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BETWEEN RIGID POLYGONAL BODIES.

PART I: ANALYSIS

NIKOLA POPOVIĆ, DIRK PRAETORIUS, AND ANJA SCHLÖMERKEMPER

Abstract. The mathematical and physical analysis of magnetoelastic phenomena is a topic of
ongoing research. Different formulae have been proposed to describe the magnetic forces in macro-
scopic systems. We discuss several of these formulae in the context of rigid magnetized bodies. In
case the bodies are in contact, we consider formulae both in the framework of macroscopic electro-
dynamics and via a multiscale approach, i.e., in a discrete setting of magnetic dipole moments. We
give mathematically rigorous proofs for domains of polygonal shape (as well as for more general ge-
ometries) in two and three space dimensions. In an accompanying second article, we investigate the
formulae in a number of numerical experiments, where we focus on the dependence of the magnetic
force on the distance between the bodies and on the case when the two bodies are in contact. The
aim of the analysis as well as of the numerical simulation is to contribute to the ongoing debate
about which formula describes the magnetic force between macroscopic bodies best and to stimulate
corresponding real-life experiments.

1. Introduction

The analysis and modeling of magnetoelastic phenomena is a topic of ongoing research in both
mathematics and physics. One aspect of the analysis concerns formulae for the magnetic force
acting between rigid bodies, on which we focus throughout the present article. The force which is
exerted by a magnetic field on a single magnetic dipole is well understood; similarly, there is no
controversy regarding the total acting magnetic force between macroscopic rigid magnetized bodies
that are a positive distance apart, i.e., not in contact.

By contrast, formulae for the magnetic force acting inside macroscopic magnetized systems have
been under discussion for quite a time, cf. e.g. [Bob00, Bro66, DPG96, EM90]. For the magnetic
force acting between two portions of one rigid magnetized body, different formulae were derived
within the context of macroscopic electrodynamics. Similarly, for the case of two magnetized bodies
that are in contact, one can find various force formulae in the literature. This has resulted in some
controversy. We refer to [Bob00] for a clarifying exposition: Several of the formulae occurring in
the literature are physically equivalent if one considers appropriate sets of physical fields, see also
[Bro66, Dör68, DPG96].

In the context of rigid magnetized bodies considered here, however, the force formulae differ due
to intrinsic differences in the modeling: One approach is based on macroscopic electrodynamics,
whereas the other sets out from a discrete setting of magnetic dipole moments of which the con-
tinuum limit is calculated. This latter approach leads to an additional contribution to the force,
which is due to interactions of dipoles close to the interface of the two bodies in contact. Since
we assume that the bodies are rigid and that no external fields are present, we believe that no
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additional force terms of magnetostatic origin have to be taken into account; see the discussion in
[PPS] for details.

The question which of the formulae under consideration is the most appropriate one in that it
describes nature best has not been resolved yet. The aim of this article as well as of its companion
paper [PPS] is to contribute to the ongoing debate by studying several of these formulae, and the
relation between them, both analytically and numerically. In particular, we hope that our study
will stimulate clarifying experimental work.

To the best of our knowledge, it is not possible to measure the magnetic force within magnetized
bodies, i.e., the force exerted by one portion of a magnetic body on its (“nested”) complement. We
therefore study a different setup, which seems to be realizable in the context of real-life experiments.
The results of these experiments should also give some insight into the question which formula de-
scribes the force within magnetized bodies most accurately. More specifically, the setup considered
in this article is the following: Let A and B be two magnetized rigid bodies, with magnetization
m, in two or three space dimensions. We assume that A and B are either a positive distance apart
or that they are in contact. However, they do not have to be nested, i.e., we do not require A ⊂ B,
where A denotes the closure of A under the usual Euclidean norm on R

d (d = 2, 3).
If the distance between A and B is greater than zero, we are concerned primarily with the classical

force formula F(A,B) =
∫
A(m · ∇)HB dx, see e.g. [Bob00, Bro66]. Here, HB is the magnetic

field generated by the magnetization in B which is given as the solution of the corresponding
stationary Maxwell equations, cf. Section 2. (Similarly, the fields generated by mA and mA∪B

will be denoted by HA and HA∪B, respectively.) In [PPS], we investigate F(A,B) in a series of
numerical experiments in which the force is computed in dependence on the distance between A
and B.

