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Abstract. A major task in the simulation of micromagnetic phenomena
is the effective computation of the stray-field H and/or of the correspon-
ding energy, where H solves the magnetostatic Maxwell equations in the
entire space. For a given FE magnetization mh, the naive computation of
H via a closed formula typically leads to dense matrices and quadratic
complexity with respect to the number N of elements. To reduce the
computational cost, it is proposed to apply H-matrix techniques instead.
This approach allows for the computation (and evaluation) of H in linear
complexity even on adaptively generated (or unstructured) meshes.

1 Basic Micromagnetics

Let Ω ⊂ Rd be the bounded spatial domain of a ferromagnet. Then,
the magnetization m : Ω → Rd induces the so-called stray-field [9]
(or demagnetization field) H : Rd → Rd, which is the solution of the
magnetostatic Maxwell equations

curlH = 0 and divB = 0 on Rd. (1)

Here, B = H+m denotes the magnetic induction, with m extended
by zero to Rd\Ω. Stokes’ Theorem implies H = −∇u, with a poten-
tial u that solves

div (−∇u+ m) = 0 in D′(Rd). (2)



Thus, there holds

u =
d∑
j=1

∂G

∂xj
∗mj for any m ∈ L2(Ω)d, (3)

where G is the Newtonian kernel defined by G(x) = (2π)−1 log |x| for
d = 2 and by G(x) = −(4π)−1|x|−1 for d = 3, respectively. Therefore,
the components of the stray-field can be written as convolutions in
the sense of Calderón-Zygmund. The operator P : L2(Ω)d → L2(Ω)d

mapping m onto the corresponding stray-field H is an orthogo-
nal projection. Details and the precise mathematical setting can be
found in [12].

The remainder of this paper is organized as follows: Section 2
introduces the stiffness matrix A arising from the FE discretization
of (2). Section 3 recalls the definition of H2-matrices and indicates
how A can be approximated by a d×d block matrix AH consisting of
H2-matrix type blocks. Sections 4 and 5 contain our main results: In
Section 4, we prove that AH can in fact be interpreted as a globalH2-
matrix approximation for A. Section 5 provides an a priori analysis of
the corresponding approximation error for a quite general class of FE
discretizations. Some numerical experiments in Section 6 conclude
the work.

2 Stray-Field Discretization

In FE simulations of micromagnetic phenomena, one usually restricts
oneself to a finite dimensional subspace Sh of L2(Ω). Fix a basis
{φj}Nj=1 of Sh. Then, the functions Φ[j,α] = φjeα, with eα ∈ Rd the
α-th standard unit vector, define a basis of Sdh ⊂ L2(Ω)d. To fix a
numbering of these basis functions, we set [j, α] = j + (α− 1)N for
1 ≤ α ≤ d. Now, for an FE discretization of P , one has to compute
the corresponding stiffness matrix A ∈ RdN×dN defined by

Ajk =

∫
Ω

(PΦj)(x)Φk(x) dx. (4)



Actually, we consider the individual blocks Aαβ ∈ RN×N of A sepa-
rately, where

Aαβ
jk =

∫
Ω

(PΦ[j,α])(x)Φ[k,β](x) dx for 1 ≤ α, β ≤ d. (5)

Lemma 1. The matrix A is a symmetric d × d block matrix. Fur-
thermore, each of the N ×N blocks Aαβ of A also is symmetric.

Proof. The symmetry of A is a consequence of the L2 orthogona-
lity of P . The symmetry of the blocks Aαβ follows from Calderón-
Zygmund theory [12, Proposition 6.1]. ut

3 Blockwise H2-Approximation of A

When applying H-matrix techniques to approximate A, and hence
to reduce the cost of computing H, one possibility is to treat each
block Aαβ of A individually, as is done in [10]. To that end, one
requires a classical integral representation of the associated far field.

Lemma 2. Given a basis function φj of Sh, let supp (φj) denote its
support. If supp (φj) ∩ supp (φk) = ∅ for 1 ≤ j, k ≤ N , then

Aαβ
jk =

∫
Ω

∫
Ω

∂αβG(x− y)φj(y)φk(x) dy dx, (6)

with ∂αβG the second derivative of G.

Proof. On supp (φk), there holds P(φjeα) · (φkeβ) = ∂β(∂αG ∗φj)φk.
By classical convolution results, we have ∂αG∗φj ∈ C1(Rd\supp (φj))
and ∂β(∂αG ∗ φj) = ∂αβG ∗ φj. This concludes the proof. ut

The kernel functions καβ(x, y) := ∂αβG(x−y) appearing in (6) are
asymptotically smooth. Therefore, each Aαβ can be approximated by
an H2-matrix obtained from tensorial interpolation of καβ [3].

