊂ R

d

is a set of measure zero. For x, y ∈ Ω\S, there are unique elements Tx, Ty ∈ T
satisfying x ∈ Tx and y ∈ Ty, respectively. Since P is a partition of T × T , there is
a unique block (σ, τ) ∈ P with (Tx, Ty) ∈ σ × τ . Consequently, we may define

κ̃(x, y) :=

{
κ(x, y) if (σ, τ) is not admissible,

I(σ,τ)
m κ(x, y) else.

Since a(·, ·) and ã(·, ·) differ only on the far-field blocks, we have

|a(u, v)− ã(u, v)| =
∣∣∣∣
∫

Ω

∫

Ω

u(x)
(
κ(x, y)− κ̃(x, y)

)
v(y) dy dx

∣∣∣∣ ,

and a Hölder inequality yields

|a(u, v)− ã(u, v)| ≤ ‖κ− κ̃‖L∞(Ω×Ω)‖u‖L1(Ω)‖v‖L1(Ω),

since u(x) and v(y) decouple on Ω×Ω. Using ‖u‖L1(Ω) ≤ |Ω|1/2‖u‖L2(Ω), we obtain
the desired estimate. �
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4.5. Global Error Analysis for the Corresponding Matrix. Let Uh ≤ L2(Ω)
be a finite-dimensional space, and define the stiffness matrix A ∈ R

N×N and its H2-

approximation Ã ∈ R
N×N by Ajk := a(uj , uk) and Ãjk := ã(uj , uk), respectively,

for a fixed basis {u1, . . . , uN} of Uh. Then, there holds

Corollary 4.2. The approximation error for the stiffness matrix A is bounded by

‖A− Ã‖F ≤ Nc3
(
maxNj=1‖uj‖L1(Ω)

)2
.(45)

In particular, the error decreases exponentially with the approximation order m.

Provided A is a regular matrix, Ã also is regular for large approximation orders m.

Proof. The first assertion follows by applying Theorem 4.1 to each entry of A.
Regularity is immediate, as the regular matrices GL(N) form an open subset of
R

N×N . �

5. Galerkin Discretization of the Potential Equation

In this section we provide two differentH2-matrix approaches to obtain a reasonable
data sparse approximation of the stiffness matrix

A ∈ R
dN×dN with Ajk := a(ϕj , ϕk)(46)

for a fixed basis {ϕ1, . . . , ϕdN} of P0(T )d, where the bilinear form a(·, ·) is defined
as in (15). We recall a result from [Pra04].

Theorem 5.1. For bounded Lipschitz domains ω, ω̃ ⊂ R
d and vectors m, m̃ ∈ R

d,
we have

a(χωm, χω̃m̃) = −
∫

∂ω

∫

∂ω̃

G(x− y)
(
ννν(x) ·m

)(
ν̃νν(y) · m̃

)
dsy dsx,(47)

where ννν and ν̃νν denote the outer normal vectors on ∂ω and ∂ω̃, respectively. Fur-
thermore, we have the symmetry properties

a(χωm, χω̃m̃) = a(χω̃m̃, χωm) = a(χωm̃, χω̃m),(48)

and in the case dist(ω, ω̃) > 0 there holds

a(χωm, χω̃m̃) =

∫

ω

∫

ω̃

m ·HG(x− y)m̃ dy dx(49)

with the Hessian HG of the Newtonian kernel G. �

Now, a reasonable choice for a basis of P0(T )d is

ϕj := χTj
e1, ϕj+N := χTj

e2 etc. for 1 ≤ j ≤ N,(50)

as is shown in the following. This basis gives rise to the definition of the matrices

Aαβ ∈ R
N×N
sym for fixed 1 ≤ α, β ≤ d, Aαβ

jk := a(χTj
eα, χTk

eβ),(51)

where the symmetry of Aαβ (i.e., an additional symmetry of A) follows from (48).
Note that – again by equation (48) – we have Aαβ = Aβα. Therefore, A is a
symmetric d× d block matrix with symmetric blocks Aαβ of dimension N ×N ,

A =

(
A11 A12

A12 A22

)
for d = 2 and A =




A11 A12 A13

A12 A22 A23

A13 A23 A33


 for d = 3,

(52)
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respectively. The idea is to approximate each block Aαβ by an appropriate H2-
matrix.