At the end of Section 2, we briefly discuss another force formula for this setting, namely

F̃(A,B) =
∫
A(m · ∇)HA∪B dx, which is for instance considered in [LL84]. This formula differs

from F(A,B) by a term which depends only on the specific assumptions on A and mA and which
is hence independent of B and mB as well as of the distance between A and B.

If the distance between A and B is zero, i.e., if A and B are in contact, we take two different
approaches. First, we consider and rigorously prove a force formula which was extensively discussed
by Brown [Bro66], cf. Theorem 3.1. We denote the corresponding formula by FBr. The proof
provided here is a generalization of a result in [Sch02, Theorem 2.1] from C2 domains to Lipschitz
domains with piecewise C1,1 boundaries in two and three dimensions; the domains are now assumed
to be in contact, but are not necessarily nested. (Here, C2 and C1,1 are appropriately defined
spaces of twice continuously differentiable functions and of differentiable functions with Lipschitz
continuous derivatives, respectively.) Moreover, we establish the following relation between F and
FBr: Let Bε be a shifted copy of B such that the distance between A and Bε is ε. Then, we show
that FBr(A,B) is the limit of F(A,Bε) as the distance between A and Bε tends to zero.

Secondly, we consider a force formula, Flim, which is derived from a discrete setting of magnetic
dipole moments. The resulting expression contains an additional surface force term, called Fshort,
which reflects the structure of the underlying lattice. The derivation of the corresponding continuum
limit is based on methods adapted from [Sch05], where it is assumed that A and B are three-
dimensional and nested. In Theorems 3.3 and 3.4, we generalize the results of [Sch05] to the case
of two magnetic polygonal Lipschitz domains A and B in R

2 or R
3 which are in contact but not

necessarily nested. (For an extension of these results to more general domains, cf. Remark 3.7
below.)

From a mathematical point of view, the generalization of both FBr and Flim in the present setting
requires stronger results on the regularity of the corresponding solutions of Maxwell’s equations
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and a stronger statement on lattice approximations of surface integrals than is required for the
analysis of the “nested” setting, cf. Proposition 3.5; these are provided in [Schb, Scha].

Finally, we refer to [PPS] for the numerical simulation of the above formulae as well as for a
physical interpretation. In particular, in Section 4 of [PPS] we collect the conclusions of our study,
and we comment on open topics for future research as well as on related analytical questions.

2. Separated Magnetic Bodies

In this section, we review a (well-known) classical formula for the magnetic force acting between
two separated magnetized bodies. To be precise, we make the following assumptions throughout:
Let A,B ⊂ R

d (d = 2, 3) be given, where the requirement that A and B are separated implies
A ∩ B = ∅, and let ε := dist(A,B) > 0 denote their (Euclidean) distance. We assume that A and
B are bounded Lipschitz domains in R

d with polygonal boundaries and finitely many corners or
edges. As it turns out, these assumptions are sufficient for the numerical experiments performed
in [PPS]; moreover, they allow us to easily apply regularity results from [Scha]. However, we note
that they could in principle be relaxed, cf. also Remark 3.7.