Let I = {1, . . . , N} denote the index set corresponding to the
basis {φj}Nj=1. Given a cluster σ ⊆ I, let ∪σ :=

⋃
{supp (φj) : j ∈

σ}, and let Bσ =
∏d

`=1[a`, b`] ⊂ Rd denote the box of minimal size
containing ∪σ. For j ∈ σ, fix an element xj ∈ supp (φj) (e.g., the
center of mass).

¿From I, we build a so-called cluster tree T by binary space parti-
tioning [1], calling the function clustertree via clustertree(I, ∅):



function clustertree(σ, varT)function clustertree(σ, varT)function clustertree(σ, varT)
if |σ| ≤ 1

return

else

split Bσ along longest edge into boxes B1
σ, B

2
σ of equal volume

if σ1 := {j ∈ I : xj ∈ B1
σ} 6∈ {∅, σ}

add σ1, σ2 := σ\σ1 to T
call clustertree(σ1, varT)

call clustertree(σ2, varT)

end

end

Having constructed T, we generate a block partitioning P for
I ×I as follows: For a fixed parameter η > 0, we call (σ, τ) ∈ T×T
an admissible (far field) block if

diam (Bσ ×Bτ ) ≤ η dist (Bσ, Bτ ). (7)

Otherwise, (σ, τ) is an inadmissible (near field) block. Now, the fol-
lowing recursive function, called by partition(I, I,T, varP), par-
titions I × I into admissible blocks (σ, τ) ∈ Pfar and inadmissible
blocks (σ, τ) ∈ Pnear; clearly, P = Pfar ∪ Pnear. Here, sons(σ) denotes
the set of all sons of σ ∈ T with respect to T.

function partition(σ, τ,T, varP)function partition(σ, τ,T, varP)function partition(σ, τ,T, varP)
if (σ, τ) admissible

add (σ, τ) to Pfar

elseif sons(σ) 6= ∅
if sons(τ) 6= ∅

for all (σ′, τ ′) ∈ sons(σ)× sons(τ) call partition(σ′, τ ′,T, varP)

else

for all σ′ ∈ sons(σ) call partition(σ′, τ,T, varP)

end

elseif sons(τ) 6= ∅
for all τ ′ ∈ sons(τ) call partition(σ, τ ′,T, varP)

else

add (σ, τ) to Pnear

end

Note that for (σ, τ) ∈ Pfar, Lemma 2 applies. Since καβ is smooth
on Bσ×Bτ , we may replace it by its tensorial Čebyšev interpolation,

καβ(x, y) ≈ καβστ (x, y) :=

pd∑
m,n=1

καβ(xσm, x
τ
n)Lσm(x)Lτn(y). (8)



Here, Lσm and Lτn are tensorial Lagrange polynomials of overall degree
pd (i.e. of degree p in each of the coordinate directions), with cor-
responding interpolation nodes xσm ∈ Bσ and xτn ∈ Bτ , respectively.
This leads to an approximation of Aαβ via

Aαβ|σ×τ ≈ Aαβ
H |σ×τ := VσM

αβ
στ V

T
τ for (σ, τ) ∈ Pfar, (9)

where (Vσ)jm =
∫
Ω
φjL

σ
m dx and (Mαβ

στ )mn = καβ(xσm, x
τ
n). Moreover,

there holds the additional hierarchy

Vσ|σ′ = Vσ′Tσ′σ for σ′ ∈ sons(σ),

with a transfer matrix T given by (Tσ′σ)mn = Lσn(xσ
′
m). The following

complexity estimate is a standard result from H2-matrix theory [1].

Theorem 1. Given T and P as constructed above, define the spar-
sity constant Csp = maxσ∈T #{τ ∈ T : (σ, τ) ∈ P}. Assume that

for (σ, τ) ∈ Pnear and (j, k) ∈ σ × τ , each entry Aαβ
jk can be com-

puted with complexity O(1). Then, for Aαβ
H , the assembly, storage,

and matrix-vector multiplication can be performed with complexity
O(Cspp

2dN). ut

4 Global H2-Approximation of A

We now define an approximation AH for the stiffness matrix A by
replacing all blocks Aαβ by their H2-matrix approximants Aαβ

H . In
fact, we show that AH can be interpreted as a global H2-approxi-
mation for A if one takes into account the following considerations:

• In contrast to the previous section, we now consider the index
set Î = {1, . . . , dN}. Given the cluster tree T built from I =
{1, . . . , N}, we make d copies Tα of T which correspond to the

indices Iα = {[1, α], . . . , [N,α]}. This gives us a cluster tree T̂ for

Î. The root of T̂ has precisely the d son branches Tα.
• We use the same admissibility condition (7) as before, but replace
φj in the definition of ∪σ by Φj.

