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Abstract. A major task in the simulation of micromagnetic phenomena
is the effective computation of the stray-field H and/or of the correspon-
ding energy, where H solves the magnetostatic Maxwell equations in the
entire space. For a given FE magnetization mj,, the naive computation of
H via a closed formula typically leads to dense matrices and quadratic
complexity with respect to the number N of elements. To reduce the
computational cost, it is proposed to apply H-matrix techniques instead.
This approach allows for the computation (and evaluation) of H in linear
complexity even on adaptively generated (or unstructured) meshes.

1 Basic Micromagnetics

Let 2 C R be the bounded spatial domain of a ferromagnet. Then,
the magnetization m : 2 — R? induces the so-called stray-field [9]
(or demagnetization field) H : R? — R¢, which is the solution of the
magnetostatic Maxwell equations

curlH=0 and divB=0 onR% (1)

Here, B = H+ m denotes the magnetic induction, with m extended
by zero to R4\ 2. Stokes” Theorem implies H = —Vu, with a poten-
tial v that solves

div(~Vu+m) =0 in D'(R?). (2)



Thus, there holds

i 0G

u = — X
=1 3xj

m; for any m € L*(2)%, (3)

where G is the Newtonian kernel defined by G(z) = (2r)~! log |z| for
d =2 and by G(x) = —(47) " |z|~! for d = 3, respectively. Therefore,
the components of the stray-field can be written as convolutions in
the sense of Calderén-Zygmund. The operator P : L2(2)? — L*(£2)4
mapping m onto the corresponding stray-field H is an orthogo-
nal projection. Details and the precise mathematical setting can be
found in [12].

The remainder of this paper is organized as follows: Section 2
introduces the stiffness matrix A arising from the FE discretization
of (2). Section 3 recalls the definition of H?-matrices and indicates
how A can be approximated by a d x d block matrix Ay consisting of
H2-matrix type blocks. Sections 4 and 5 contain our main results: In
Section 4, we prove that Ay can in fact be interpreted as a global H2-
matrix approximation for A. Section 5 provides an a priori analysis of
the corresponding approximation error for a quite general class of FE
discretizations. Some numerical experiments in Section 6 conclude
the work.

2 Stray-Field Discretization

In FE simulations of micromagnetic phenomena, one usually restricts
oneself to a finite dimensional subspace S;, of L?(§2). Fix a basis
{@}?le of 8. Then, the functions @, = Pje,, with e, € R? the
a-th standard unit vector, define a basis of S§ C L?*(2)¢. To fix a
numbering of these basis functions, we set [j,a] = j + (o — 1)N for
1 < a <d. Now, for an FE discretization of P, one has to compute
the corresponding stiffness matrix A € R¥V*4N defined by

Ay — /Q (P®,)(x) By(x) da. (@)



Actually, we consider the individual blocks A®® € RN*N of A sepa-
rately, where

A;f = /QUD@U’O‘])(x) Ppeg(x)dr for 1 <a,pB <d. (5)

Lemma 1. The matriz A is a symmetric d X d block matrix. Fur-
thermore, each of the N x N blocks A“? of A also is symmetric.

Proof. The symmetry of A is a consequence of the L? orthogona-
lity of P. The symmetry of the blocks A% follows from Calderén-
Zygmund theory [12, Proposition 6.1]. O

3 Blockwise H2-Approximation of A

When applying H-matrix techniques to approximate A, and hence
to reduce the cost of computing H, one possibility is to treat each
block A% of A individually, as is done in [10]. To that end, one
requires a classical integral representation of the associated far field.

Lemma 2. Given a basis function ¢; of Sy, let supp (¢;) denote its
support. If supp (¢;) Nsupp (¢x) =0 for 1 < j,k < N, then

a3 = [ [ oG- powawad. o)

with O,3G the second derivative of G'.

Proof. On supp (¢y), there holds P(¢;e,) - (Pres) = 03(0aG * ;) Px.
By classical convolution results, we have 9,G*¢; € C'(R*\supp (¢;))
and 03(0,G * ¢;) = OupG * ¢;. This concludes the proof. O

The kernel functions % (x,y) := 9.5G(x—y) appearing in (6) are
asymptotically smooth. Therefore, each A®? can be approximated by
an H2-matrix obtained from tensorial interpolation of k% [3].

Let Z = {1,..., N} denote the index set corresponding to the
basis {¢;}7,. Given a cluster o C Z, let Uo := |J{supp (¢;) : j €
o}, and let B, = [[/_,[as, be] € R? denote the box of minimal size
containing Uo. For j € o, fix an element z; € supp (¢;) (e.g., the
center of mass).