5.1. Approximation of A on Far Field Blocks via (49). A direct H2-matrix
approach stems from the far field representation (49) for which the Hessian (i.e.,
the second derivatives) of the Newtonian kernel enters,

∂2G

∂xα∂xβ
(x) =

1

γd

δαβ |x|2 − dxαxβ

|x|d+2
for x ∈ R

d\{0},(53)

where 1 ≤ α, β ≤ d and δαβ denotes the Kronecker delta. Obviously, these kernels
are asymptotically smooth with singularity order s = −d, cf. Remark 4. Let P

be a block partitioning with respect to the given triangulation T . To abbreviate
notation, let νννj denote the outer normal vector on the boundary ∂Tj of an element

Tj , and let mj
h := mh|Tj

∈ R
d be a discrete magnetization mh ∈ P0(T )d. In

analogy to the previous section and according to (47) and (49), the bilinear form
a(·, ·) on P0(T )d reads

(54) a(mh, m̃h) = −
N∑

j,k=1

∫

∂Tj

∫

∂Tk

G(x− y)
(
νννj(x) ·mj

h

)(
νννk(y) · m̃k

h

)
dsy dsx

= −
∑

(σ,τ)∈Pnear

∑

Tj∈σ

∑

Tk∈τ

∫

∂Tj

∫

∂Tk

G(x− y)
(
νννj(x) ·mj

h

)(
νννk(y) · m̃k

h

)
dsy dsx

+
∑

(σ,τ)∈Pfar

∫

∪σ

∫

∪τ

mh(x) ·HG(x− y) m̃h(y) dy dx.

As in the previous section, we obtain the approximate bilinear form by replacing the

exact kernel HG on far field blocks by tensor interpolation I(σ,τ)
m HG which is now

understood coefficient-wise [since we are dealing with a matrix kernel HG(x− y) ∈
R

d×d
sym],

ã(mh, m̃h)

:= −
∑

(σ,τ)∈Pnear

∑

Tj∈σ

∑

Tk∈τ

∫

∂Tj

∫

∂Tk

G(x− y)
(
νννj(x) ·mj

h

)(
νννk(y) · m̃k

h

)
dsy dsx

+
∑

(σ,τ)∈Pfar

∫

∪σ

∫

∪τ

mh(x) ·
(
I(σ,τ)
m HG(x− y)

)
m̃h(y) dy dx.

The error analysis is completely straightforward following the arguments of Sec-
tion 4.4. We denote by καβ , 1 ≤ α, β ≤ d, the second derivatives of the Newtonian
kernel, cf. (53). As before, we assume that the approximation degree m ∈ N is
large enough so that

‖καβ − I(σ,τ)
m καβ‖L∞(Bσ×Bτ ) ≤ c3,

with a constant c3 which is independent of (σ, τ) ∈ Pfar.

Theorem 5.2. Under the above assumptions, we have

|a(mh, m̃h)− ã(mh, m̃h)| ≤ c3d|Ω|‖mh‖L2(Ω)‖m̃h‖L2(Ω)(55)

for all mh, m̃h ∈ P0(T )d.
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Proof. With κ(x, y) := HG(x− y) and κ̃ as in the proof of Theorem 4.1, we obtain

|a(mh, m̃h)− ã(mh, m̃h)| ≤ |Ω|‖κ− κ̃‖L∞(Ω×Ω;Rd×d)‖mh‖L2(Ω;Rd)‖m̃h‖L2(Ω;Rd),

where we consider the usual (Euclidean) operator norm ‖ · ‖ on R
d×d. Recalling

that the Frobenius norm satisfies ‖A‖ ≤ ‖A‖F :=
(∑d

j,k=1 A
2
jk

)1/2
, it follows that

‖κ(x, y)− κ̃(x, y)‖ ≤ ‖κ(x, y)− κ̃(x, y)‖F ≤ dc3.

This concludes the proof. �

Finally, we explicitly state the approximation Ãαβ ∈ R
N×N to Aαβ to clarify

what has to be implemented. Recall that Ãαβ ∈ R
N×N is defined by Ãαβ

jk =

ã(χTj
eα, χTk

eβ). The computation of Ãαβ is performed separately on the admissi-
ble and the inadmissible blocks of P.