• Finally, when σ = Î and σ′ = Iα, the transfer matrices Tσ′σ are
just the identities.



Theorem 2. The partitioning P̂ induced by T̂ and the modified ad-
missibility condition coincides blockwise with the partitioning P for
Aαβ
H . Therefore, and with the above definition of the additional trans-

fer matrices needed, AH is an H2-matrix. ut

This important result allows us to apply any algorithm from H2-
matrix theory to A as a whole. In particular, this concerns algorithms
for the preconditioning or recompression of H2-matrices or the as-
sembly of A by use of adaptive cross approximation [11]. So far, we
were only able to apply the respective algorithms blockwise, i.e. to
each Aαβ individually [10].

5 Approximation Error Estimate

It remains to study the approximation error which results from re-
placing Aαβ by Aαβ

H . For καβ(x, y) = ∂αβG(x−y) and καβστ as defined
in (8), there holds

‖καβ − καβστ ‖∞,Bσ×Bτ ≤ C Λ(p) (1 + 2/η)−p,

with η > 0 as in (7). Here, Λ(p) grows logarithmically with p, and C
is a numerical constant which depends only linearly on dist (Bσ, Bτ )

−d,
cf. [2, 10]. In particular, the error decreases exponentially with the
approximation order p. Now, given CH > 0, choose p large enough
such that

‖καβ − καβστ ‖∞,Bσ×Bτ ≤ CH for all (σ, τ) ∈ Pfar. (10)

As a first direct consequence, we obtain

Theorem 3. The matrix error in the Frobenius norm satisfies

‖Aαβ −Aαβ
H ‖F ≤ CHN max

j=1,...,N
‖φj‖2L1 . ut

More interesting than the matrix error, however, is the error
for the corresponding bilinear forms: For a discrete magnetization
mh ∈ Sdh, let m̂h ∈ RdN denote the coefficient vector with respect to
the basis functions Φ[j,α]. Then, replacing A by AH corresponds to
replacing the bilinear form a(mh,nh) = m̂h ·An̂h by

aH(mh,nh) := m̂h ·AHn̂h for mh,nh ∈ Sdh.



The error analysis for these bilinear forms requires some additional
assumptions on the basis functions φj: First, assume that∑

j∈σ

|supp (φj)| ≤ Cloc

∣∣∣ ⋃
j∈σ

supp (φj)
∣∣∣ (11)

for any σ ⊆ {1, . . . , N}, with some Cloc > 0. Moreover, let Cstab > 0
be a constant such that for any coefficient vector x ∈ RN ,

C−1stab

∥∥∥ N∑
j=1

xjφj

∥∥∥2
L2
≤

N∑
j=1

‖xjφj‖2L2 ≤ Cstab

∥∥∥ N∑
j=1

xjφj

∥∥∥2
L2
. (12)

Note that assumptions (11) and (12) are quite natural. For a
triangular mesh and the corresponding P 1 hat functions, (11) is es-
sentially an assumption on the angles in the triangulation. More-
over, the usual FE bases satisfy (12) even for a quite general class
of meshes [7]. In particular, both (11) and (12) are clearly satisfied
for piecewise constant basis functions, with Cloc = 1 = Cstab.

The following theorem is our second main result:

Theorem 4. Under the above assumptions, there holds

|a(mh,nh)− aH(mh,nh)| ≤ CHClocC
2
stab|Ω|d2 ‖mh‖L2‖nh‖L2 (13)

for all mh,nh ∈ Sdh.

Proof. For m ∈ Sdh and σ ⊆ I, we write mσ :=
∑

`∈σ m̂`Φ`. With
this notation, the error e = a− aH for the bilinear forms reads

e(m,n) =
∑

(σ,τ)∈Pfar

∫
∪σ

∫
∪τ

mσ(x)
(
καβ − καβστ

)
(x, y)nτ (y) dy dx.