JFrom Z, we build a so-called cluster tree T by binary space parti-
tioning [1], calling the function clustertree via clustertree(Z,):



function clustertree(o,varT)
if |o| <1
return
else
split B, along longest edge into boxes BL, B2 of equal volume
ifor:={j€T:x;€B} {00}
add 01,02 :=0\o1 to T
call clustertree(os,var T)
call clustertree(os, var T)
end
end

Having constructed T, we generate a block partitioning P for
Z x T as follows: For a fixed parameter n > 0, we call (o0,7) € T x T
an admissible (far field) block if

diam (B, x B;) < ndist (B, B;). (7)

Otherwise, (o, 7) is an inadmissible (near field) block. Now, the fol-
lowing recursive function, called by partition(Z,Z, T, var P), par-
titions Z x Z into admissible blocks (o,7) € P, and inadmissible
blocks (0, 7) € Pyear; clearly, P = Pg, U Ppear. Here, sons(o) denotes
the set of all sons of 0 € T with respect to T.

function partition(o, 7, T,varP)
if (o,7) admissible
add (o, 7) to Pear
elseif sons(o) #
if sons(7) # 0
for all (¢',7’) € sons(o) x sons(7) call partition(o’, 7', T, var P)
else
for all o’ € sons(c) call partition(o’, 7, T,var P)
end
elseif sons(T) #£ 0
for all 7’ € sons(7) call partition(o,7’,T,varP)
else
add (o,7) to Pnear
end

Note that for (o,7) € P, Lemma 2 applies. Since x** is smooth
on B, X B, we may replace it by its tensorial Cebysev interpolation,

pd

() m rgd (e y) = Y K (g, ) Ly () Li(y). (8)

m,n=1



Here, L¢ and L] are tensorial Lagrange polynomials of overall degree
p? (i.e. of degree p in each of the coordinate directions), with cor-
responding interpolation nodes z¥, € B, and z], € B;, respectively.
This leads to an approximation of A%’ via

A = A s = Vo MEPVE for (0,7) € Py, (9)

where (V,)jm = [,, ¢;L5, dz and (MSP),,,, = % (29, x7). Moreover,
there holds the additional hierarchy

Voot = VouT e, for o’ € sons(o),

with a transfer matrix 7" given by (Thrg)mn = L% (27 ). The following
complexity estimate is a standard result from H?-matrix theory [1].

Theorem 1. Given T and P as constructed above, define the spar-
sity constant Cqp = maxyer #{7 € T : (0,7) € P}. Assume that
for (0,7) € Ppear and (j, k) € 0 X T, each entry A]O‘,;B can be com-
puted with complexity O(1). Then, for A%’ , the assembly, storage,
and matriz-vector multiplication can be performed with complexity

O(Cgpp*N). 0

4 Global H?-Approximation of A

We now define an approximation Ay for the stiffness matrix A by
replacing all blocks A®? by their H2-matrix approximants Af,f . In
fact, we show that A4 can be interpreted as a global H2-approxi-
mation for A if one takes into account the following considerations:

e In contrast to the previous section, we now consider the index
set Z = {1,...,dN}. Given the cluster tree T built from T =
{1,..., N}, we make d copies T, of T which correspond to the
indices Z,, = {[1, ], ..., [N, a]}. This gives us a cluster tree T for
7. The root of T has precisely the d son branches T,.

e We use the same admissibility condition (7) as before, but replace
¢; in the definition of Uo by @;.

e Finally, when o = 7 and o' = 7T, the transfer matrices T,/ are
just the identities.



Theorem 2. The partitioning P induced by T and the modified ad-
massibility condition coincides blockwise with the partitioning P for
Ag‘f. Therefore, and with the above definition of the additional trans-
fer matrices needed, Ay is an H*-matriz. O

This important result allows us to apply any algorithm from H?-
matrix theory to A as a whole. In particular, this concerns algorithms
for the preconditioning or recompression of H2-matrices or the as-
sembly of A by use of adaptive cross approximation [11]. So far, we
were only able to apply the respective algorithms blockwise, i.e. to
each A*? individually [10].