First, let (σ, τ) ∈ Pfar be admissible; given the degenerate kernel

I(σ,τ)
m καβ(x, y) =

M∑

m1=0

M∑

m2=0

καβ

(
xσ
m1

, xτ
m2

)
Lσ
m1

(x)Lτ
m2

(y) for (x, y) ∈ ∪σ × ∪τ,

(56)

where M = md and Lσ
m1

and Lτ
m2

are the appropriate tensor Lagrange polynomials,
this implies

Ãαβ
jk =

∫

Tj

∫

Tk

κ̃αβ(x, y) dy dx =

M∑

m1=0

M∑

m2=0

καβ

(
xσ
m1

, xτ
m2

)
︸ ︷︷ ︸

=:Sαβστ
m1m2

×
∫

Tj

Lσ
m1

(x) dx

︸ ︷︷ ︸
=:V σ

jm1

∫

Tk

Lτ
m2

(y) dy

︸ ︷︷ ︸
=:V τ

km2

for Tj ∈ σ and Tk ∈ τ . With the matrices V σ ∈ R
|σ|×M , V τ ∈ R

|τ |×M , and
Sαβστ ∈ R

M×M , the submatrix Aαβ |σ×τ of Aαβ can be computed approximately
by a matrix product

Aαβ |σ×τ ≈ V σSαβστV τ T =: Ãαβ |σ×τ .(57)

Second, for an inadmissible block (σ, τ) ∈ Pnear, we have Ãαβ |σ×τ = a(χTj
eα,

χTk
eβ) = Aαβ |σ×τ ; these entries are computed by (47). Double boundary integrals

as in (47) occur in the context of boundary integral methods with piecewise constant
ansatz and test functions. For simple geometries of the elements, analytic formulae
are known, cf. [Hac02, Mai99, Mai00].

Remark 10. Note that only the multiplication matrices Sαβστ and Aαβ in (57)
do depend on the indices α, β. Therefore, on admissible blocks (σ, τ) ∈ Pfar, the

matrices Ãαβ |σ×τ should be treated simultaneously for all 1 ≤ α ≤ β ≤ d.

Remark 11. For inadmissible blocks (σ, τ) ∈ Pnear, the matrices Ãαβ |σ×τ =
Aαβ |σ×τ should also be assembled simultaneously, as the entries only differ on
the components of the normal vectors, cf. (47). Since the block partitioning is

symmetric and we are using constant approximation order, Ãαβ also is symmetric;

therefore, Ãαβ
jk should only be computed and stored for 1 ≤ j ≤ k ≤ N .
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5.2. Approximation of A on Far Field Blocks via (47). A different H2-

matrix approach can be realized by use of (47) and by replacing G by I(σ,τ)
m G on

admissible blocks. We start out from (54) and consider the following discretization
of the bilinear form a(·, ·), where κ(x, y) := G(x− y) now:

ã(mh, m̃h)

= −
∑

(σ,τ)∈Pnear

∑

Tj∈σ

∑

Tk∈τ

∫

∂Tj

∫

∂Tk

(
νννj(x) ·mj

h

)
κ(x, y)

(
νννk(y) · m̃k

h

)
dsy dsx

−
∑

(σ,τ)∈Pfar

∑

Tj∈σ

∑

Tk∈τ

∫

∂Tj

∫

∂Tk

(
νννj(x) ·mj

h

)
I(σ,τ)
m κ(x, y)

(
νννk(y) · m̃k

h

)
dsy dsx.

We state the implementational details first. The only difference to Section 5.1

is in the way how Ã is computed on admissible blocks (σ, τ) ∈ Pfar. Given the
degenerate kernel

I(σ,τ)
m κ(x, y) =

M∑

m1=0

M∑

m2=0

κ
(
xσ
m1

, xτ
m2

)
Lσ
m1

(x)Lτ
m2

(y),

we obtain for Tj ∈ σ, Tk ∈ τ using integration by parts

Ãαβ
jk = ã(χTj

eα, χTk
eβ) = −

∫

∂Tj

∫

∂Tk

νννjα(x)I(σ,τ)
m κ(x, y)νννkβ(y) dsy dsx

= −
M∑

m1=0

M∑

m2=0

κ
(
xσ
m1

, xτ
m2

) ∫

∂Tj

Lσ
m1

(x)νννjα(x) dsx

∫

∂Tk

Lτ
m2

(y)νννkβ(y) dsy

= −
M∑

m1=0

M∑

m2=0

κ
(
xσ
m1

, xτ
m2

)
︸ ︷︷ ︸

=Sστ
m1m2

∫

Tj

∂Lσ
m1

∂xα
dx

︸ ︷︷ ︸
=:V σα

jm1

∫

Tk

∂Lτ
m2

∂yβ
dy

︸ ︷︷ ︸
=:V τβ

km2

.