Let mA and mB denote the magnetization fields on A and B. We assume that mA : A → R
d and

mB : B → R
d are Lipschitz continuous vector fields that are supported on A and B, respectively,

i.e., there holds mA ∈ W 1,∞(A) and mB ∈ W 1,∞(B). For technical reasons, we extend mA and
mB by zero to the entire space R

d. The magnetic force F(A,B) which is exerted by B on A is
given by

F(A,B) =

∫

A
(mA(x) · ∇)HB(x) dx =

∫

A

d∑

j=1

(mA)j(x) ∂jHB(x) dx(2.1)

(see e.g. [Bob00, Bro66]), where (mA)j , 1 ≤ j ≤ d denotes the j-th component of mA and HB is
the magnetic field obtained from the magnetostatic Maxwell equations

divBB = 0, curlHB = 0, BB −HB = γmB,

i.e., we assume that there are no conduction currents present. Here, BB denotes the magnetic
induction, and γ is a constant which depends only on the choice of physical units: In Gaussian
units, there holds for instance γ = 4π, whereas γ = 1 corresponds to the Lorentz-Heaviside unit
system, cf. [Bro66, p. 6]. According to the Stokes Theorem, the magnetic field reads HB = −∇uB,
where the magnetic potential uB : Rd → R is the solution of the corresponding Poisson equation
stated in weak form as

div(−∇uB + γmB) = 0 in D′(Rd) := (C∞
c (Rd))′;

here, D(Rd) = C∞
c (Rd) denotes the space of compactly supported functions on R

d and D′(Rd) is its
dual space. Note that, as a consequence, we have the transition conditions [∇uB ·nB] = −γmB ·nB

as well as [uB] = 0 on ∂B, with mB the inner trace of mB with respect to B, nB the outer normal
vector on ∂B, and [·] the difference between the outer and the inner trace. In particular, for x /∈ ∂B
the magnetic field HB has the integral representation

HB(x) = −γ

∫

B
(−∇ ·mB)(y)∇N(x− y) dy − γ

∫

∂B
(mB · nB)(y)∇N(x− y) dsy,(2.2)

where sy denotes the surface measure, see e.g. [ES98, p. 73]. Here, mB is understood in the sense of
traces. (This convention will be applied throughout the article; if nothing else is specified, the trace
is always taken from inside the boundary.) Moreover, the Newtonian kernel N(·) and its gradient
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∇N are given by

N(x) :=

{
− 1

2π log |x| for d = 2,
1
4π

1
|x| for d = 3

and ∇N(x) =

{
− 1

2π
x

|x|2
for d = 2,

− 1
4π

x
|x|3

for d = 3,

respectively. Note that under the above assumptions, there holds HB ∈ W 1,1(A), see [Scha].
Since the distance ε between A and B is positive, we can substitute (2.2) into (2.1) and integrate

by parts to obtain

F(A,B) =

∫

A
(−∇ ·mA)(x)

(
− γ

∫

B
(−∇ ·mB)∇N(x− y) dy

− γ

∫

∂B
(mB · nB)(y)∇N(x− y) dsy

)
dx

+

∫

∂A
(mA · nA)(x)

(
− γ

∫

B
(−∇ ·mB)∇N(x− y) dy

− γ

∫

∂B
(mB · nB)(y)∇N(x− y) dsy

)
dsx.

(2.3)

In the numerical experiments in [PPS], we will restrict ourselves to magnetization fields mA and
mB that are constant on A and B, respectively. Then, all terms in (2.3) except for the last one
vanish. We quote the corresponding formula for this particular case for later reference here:

Fconst(A,B) = −γ

∫

∂A
(mA · nA)(x)

∫

∂B
(mB · nB)(y)∇N(x− y) dsy dsx.(2.4)

Remark 2.1. Though we are usually interested in small distances, we want to comment briefly
on the behavior of |F(A,B)| for ε large. Since |x − y| > dist(A,B) for all x ∈ A and y ∈ B, we
have |∇N(x − y)| ≤ c|x − y|1−d ≤ c dist(A,B)1−d for some generic constant c. Hence, (2.3) can
be estimated by c dist(A,B)1−d, since ∇ · mA, ∇ · mB, mA · nA and mB · nB are bounded by
assumption. This estimate is well-known for d = 3: For large distances, the magnetic force between
two bodies decreases like dist(A,B)−2.