5 Approximation Error Estimate

It remains to study the approximation error which results from re-
placing A*? by A‘;‘f . For k%% (z,y) = 0pG(x —y) and k22 as defined
in (8), there holds

15°7 — 867l oo, B, x5, < C Alp) (1+2/n) 77,

with 7 > 0 as in (7). Here, A(p) grows logarithmically with p, and C
is a numerical constant which depends only linearly on dist (B,, B,) ¢,
cf. [2,10]. In particular, the error decreases exponentially with the
approximation order p. Now, given C3 > 0, choose p large enough
such that

||/iaﬁ — H?E”OO,BJXBT < C’H for all (0', 7') € Pe. (10)
As a first direct consequence, we obtain
Theorem 3. The matrix error in the Frobenius norm satisfies
|A% = A3 llp < CuN_max 1612 0
More interesting than the matrix error, however, is the error
for the corresponding bilinear forms: For a discrete magnetization
my, € 8¢, let m;, € R denote the coefficient vector with respect to

the basis functions @}; ). Then, replacing A by Ay corresponds to
replacing the bilinear form a(mjy, ny,) = my, - Any, by

ay(my,ny) ;= my, - Ayny, for my, n, € Sy



The error analysis for these bilinear forms requires some additional
assumptions on the basis functions ¢;: First, assume that

> " Isupp ()] < Cioe| | supp (¢;)

j€o j€o

(11)

for any o C {1,..., N}, with some Cj,. > 0. Moreover, let Cgap, > 0
be a constant such that for any coefficient vector z € R",

N N
Z%‘%’ Z Ti¢;
=1 j=1

Note that assumptions (11) and (12) are quite natural. For a
triangular mesh and the corresponding P! hat functions, (11) is es-
sentially an assumption on the angles in the triangulation. More-
over, the usual FE bases satisfy (12) even for a quite general class
of meshes [7]. In particular, both (11) and (12) are clearly satisfied
for piecewise constant basis functions, with Cloc = 1 = Cytap.

The following theorem is our second main result:

Coab (12)

2
2

9 N
LS > lzieill7e < Cuan
j=1

Theorem 4. Under the above assumptions, there holds
|a(my, 1) — ag(my, 0)] < CpCloeCly |21 d (| 2]0n | 2 (13)
for all my,, n;, € S.
Proof. For m € 8¢ and o C Z, we write m, := Y reo M®,. With
this notation, the error e = a — ay for the bilinear forms reads
cmm) = S [ [ o) (0 k2 ) () dy o
(U’T)epfar Vo JuT
From (10) and the Holder and Cauchy Inequalities, one obtains

e(m,n)| <y Y [UalP U]V mgl|z 0|2
(UvT)EPfar

<ou( X tuellur) (X Imelaln )

(UvT)EPfar (UzT)EPfar

1/2

Finally, a direct calculation shows that these sums can be dominated
by d*C2 . |92|* and d?C%,, |lm||3.||n||3., respectively. O

loc



N/p[ 2 3 4 5 6] [N/p[ 2 3 4 5 6]

320 || 2.1 21 21 27 27 320 | 0.1 0.1 01 0.1 0.2
1280 || 43 43 43 6.0 6.1 1280 0.1 0.1 02 0.2 0.3
5120 | 5.8 5.8 6.1 11.2 11.2 5120 | 0.1 02 03 04 06
20480( 6.7 6.7 6.8 13.8 139 20480 0.2 02 04 06 1.0
81920( 7.0 7.0 70 152 153 81920 0.2 0.2 05 0.7 1.2

Table 1. Assembly times (left) and recompression times (right) for A4 ([ms/N], uni-
form mesh-refinement).

IN /pH 2 3 4 5 6 \ full HN /pH 2 3 4 5 6 ‘
320 | 59 64 77 95 11.7| 100 || 320 || 5.8 59 6.0 T4 75
1280 || 12.3 13.5 16.8 20.9 25.4| 40.0 || 1280 || 12.1 12.3 12.8 17.0 17.3
5120 | 17.8 21.1 30.0 40.5 50.9 |160.0 || 5120 | 17.4 184 20.7 324 33.1
20480( 21.0 26.0 39.5 56.9 76.4|640.0 [|20480(| 20.4 21.7 24.3 419 434
81920| 22.8 289 45.2 67.0 92.9|2560.0(|81920(| 22.1 23.6 274 47.3 49.3

Table 2. Storage requirements of Ay (left) and of AP (right) ([kB/N], uniform
mesh-refinement). For comparison, we give the values for the full matrix A.

6 Numerical Experiments

To underline our theoretical results, we performed numerical experi-
ments for the Landau-Lifshitz minimization problem in the large-
body limit [8]. We discretized the corresponding FEuler-Lagrange
equations by a Galerkin method with 7-piecewise constant ansatz
and test functions, where 7T is a triangulation of 2 C R? by rectan-
gular elements which admits hanging nodes. More specifically, we
considered a ferromagnetic rod 2 = (—0.5,0.5) x (—2.5,2.5), with
the uniform initial mesh consisting of N = 20 squares. For the cor-
responding numerical analysis and an effective implementation, the
reader is referred to [5, 6].