From (10) and the Hölder and Cauchy Inequalities, one obtains

|e(m,n)| ≤ CH
∑

(σ,τ)∈Pfar

| ∪ σ|1/2| ∪ τ |1/2‖mσ‖L2‖nτ‖L2

≤ CH

( ∑
(σ,τ)∈Pfar

| ∪ σ|| ∪ τ |
)1/2( ∑

(σ,τ)∈Pfar

‖mσ‖2L2‖nτ‖2L2

)1/2
.

Finally, a direct calculation shows that these sums can be dominated
by d2C2

loc|Ω|2 and d2C4
stab‖m‖2L2‖n‖2L2 , respectively. ut



NNN / ppp 222 333 444 555 666

320320320 2.1 2.1 2.1 2.7 2.7
128012801280 4.3 4.3 4.3 6.0 6.1
512051205120 5.8 5.8 6.1 11.2 11.2
204802048020480 6.7 6.7 6.8 13.8 13.9
819208192081920 7.0 7.0 7.0 15.2 15.3

NNN / ppp 222 333 444 555 666

320320320 0.1 0.1 0.1 0.1 0.2
128012801280 0.1 0.1 0.2 0.2 0.3
512051205120 0.1 0.2 0.3 0.4 0.6
204802048020480 0.2 0.2 0.4 0.6 1.0
819208192081920 0.2 0.2 0.5 0.7 1.2

Table 1. Assembly times (left) and recompression times (right) for AH ([ms/N], uni-
form mesh-refinement).

NNN / ppp 222 333 444 555 666 full

320320320 5.9 6.4 7.7 9.5 11.7 10.0
128012801280 12.3 13.5 16.8 20.9 25.4 40.0
512051205120 17.8 21.1 30.0 40.5 50.9 160.0
204802048020480 21.0 26.0 39.5 56.9 76.4 640.0
819208192081920 22.8 28.9 45.2 67.0 92.9 2560.0

NNN / ppp 222 333 444 555 666

320320320 5.8 5.9 6.0 7.4 7.5
128012801280 12.1 12.3 12.8 17.0 17.3
512051205120 17.4 18.4 20.7 32.4 33.1
204802048020480 20.4 21.7 24.3 41.9 43.4
819208192081920 22.1 23.6 27.4 47.3 49.3

Table 2. Storage requirements of AH (left) and of Arcp
H (right) ([kB/N], uniform

mesh-refinement). For comparison, we give the values for the full matrix A.

6 Numerical Experiments

To underline our theoretical results, we performed numerical experi-
ments for the Landau-Lifshitz minimization problem in the large-
body limit [8]. We discretized the corresponding Euler-Lagrange
equations by a Galerkin method with T -piecewise constant ansatz
and test functions, where T is a triangulation of Ω ⊂ R2 by rectan-
gular elements which admits hanging nodes. More specifically, we
considered a ferromagnetic rod Ω = (−0.5, 0.5) × (−2.5, 2.5), with
the uniform initial mesh consisting of N = 20 squares. For the cor-
responding numerical analysis and an effective implementation, the
reader is referred to [5, 6].

NNN / ppp 222 333 444 555 666

320320320 2.7−5 2.9−6 3.3−7 3.5−8 4.0−9

128012801280 1.5−5 1.6−6 1.7−7 1.8−8 2.1−9

512051205120 5.5−6 5.8−7 6.0−8 6.1−9 6.7−10

204802048020480 1.7−6 1.8−7 1.8−8 1.8−9 2.1−10

NNN / ppp 222 333 444 555 666

320320320 3.7−5 3.6−6 2.9−7 2.3−8 2.0−9

128012801280 2.5−5 2.0−6 2.6−7 2.0−8 1.9−9

512051205120 8.4−6 9.2−7 1.3−7 8.0−9 6.7−10

204802048020480 2.4−6 3.0−7 4.2−8 2.2−9 2.7−10

Table 3. Errors ‖A−AH‖2 (left) and ‖A−Arcp
H ‖2 (right) (uniform mesh-refinement).



NNN / ppp 222 333 444 555 666

308308308 2.0 2.0 2.1 2.3 2.4
124412441244 4.4 4.4 4.4 6.2 6.2
654865486548 5.0 5.1 8.5 9.2 13.5
262042620426204 6.1 6.1 10.9 12.6 18.4
117524117524117524 7.0 7.2 13.3 13.4 22.5

NNN / ppp 222 333 444 555 666

308308308 0.1 0.1 0.1 0.1 0.2
124412441244 0.1 0.1 0.1 0.2 0.3
654865486548 0.2 0.2 0.3 0.5 0.6
262042620426204 0.2 0.3 0.3 0.8 0.9
117524117524117524 0.2 0.3 0.5 0.9 1.3

Table 4. Assembly times (left) and recompression times (right) for AH ([ms/N], adap-
tive mesh-refinement).