This bound on the force, however, certainly is not accurate as the distance between the bodies
tends to zero and would correspond to an infinitely strong force which is not observed in nature.
The force between two bodies in contact is strong, but not infinitely so, see also [PPS]. �

As already mentioned in the introduction, we want to consider briefly another force formula for

positive distances which is discussed in the literature, F̃(A,B) =
∫
A(mA ·∇)HA∪B dx. A calculation

which is similar to the one that gives (3.3) below yields

F̃(A,B) =

∫

A
(mA · ∇)HB dx−

γ

2

∫

∂A
(mA · nA)

2nA dsx

= F(A,B)−
γ

2

∫

∂A
(mA · nA)

2nA dsx,

see also [LL84, Equation (35.4)]. Here, the term γ
2

∫
∂A(mA · nA)

2nA dsx does not depend on
the distance between A and B, but only on the specification of A and mA. In the numerical
experiments in [PPS], we always assume a uniform magnetization mA. Due to our assumptions on
the geometries of the magnetic bodies under consideration, we have γ

2

∫
∂A(mA · nA)

2nA dsx = 0

and, hence, F(A,B) = F̃(A,B).
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3. Magnetic Bodies in Contact

In this section, we discuss two force formulae for the case when the two magnetized bodies are in
contact. Let A and B be two domains in R

d, with positive surface measure ∂A∩∂B, and denote the
corresponding magnetizations by mA and mB, respectively. For ease of presentation and in view
of the upcoming application in [PPS], we make the following assumptions throughout this section.
All these assumptions are essentially of a technical nature and are inherited from the results of
[Schb, Scha] used in the proofs below.

Assumption A. Let d = 2 or d = 3 be fixed.

(1) A and B are bounded Lipschitz domains in R
d with polygonal boundaries and finitely many

corners or edges such that A ∩ B = ∅. Moreover, A and B are in contact, i.e., the surface
measure of ∂A ∩ ∂B ⊂ ∂A is positive;

(2) the corresponding magnetizations mA : A → R
d and mB : B → R

d are Lipschitz continuous
and are supported on A and B, respectively, i.e., there holds mA ∈ W 1,∞(A) and mB ∈
W 1,∞(B). Moreover, mA and mB are extended by zero to the entire space R

d.

In Remark 3.7, we will briefly comment on how the above assumptions on A and B can be
relaxed. We consider two formulae for the force acting between A and B in the following, namely
FBr and Flim, which are stated in Equations (3.3) and (3.26) below.

3.1. Brown’s Force Formula FBr. The formula which we refer to as Brown’s force formula was
analyzed extensively by Brown [Bro66] in the form

FBr(A,B) :=

∫

A
(mA(x) · ∇)HA∪B(x) dx+

γ

2

∫

∂A
(mA(x) · nA(x))

2nA(x) dsx.(3.1)

Here, HA∪B = −∇uA∪B denotes the magnetic field generated by the magnetization mA∪B =
mA +mB. The potential uA∪B : Rd → R is a solution of

div(−∇uA∪B + γmA∪B) = 0 in D′(Rd),

which implies that the transition conditions

[∇uA∪B · nA] = γ(mB −mA) · nA and [uA∪B] = 0 on ∂A(3.2)

(with mB = 0 on ∂A \ (∂A ∩ ∂B)) as well as

[∇uA∪B · nB] = γ(mA −mB) · nB and [uA∪B] = 0 on ∂B

(with mA = 0 on ∂B \ (∂A ∩ ∂B)) must hold.
For three-dimensional nested bodies with C2 boundaries, it is shown in [Sch02] that Brown’s force

formula equals
∫
A(mA(x) · ∇)HB(x) dx and, hence, that FBr is equivalent to the classical formula

(2.1) if that formula is applied formally to the case when A and B are in contact. In the following
theorem, we prove that this assertion is also valid in our geometrical setting, both in two and in
three dimensions.