Remark 12. The integrands in V σα
jm1

and V τβ
km2

are computable, as formulae for
the first derivatives of the Lagrange polynomials in one dimension can easily be
derived by induction: given Lj ∈ Pm, we have

L′
j(t) =

m∑

k=1
k 6=j

1

tj − tk

m∏

ℓ=1
ℓ 6∈{j,k}

t− tℓ
tj − tℓ

.

Remark 13. Note that the multiplication matrices Sστ do not depend on α, β
here. Thus, we now have to assemble and store Sστ , the matrices V σα and V τβ for
all leaves σ, τ of the cluster tree only, and the father-son transformation matrices
Bτ ′τ . This is a significant difference to Section 5.1, where the computation of
Sαβστ , of V τ for all leaves τ , and of Bτ ′τ is required.

The results of Section 5.1 now carry over immediately; however, we have to assume
that m is large enough so that

‖∂α∂β(κ− I(σ,τ)
m κ)‖L∞(Bσ×Bτ ) ≤ c3

for κ(x, y) = G(x− y), with a constant c3 which is independent of (σ, τ) ∈ Pfar and
1 ≤ α, β ≤ d. The existence of such a constant is a consequence of Lemma 3.6. In
complete analogy to Theorem 5.2 we conclude:
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Theorem 5.3. Under the above assumptions, we have

|a(mh, m̃h)− ã(mh, m̃h)| ≤ c3d|Ω|‖mh‖L2(Ω)‖m̃h‖L2(Ω)(58)

for all mh, m̃h ∈ P0(T )d. �

5.3. Solvability of the Approximate Discrete Model (R̃P ε,h). Suppose a
triangulation T of Ω by rectangular, axis-parallel boxes to be given. The Gauss
Divergence Theorem then shows that the restriction of P, P|P0(T )d , is injective, cf.
[CP04a]. In particular, there exists a constant c4 such that

a(mh,mh) = ‖Pmh‖2L2(Rd) ≥ c4‖mh‖2L2(Ω) for all mh ∈ P0(T )d.

Theorem 5.4. Given the above assumptions, take m large enough so that Cdf :=
c4 − c3d|Ω| ≥ 0, with c3 from Theorems 5.2 and 5.3, respectively. Then, the ap-

proximate discrete model (R̃P ε,h) has solutions. In case Cdf > 0, the solution to

(R̃P ε,h) is unique.

Proof. As

ã(mh,mh) ≥ a(mh,mh)− |a(mh,mh)− ã(mh,mh)| ≥ Cdf‖mh‖2L2(Ω),

one concludes with Cdf ≥ 0 that the approximate bilinear form ã(·, ·) is positive
semidefinite, and even positive definite if Cdf > 0. Thus, the symmetry of ã(·, ·)
shows that mh 7→ ã(mh,mh) is a convex functional. In sum, the approximate
energy functional

Ẽ(mh) :=

∫

Ω

φ∗∗(mh) dx−
∫

Ω

f ·mh dx+
1

2
ã(mh,mh) +

1

2

∫

Ω

ε−1(|mh| − 1)2+ dx

(59)

is continuous and convex. Coercivity of Ẽ follows from the last term in (59), i.e.,
from the penalization energy contribution.

The Direct Method of the Calculus of Variations now proves the existence of (global)

minimizers for Ẽ(·). As minimizers of Ẽ in P0(T )d are zeros of the corresponding

Gâteaux derivatives, which read (R̃P ε,h), we have thus shown the solvability of

(R̃P ε,h).