IN/p[ 2 3 4 5 6 ] [N/p[ 2 3 4 5 6 |
320 ||2.7_5 2.9_¢ 3.3_7 3.5_58 4.0_9 320 ||3.7_5 3.6_6 2.9_7 2.3_5 2.0_9
1280 ([1.5_5 1.6_6 1.7_7 1.8_g 2.1_¢ 1280 (|2.5-5 2.0_6 2.6_7 2.0_g 1.9_9¢
5120 ||5.5_6 5.8_7 6.0_g 6.1_9 6.7_1¢ 5120 ||8.4_6 9.2_7 1.3_7 8.0_9 6.7_10
20480(|1.7—¢ 1.8-7 1.8_5 1.8_9 2.1_19 20480(|2.4—¢ 3.0_7 4.2_5 2.2_9 2.7_10

Table 3. Errors |A — A2 (left) and ||A — A5"||2 (right) (uniform mesh-refinement).



(N/p[ 2 3 4 5 6] [N/p[ 2 3 4 5 6]

308 20 20 21 23 24 308 01 01 01 01 02
1244 | 44 44 44 6.2 6.2 1244 || 0.1 01 01 02 03
6548 || 5.0 5.1 85 9.2 135 6548 || 0.2 02 03 05 0.6
26204 | 6.1 6.1 109 12.6 184 26204| 02 03 03 08 09
117524 7.0 7.2 13.3 134 225 117524| 0.2 03 05 09 1.3

Table 4. Assembly times (left) and recompression times (right) for Ay ([ms/N], adap-
tive mesh-refinement).

(N/p[ 2 3 4 5 6 |[full|[N/p[ 2 3 4 5 6 |

308 57 61 73 90 11.5| 9.6 308 55 56 56 6.5 6.6
1244 || 12.7 139 17.3 21.0 25.0| 389 || 1244 | 12.3 12.6 12.8 173 17.5
6548 || 18.0 23.8 34.2 46.5 54.9|204.6 || 6548 || 16.8 18.0 26.5 29.1 37.9
26204 || 21.8 30.7 46.6 66.0 80.4 | 818.9 ||26204 || 20.8 30.7 35.8 40.0 53.1
117524|  24.9 33.9 54.0 76.8 101.3(3672.6|(117524|( 23.6 25.9 41.2 43.8 65.6

Table 5. Storage requirements of Ay (left) and of AP (right) ([kB/N], adaptive
mesh-refinement). For comparison, we give the values for the full matrix A.

The experiments were conducted using the HLib software pack-
age by S. Borm and L. Grasedyck of the Max-Planck-Institute for
Mathematics in the Sciences (Leipzig, Germany). We utilized a Com-
paq/HP AlphaServer ES45 under Unix, with 32 GB of RAM and four
Alpha EV68 CPUs running at 1 GHz each. Implementational details
can be found in [10, 11]; in particular, the H2-factorization of a block
A“P|,,.. was stored only if this was cheaper than storing the exact
matrix block.

Tables 1-3 contain experimental results (assembly times, storage
requirements, and the error ||[A — Ay/||s computed by a power iter-
ation) for uniform mesh-refinement. Moreover, we compared Ay to
the matrix AP obtained by adaptive H*-recompression [4] of Ay.

N /p[ 2 3 4 5 6 | N /p] 2 3 4 5 6 |
308 [|13.9.53.9_66.1_739_5 1.9_9 308 [|1.6_4 1.3_52.4_6 1.0_7 4.6_9
1244 |[2.5_5 2.8 629 7 2.7_g 4.1 9 1244 |[1.6_4 7.5_¢ 1.1 _4 4.7_g 8.6_9
6548 ||1.4_5 1.6_6 1.5_7 1.6_g 2.5_9 6548 ||3.1_5 2.6_¢ 2.1_7 2.6_5 3.2_9
26204(/5.1_¢ 5.8_7 5.5_8 6.8_9 9.7_10 26204(/6.8_¢ 6.4_7 5.7_8 6.8_9 9.7_10

Table 6. Errors ||A—Ay]||2 (left) and ||A —AZ"||2 (right) (adaptive mesh-refinement).



Note that A%” provides almost the same accuracy as Ay, but typ-
ically requires only 70% of the storage, and that the recompression
times are negligible in comparison to the respective assembly times.

Finally, in Tables 4-6, we give the corresponding results for a
sequence of adaptively generated meshes. Here, 77U+ is obtained
from 7V as follows: First, 7V is refined uniformly. Then, in a second
step, we additionally refine either the four corner elements of {2 (for
j even) or all the elements along the edges of {2 (for j odd). Meshes
of this type are observed in [6] for an adaptive mesh-refining strategy
based on a residual a posteriori error estimate.
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