Theorem 3.1. Under Assumption A, there holds

FBr(A,B) =

∫

A
(mA(x) · ∇)HB(x) dx.(3.3)

Proof. By the linearity of Maxwell’s equations we have HB = HA∪B −HA. Thus,
∫

A
(mA · ∇)HB dx =

∫

A
(mA · ∇)HA∪B dx−

∫

A
(mA · ∇)HA dx,
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where the existence of the integrals follows from∇HA,∇HA∪B ∈ L1(A) [Scha, Theorem 16]. Hence,
we only need to show that

F0 :=

∫

A
(mA(x) · ∇)HA(x) dx = −

γ

2

∫

∂A
(mA · nA)

2(x)nA(x) dsx.(3.4)

An integration by parts yields

F0 =

∫

A
(−∇ ·mA)(x)HA(x) dx+

∫

∂A
(mA · nA)(x)H

−
A(x) dsx.(3.5)

Here, HA is the gradient of the solution of the corresponding Poisson equation, which can be
represented in analogy to (2.2):

HA(x) = −γ

∫

A
(−∇ ·mA)(y)∇N(x− y) dy − γ

∫

∂A
(mA · nA)(y)∇N(x− y) dsy

for almost every x ∈ A and in L1(A) [Scha, Theorem 13]. For x ∈ ∂A, a study of the respective
gradients of the Newton potential and the single-layer potential yields that the inner trace of HA

with respect to A is given by

H−
A(x) =− γ

∫

A
(−∇ ·mA)(y)∇N(x− y) dy − γ C

∫

∂A
(mA · nA)(y)∇N(x− y) dsy

−
γ

2
(mA · nA)(x)nA(x)

(3.6)

for almost every x ∈ ∂A and in L1(∂A), cf. [Scha, Theorem 13]. Here, c
∫
∂A(·) dsy denotes the

Cauchy principal value integral, i.e., c
∫
∂A f(x− y) dsy is shorthand for limδ→0

∫
∂A\Bδ(x)

f(x− y) dsy,

and Bδ(x) is the d-dimensional ball of radius δ > 0 about x.
By Assumption A, we have ∇ ·mA ∈ L∞(A) and mA · nA ∈ L∞(∂A). Since HA ∈ L1(A) and

H−
A ∈ L1(∂A), the integrals in (3.5) exist, and we can substitute the integral representations of HA

and H−
A into (3.5), which gives

F0 =

∫

A
(−∇ ·mA)(x)

(
− γ

∫

A
(−∇ ·mA)(y)∇N(x− y) dy

− γ

∫

∂A
(mA · nA)(y)∇N(x− y) dsy

)
dx

+

∫

∂A
(mA · nA)(x)

(
− γ

∫

A
(−∇ ·mA)(y)∇N(x− y) dy

− γ C

∫

∂A
(mA · nA)(y)∇N(x− y) dsy −

γ

2
(mA · nA)(x)nA(x)

)
dsx.

Next, we apply Fubini’s Theorem to the first term and change variables via x ↔ y. By the symmetry
of the kernel, this yields γ

∫
A(−∇ ·mA)(x)

∫
A(−∇ ·mA)(y)∇N(x− y) dy dx, which is the negative

of the above and hence is zero. An application of Fubini’s Theorem to the second term and an
exchange of the variables x and y shows that the second term is in fact the negative of the third.
Therefore, these two terms cancel. By the definition of the Cauchy integral, the fourth term reads

∫

∂A
(mA · nA)(x) lim

δ→0

∫

∂A\Bδ(x)
(mA · nA)(y)∇N(x− y) dsy dsx.

If A were smooth, the underlying convergence would be uniform. However, in our case we still
have convergence in L1(∂A) by [Scha, Lemma 11]. Since mA · nA ∈ L∞(∂A), the fourth term thus
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equals

lim
δ→0

∫

∂A
(mA · nA)(x)

∫

∂A\Bδ(x)
(mA · nA)(y)∇N(x− y) dsy dsx.

Again, an application of Fubini’s Theorem and an exchange of the variables x and y shows that
this term equals its negative; therefore it is zero. Hence F0 = −γ

2

∫
∂A(mA · nA)

2nA dsx, which
concludes the proof. �

As an aside, we mention that Equation (3.4) verifies what is to be expected on physical grounds:
As pointed out by [DPG96],

∫
A(mA(x) · ∇)HA(x) dx + γ

2

∫
∂A(mA · nA)

2(x)nA(x) dsx can be in-
terpreted as the self-force exerted by A on itself, which then has to be zero by conservation of
momentum.