To prove uniqueness in case Cdf > 0, assume (λh,mh) and (λ̃h, m̃h) to be two

solutions of (R̃P ε,h) now. One immediately finds

(60) ã(mh − m̃h,mh − m̃h) + 〈Dφ∗∗(mh)−Dφ∗∗(m̃h) ; mh − m̃h〉L2(Ω)

+ 〈λhmh − λ̃hm̃h ; mh − m̃h〉L2(Ω) = 0.

As φ∗∗ is convex, the second term in (60) cannot be negative, whereas the third term
is non-negative by a direct calculation [CP01]. Hence, ã(mh − m̃h,mh − m̃h) = 0,
which implies mh = m̃h due to the definiteness of ã(·, ·). �

Remark 14. The a priori and a posteriori error analysis for the approximate model

(R̃P ε,h) is the topic of ongoing research and will appear in a subsequent work.

6. Numerical Experiments

In the following section we collect the results of our numerical experiments. We
compare the performance of the two H2-matrix approximations introduced in Sec-
tions 5.1 and 5.2 to that of the standard approach using the full stiffness matrices.
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6.1. Implementational Details. All numerical experiments were conducted us-
ing the HLib software package provided by S. Börm and L. Grasedyck of the Max-
Planck-Institute for Mathematics in the Sciences (Leipzig). We utilized a Com-
paq/HP AlphaServer ES45 under Unix, with four Alpha EV68 CPUs running at 1
GHz each and 32 GBytes of RAM.

For our experiments, we varied the interpolation order m in the H2-matrix approx-
imation between 2 and 6. As for the parameters, we fixed the maximum leaf size
Cℓf = 20 and the admissibility parameter η = 1 throughout. However, to avoid
having to vary Cℓf with m, we decided to store admissible blocks (σ, τ) ∈ Pfar as
full matrices whenever |σ||τ | ≤ MσMτ , i.e., whenever storing the full matrix was
less expensive than storing the corresponding multiplication matrix Sστ .

Moreover, to be able to use the supplied HLib routines with as few modifications
as possible, we did exploit the symmetry of Aαβ when setting up the matrices, but
neglected it in the process of storing them.

6.2. Full Matrices vs. H2-Matrices. In a first example, we restrict ourselves to

a comparison of the properties of A and its H2-approximation Ã. For simplicity, we
assume the domain Ω to be the unit square, Ω := [0, 1]× [0, 1] ⊂ R

2, and consider
a uniform triangulation of Ω consisting of rectangular elements. The number N of
degrees of freedom is varied between 256 and 1048576. Note that for N ≥ 16384, we
have no longer set up the full matrix A, but have approximated it by an H2-matrix
with m = 10; all subsequent references are made to this approximation.

We compare the results of our two H2-matrix approaches for fixed approximation
orders m.

First, we give the relative approximation errors ‖A − Ã‖2/‖A‖2; the values are
collected in the following Tables 1 and 2.

Table 1. Relative approximation errors (first H2-matrix ap-
proach, cf. Section 5.1).

N/m 2 3 4 5 6

256 2.38605−3 2.42547−4 2.22014−16 2.36817−16 2.10329−16

1024 4.66221−3 4.74404−4 4.42905−5 4.45515−6 3.85638−7

4096 6.08654−3 6.08069−4 6.14339−5 5.88869−6 5.21420−7

16384 7.28966−3 7.41998−4 7.76218−5 7.11627−6 7.26753−7

65536 8.42299−3 8.57423−4 8.83683−5 8.26648−6 8.21227−7

Table 2. Relative approximation errors (second H2-matrix ap-
proach, cf. Section 5.2).

N/m 2 3 4 5 6

256 1.47377−2 1.80771−3 2.46549−16 2.25802−16 2.15506−16

1024 3.80124−2 3.47728−3 2.38627−4 2.65527−5 2.05902−6

4096 5.48085−2 4.98563−3 4.17924−4 3.81013−5 3.65331−6

16384 6.54358−2 6.24201−3 5.19552−4 5.21367−5 5.78795−6

65536 7.10886−2 7.69041−3 6.14949−4 6.02877−5 6.88747−6
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In summary, the errors in the second approach (cf. Section 5.2) seem to be larger
by one order of magnitude. The convergence rates, however, are optimal in both
cases: every increase of m by one reduces the error by an order of magnitude. Note
that for N = 256 and m ≥ 4, our choice of Cℓf implies that there are no admissible
blocks; the error in this case is due to rounding. The error estimates themselves
are computed by a power iteration, with a maximum of 100 iterative steps.