NNN / ppp 222 333 444 555 666 full

308308308 5.7 6.1 7.3 9.0 11.5 9.6
124412441244 12.7 13.9 17.3 21.0 25.0 38.9
654865486548 18.0 23.8 34.2 46.5 54.9 204.6
262042620426204 21.8 30.7 46.6 66.0 80.4 818.9
117524117524117524 24.9 33.9 54.0 76.8 101.3 3672.6

NNN / ppp 222 333 444 555 666

308308308 5.5 5.6 5.6 6.5 6.6
124412441244 12.3 12.6 12.8 17.3 17.5
654865486548 16.8 18.0 26.5 29.1 37.9
262042620426204 20.8 30.7 35.8 40.0 53.1
117524117524117524 23.6 25.9 41.2 43.8 65.6

Table 5. Storage requirements of AH (left) and of Arcp
H (right) ([kB/N], adaptive

mesh-refinement). For comparison, we give the values for the full matrix A.

The experiments were conducted using the HLib software pack-
age by S. Börm and L. Grasedyck of the Max-Planck-Institute for
Mathematics in the Sciences (Leipzig, Germany). We utilized a Com-
paq/HP AlphaServer ES45 under Unix, with 32 GB of RAM and four
Alpha EV68 CPUs running at 1 GHz each. Implementational details
can be found in [10, 11]; in particular, the H2-factorization of a block
Aαβ|σ×τ was stored only if this was cheaper than storing the exact
matrix block.

Tables 1–3 contain experimental results (assembly times, storage
requirements, and the error ‖A −AH‖2 computed by a power iter-
ation) for uniform mesh-refinement. Moreover, we compared AH to
the matrix Arcp

H obtained by adaptive H2-recompression [4] of AH.

NNN / ppp 222 333 444 555 666

308308308 3.9−5 3.9−6 6.1−7 3.9−8 1.9−9

124412441244 2.5−5 2.8−6 2.9−7 2.7−8 4.1−9

654865486548 1.4−5 1.6−6 1.5−7 1.6−8 2.5−9

262042620426204 5.1−6 5.8−7 5.5−8 6.8−9 9.7−10

NNN / ppp 222 333 444 555 666

308308308 1.6−4 1.3−5 2.4−6 1.0−7 4.6−9

124412441244 1.6−4 7.5−6 1.1−6 4.7−8 8.6−9

654865486548 3.1−5 2.6−6 2.1−7 2.6−8 3.2−9

262042620426204 6.8−6 6.4−7 5.7−8 6.8−9 9.7−10

Table 6. Errors ‖A−AH‖2 (left) and ‖A−Arcp
H ‖2 (right) (adaptive mesh-refinement).



Note that Arcp
H provides almost the same accuracy as AH, but typ-

ically requires only 70% of the storage, and that the recompression
times are negligible in comparison to the respective assembly times.

Finally, in Tables 4–6, we give the corresponding results for a
sequence of adaptively generated meshes. Here, T (j+1) is obtained
from T (j) as follows: First, T (j) is refined uniformly. Then, in a second
step, we additionally refine either the four corner elements of Ω (for
j even) or all the elements along the edges of Ω (for j odd). Meshes
of this type are observed in [6] for an adaptive mesh-refining strategy
based on a residual a posteriori error estimate.
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4. Börm, S., Hackbusch, W.: Data-Sparse Approximation by Adaptive H2-Matrices,
Computing 69 (2002) 1–35.

5. Carstensen, C., Praetorius, D.: Effective Simulation of a Macroscopic Model for
Stationary Micromagnetics, Comput. Methods Appl. Mech. Engrg. 194 (2005)
531–548.

6. Carstensen, C., Praetorius, D.: Numerical Analysis for a Macroscopic Model in
Micromagnetics, SIAM J. Numer. Anal., in press (2004).

7. Dahmen, W., Faermann, B., Graham, I., Hackbusch, W., Sauter, S.: Inverse
Inequalities on Non-Quasi-Uniform Meshes and Application to the Mortar Finite
Element Method, Math. Comp. 73 (2004) 1107–1138.

8. DeSimone, A.: Energy Minimizers for Large Ferromagnetic Bodies, Arch. Rational
Mech. Anal. 125 (1993) 99–143.
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