In preparation for the numerical experiments presented in [PPS], we state Brown’s formula
separately under the additional assumption of constant magnetization fields.

Corollary 3.2. Provided that Assumption A holds and that mA and mB are constant on A and

B, respectively, it follows that

FBr
const(A,B) = −γ

∫

∂A
(mA · nA)(x) C

∫

∂B
(mB · nB)(y)∇N(x− y) dsy dsx

+
γ

2

∫

∂A∩∂B
(mA · nA)(mB · nA)nA dsx.

(3.7)

Proof. By [Scha, Theorems 13 and 16], we have HB ∈ W 1,1(A). Thus, Theorem 3.1 and an
integration by parts yield

FBr
const(A,B) =

∫

∂A
(mA · nA)(x)H

−
B(x) dsx.(3.8)

Here, H−
B is the inner trace of HB with respect to A, and is equal to the outer trace of HB with

respect to B. For mB constant, we thus have in analogy to (3.6)

H−
B(x) =− γ C

∫

∂B
(mB · nB)(y)∇N(x− y) dsy +

γ

2
(mB · nB)(x)nB(x)

for almost every x ∈ ∂A ∪ ∂B and in L1(∂A ∪ ∂B), see again [Scha, Theorem 13]. Again, there
holds mA · nA ∈ L∞(∂A); therefore, the formula for H−

B can be used in (3.8). Then, the first term
equals zero by a change of variables and Fubini’s Theorem, cf. the proof of Theorem 3.1. Since
(mB · nB)nB = (mB · nA)nA on ∂A ∩ ∂B, the assertion follows. �

We now briefly discuss the relation between FBr from (3.1) and the classical force formula F, see
(2.1), where we recall that F is a priori defined for separated magnetic bodies only. We begin by
indicating how Brown obtained his formula FBr in (3.1), cf. [Bro66, p. 53]. Brown was interested
in deriving a formula for the force which is exerted by one part of a magnetized body on its
complement. To that end, he considered two nested sets A ⊂ B. Since Brown did not want to
naively apply the force formula (2.1) for separated bodies, he introduced an interface layer in order
to separate the two bodies artificially. This allowed him to use the classical formula (2.1). Brown
then obtained his formula (3.1) in the limit as the thickness of the interface layer tends to zero. As
he pointed out, this approach neglects any short range contributions from dipole moments close to
the interface. (Note that precisely these contributions are considered in Section 3.2 below.)

One can show that the limit of the force F is equal to Brown’s force FBr as the distance between
A and B tends to zero. We give a proof in the simplified setting considered in [PPS], i.e., we assume
that A, B, mA, and mB satisfy Assumption A, but in addition also that A and B are rectangular
(or cuboidal) and that for ε = 0, they have a boundary segment in common.
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Let Bε be a shifted copy of B such that Bε =
{
x+ εe1

∣∣x ∈ B
}
, where e1 denotes the first unit

vector (1, 0) ∈ R
2, respectively (1, 0, 0) ∈ R

3. Then, ε = dist(A,Bε) > 0, and there holds

lim
ε→0

F(A,Bε) = lim
ε→0

∫

A
(mA(x) · ∇)HBε(x) dx

= lim
ε→0

∫

A
(−∇ ·mA)(x)HBε(x) dx+ lim

ε→0

∫

∂A
(mA · nA)(x)HBε(x) dsx

= lim
ε→0

∫

A
(−∇ ·mA)(x)HB(x− εe1) dx+ lim

ε→0

∫

∂A
(mA · nA)(x)HB(x− εe1) dsx.