Second, we consider the times needed for building the two H2-matrix approxima-
tions and compare them to the setup times of the full matrix A, see Tables 3 and
4.

Table 3. Setup time in seconds (first approach).

N/m 2 3 4 5 6 full

256 0.7 0.7 0.8 0.8 0.8 0.8
1024 3.8 3.8 9.0 9.0 10.3 13.5
4096 18.1 18.0 50.9 51.1 60.1 215.6
16384 78.2 78.5 237.4 237.9 286.1 n/a
65536 329.0 330.9 1037.3 1042.2 1263.9 n/a
262144 1353.3 1361.8 4303.4 4308.8 5248.6 n/a
1048576 5421.2 5925.1 n/a n/a n/a n/a

Table 4. Setup time in seconds (second approach).

N/m 2 3 4 5 6 full

256 0.7 0.6 0.8 0.9 0.9 0.8
1024 3.8 3.9 9.1 9.1 10.4 13.5
4096 18.1 18.0 51.1 51.4 60.7 215.6
16384 78.6 78.4 238.0 238.5 287.7 n/a
65536 330.1 331.5 1036.8 1037.3 1262.8 n/a
262144 1343.5 1349.4 4291.0 4311.0 5259.6 n/a
1048576 5450.3 5445.4 n/a n/a n/a n/a

The time required for setting up the full matrix by far surpasses the setup times of
the approximations; the gap increases with the number N of degrees of freedom.
For m fixed, the difference between the two approaches is negligible here.

Third, of particular interest is the amount of memory required for storing the matrix
approximations, as compared to the storage requirements of the original matrices;
these are listed in Tables 5 and 6.

Overall, the figures compare very favourably with the storage required by the full
matrices; here, the second approach is clearly superior to the first one for m fixed
and N large. This is probably due to the fact that the multiplication matrices on
admissible blocks only have to be stored once instead of for each block. Note that
on meshes with N small, the memory requirements slightly favour the full matrix
approach. This is due to the organizational effort involved in constructing the
cluster tree of the H2-matrix approximation and in allocating memory blockwise
for subblocks instead of for the whole matrix.
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Table 5. Memory requirement in KBytes/N (first approach).

N/m 2 3 4 5 6 full

256 5.2 5.6 6.8 7.2 7.6 6.0
1024 8.8 11.6 18.8 20.5 22.1 24.0
4096 11.4 16.2 28.9 34.6 42.6 96.0
16384 12.9 19.1 35.5 44.6 58.2 384.0
65536 13.7 20.7 39.3 50.6 67.9 1536.0
262144 14.2 21.6 41.3 53.9 73.4 6144.0
1048576 14.4 22.1 n/a n/a n/a 24576.0

Table 6. Memory requirement in KBytes/N (second approach).

N/m 2 3 4 5 6 full

256 5.2 5.5 7.2 8.1 9.2 6.0
1024 8.3 9.4 18.6 19.9 22.5 24.0
4096 10.4 12.2 26.9 29.5 35.4 96.0
16384 11.6 13.8 31.8 35.6 44.1 384.0
65536 12.2 14.8 34.6 39.1 49.2 1536.0
262144 12.6 15.2 36.0 40.9 51.9 6144.0
1048576 12.7 15.5 n/a n/a n/a 24576.0

Altogether, these numerical experiments underline the applicability of H-matrix
techniques to the discretized potential operator P from (RPε,h). For given approx-
imation order m, the first approach leads to lesser approximation errors, but is
otherwise also more costly numerically, as is reflected by the much higher storage
requirements.

In a certain sense, however, the two approaches seem almost equivalent: if we
require some fixed accuracy, the approximation order m always has to be higher by
one in the second approach, as the errors lag behind by one order of magnitude.
A comparison of the respective setup times and memory requirements then shows
the numerical cost to be almost even.