Since the magnetic field HB(x − εe1) converges to HB(x) in L1(A) and to H−
B(x) in L1(∂A) as

ε → 0 and since, moreover, ∇HB ∈ L1(A) by [Scha, Theorem 16], we conclude that

lim
ε→0

F(A,Bε) =

∫

A
(−∇ ·mA)(x)HB(x) dx+

∫

∂A
(mA · nA)(x)H

−
B(x) dsx

=

∫

A
(mA · ∇)HB(x) dx

= FBr(A,B).

Remark 3.1. We take this opportunity to correct a wrong statement following Theorem 3.1
in [PPS05] which was unfortunately premature, resulting in misleading conclusions in [PPS05,
Section 4]. The limiting behavior of F(A,B) as described above is correct, cf. also the numerical
analysis in [PPS]. �

3.2. Force Formula Flim in the Discrete-to-Continuum Limit. The formula Flim is derived
in the continuum limit of a discrete setting of magnetic dipoles. It was introduced and studied
in [Sch02, MS02, Sch05] in the case when A = τ is a sub-body of a larger body Ω ⊂ R

3, with
B = Ω\ τ̄ . Here, we state the corresponding results in the setting of Assumption A. (In fact, it can
be shown that these results also hold for the more general domains defined in Remark 3.7 below.)
Note that the main ideas of the proofs given in [Sch02, MS02, Sch05] carry over. The required
modifications are of a rather technical nature and are discussed in full detail in [Schb] and [Scha].

Let L denote an (underlying) Bravais lattice of the magnetic material under consideration, i.e.,

let L =
{
x ∈ R

d
∣∣x =

∑d
i=1 µiei, µi ∈ Z

}
, where {e1, . . . , ed} is a basis of Rd. For simplicity, we

assume that the measure of the unit cell
{
x ∈ R

d
∣∣x =

∑d
i=1 λiei, λi ∈ [0, 1)

}
equals one; we can for

instance take L = Z
d. Moreover, let 1

ℓL =
{
z ∈ R

d
∣∣ ℓz ∈ L

}
, for ℓ ∈ N, denote the corresponding

scaled Bravais lattice. To each point of 1
ℓL we assign a magnetic dipole moment m(ℓ), which is

related to the magnetization by the scaling law

m(ℓ)(x) :=

{
m

(ℓ)
A (x) := 1

ℓd
mA(x) if x ∈ A ∩ 1

ℓL,

m
(ℓ)
B (x) := 1

ℓd
mB(x) if x ∈ B ∩ 1

ℓL.
(3.9)

By the superposition principle, the k-th component of the magnetic force exerted by dipoles in B
on those in A reads

F
(ℓ)
k (A,B) := γ

∑

x∈A∩ 1

ℓ
L

∑

y∈B∩ 1

ℓ
L

∂i∂j∂kN(x− y)
(
m

(ℓ)
A

)
i
(x)

(
m

(ℓ)
B

)
j
(y)

(3.10)

in the discrete setting, cf. e.g. [Sch05]. Here and in the following, we adopt the Einstein summation
convention, i.e., indices which occur twice in a formula are summed over. (Hence, (3.10) contains
sums over i, j = 1, . . . , d.)
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Let ϕ(δ) be a smooth function such that

ϕ(δ)(z) =

{
1 if |z| < δ

2 ,

0 if |z| > δ.
(3.11)

In order to be able to state the following theorems simultaneously in R
2 and R

3, we introduce the
abbreviations

P
(δ)
k (x− y) :=

{
(ϕ(δ)∂kN)(x− y) for d = 2,

∂k(ϕ
(δ)N)(x− y) for d = 3,

R
(δ)
k (x− y) :=

{(
(1− ϕ(δ))∂kN

)
(x− y) for d = 2,

∂k
(
(1− ϕ(δ))N

)
(x− y) for d = 3.

Note that clearly P
(δ)
k (x− y) +R

(δ)
k (x− y) = ∂kN(x− y).