6.3. An Example with Known Exact Solution. In our second example, we
consider a model problem for the relaxed Landau-Lifshitz problem (RP ) taken from
[CP04b]. As above, let the domain Ω be the unit square; assume Ω to be filled with

some uniaxial magnetized material, with the easy axis given by e = (−1, 1)/
√
2

and the corresponding normal by z = (1, 1)/
√
2, see Remark 1. Define (m, λ) ∈

W 1,∞(Ω;R2)× L∞(Ω) as

m(x) :=

{
x for |x| ≤ 1,

x/|x| for |x| > 1
and λ(x) :=

{
0 for |x| ≤ 1,

1 for |x| > 1.
(61)

Then, (m, λ) solves (RP ) with given right-hand side

f := Pm+ (m · z)z+ λm in L2(Ω;R2),(62)

cf. (11),(12). In the following, we replace Pm in (62) by PmT , where mT denotes
the piecewise integral mean of m. Note that there are no fully analytic examples
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for (RP ) with known solutions, which is why we have to restrict ourselves to the
present model.

As m is Lipschitz continuous and therefore in W 1,∞(Ω;R2), the a priori analysis
from [CP04b] yields ‖(m − mh) · z‖L2(Ω) = O(ε + h), with ε the penalization
parameter from (14). For our experiments, we choose ε = h and compute the

discrete solutionmh =
∑2N

j=1 xjϕj with respect to the basis {ϕ1, . . . , ϕ2N} from (50)

by a classical Newton-Raphson scheme: the unknown coefficient vector x ∈ R
2N is

determined as the unique zero of

F (x) :=
(
〈Pmh +Dφ∗∗(mh) + λhmh − f ; ϕj〉

)2N
j=1

= 0.(63)

[A detailed discussion on the relevance of ε can be found in [CP04b].] Note that
the convergence of the Newton-Raphson method is not guaranteed mathematically,
since F is only differentiable almost everywhere. The Jacobian of F can be written

as a finite sum DF (x) = A +
∑N

j=1 Dj(x) with symmetric positive semidefinite

matricesDj(x) ∈ R
2N×2N , cf. [CP04a]. For a triangulation by rectangular elements

such as ours, the matrix A can be shown to be positive definite by applying the
Gauss Divergence Theorem, see [CP04b]. We therefore employ a preconditioned
conjugate gradient method, with the LU decomposition of a coarsened H-matrix

version of Ã as preconditioner.

Table 7. Number of Newton steps: first approach (left), second
approach (right).

N/m 2 3 4 5 6

256 6 6 6 6 6
1024 8 8 8 8 8
4096 8 8 8 8 8
16384 9 9 9 9 9

N/m 2 3 4 5 6

256 6 6 6 6 6
1024 8 8 8 8 8
4096 7 8 8 8 8
16384 8 8 9 9 9

In Table 7, we summarize the number of Newton steps required for finding the
coefficient vector x of mh in (63). One sees that the number of steps is nearly
constant, i.e., independent of m and growing only slightly with N .

Figure 2 gives the convergence history of the full error ‖m−mh‖L2(Ω) for different

choices of the order m in the H2-matrix approximation. The convergence rate is
almost the optimal 1/2, up to minimal deviations which are presumably due to
the fact that we approximate Pm by PmT in (62). As was to be expected, the
interpolation order m has to increase with the number N of degrees of freedom in
order to maintain optimal convergence; the effect is clearly more pronounced for
the second approach.

Note that we consider the full L2 norm instead of ‖Dφ∗∗(m) − Dφ∗∗(mh)‖L2(Ω),
although only the latter is covered by the available a priori error analysis. Recently
it has been shown that one always obtains weak L2 convergence of mh ⇀ m; more
precisely, there holds ‖m − mh‖H̃−1(Ω) = O(ε + h), cf. [CP04c] . Nevertheless,

the numerical experiments available from [CP04b] indicate that one may hope for
sharper results.
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Figure 1. The discrete solution (mh, λh) of (RPε,h) as in the
model example for N = 1024, with mh on the left (displayed as
vectors mh|T and |mh|T |) and λh on the right. In the white region,
we have |mh| ≤ 1 and therefore λh = 0.
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Figure 2. Experimental convergence of ‖m −mh‖L2(Ω) over N :
first approach (left), second approach (right).
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[BH02] S. Börm and W. Hackbusch. H2-Matrix Approximation of Integral Operators by Inter-
polation. Appl. Numer. Math., 43:129–143, 2002.
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