Remark 3.2. The reason for the differing definitions of P
(δ)
k and R

(δ)
k in dependence on d is the

following: Recall that N is defined differently for d = 2 and d = 3, respectively. However, by the
above definitions, ϕ(δ) is multiplied by a homogeneous function of degree −1 in both cases. This
homogeneity is used in the proofs of (3.14) and (3.22) as well as in a scaling argument in (A.1)
below. �

With the help of R
(δ)
k and P

(δ)
k , we can split F(ℓ) into two parts, which we call the long range

part and the short range part, respectively:

F
(ℓ)
k (A,B) = γ

∑

x∈A∩ 1

ℓ
L

∑

y∈B∩ 1

ℓ
L

∂i∂jR
(δ)
k (x− y)

(
m

(ℓ)
A

)
i
(x)

(
m

(ℓ)
B

)
j
(y)

+ γ
∑

x∈A∩ 1

ℓ
L

∑

y∈B∩ 1

ℓ
L

∂i∂jP
(δ)
k (x− y)

(
m

(ℓ)
A

)
i
(x)

(
m

(ℓ)
B

)
j
(y)(3.12)

=: F
long(ℓ,δ)
k (A,B) + F

short(ℓ,δ)
k (A,B).

The continuum limit of F(ℓ) is obtained by the following limiting procedure,

Flim(A,B) := lim
ℓ→∞

F(ℓ)(A,B) = lim
δ→0

lim
ℓ→∞

Flong(ℓ,δ)(A,B) + lim
δ→0

lim
ℓ→∞

Fshort(ℓ,δ)(A,B)(3.13)

=: Flong(A,B) + Fshort(A,B),

where the existence of the limits on the right hand side of (3.13) is proven in the subsequent
Theorems 3.3 and 3.4. We first focus on the contribution coming from the long range part Flong:

Theorem 3.3. Under Assumption A, the limit Flong(A,B) := lim
δ→0

lim
ℓ→∞

Flong(ℓ,δ)(A,B) exists, and

there holds

Flong(A,B) =

∫

A
(mA · ∇)HA∪B dx+

γ

2

∫

∂A
(mA · nA)

(
(mA −mB) · nA

)
nA dsx,(3.14)

where mB denotes the outer trace on ∂A with respect to A, i.e., mB is equal to zero on ∂A\(∂A∩∂B)
and equals the inner trace of mB on ∂A ∩ ∂B with respect to B.

Proof. The inner limit limℓ→∞Flong(ℓ,δ) corresponds to replacing a Riemann sum by an integral,

lim
ℓ→∞

F
long(ℓ,δ)
k = γ

∫

A

∫

B
∂i∂jR

(δ)
k (x− y)(mA)i(x)(mB)j(y) dy dx

= γ

∫

A
(mA)i(x)∂i

(∫

A∪B
(mA∪B)j(y)∂jR

(δ)
k (x− y) dy

)
dx,

(3.15)
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where the second equality follows by a symmetry argument, cf. the proof of Theorem 3.1. The
outer limit of δ → 0 can be handled by a careful analysis of the relevant singular integrals: We set

(
H

(δ)
A∪B

)
k
(x) = γ

∫

A∪B
(mA∪B)j(y)∂jR

(δ)
k (x− y) dy(3.16)

for all x ∈ R
d; then, (3.15) gives

lim
ℓ→∞

Flong(ℓ,δ) =

∫

A
(−∇ ·mA)H

(δ)
A∪B dx+

∫

∂A
(mA · nA)H

(δ)
A∪B dsx.(3.17)

An integration by parts of (3.16) yields

(
H

(δ)
A∪B

)
k
(x) = −γ

∫

A∪B
(−∇ ·mA∪B)(y)R

(δ)
k (x− y) dy − γ

∫

∂A
(mA · nA)(y)R

(δ)
k (x− y) dsy

− γ

∫

∂B
(mB · nB)(y)R

(δ)
k (x− y) dsy

(3.18)

for all x ∈ R
d. The volume integral in (3.18) can be estimated as follows: Note that R

(δ)
k (x− y) is

supported on R
d \ Bδ/2(x) and that |R

(δ)
k (x − y)| ≤ c|x − y|−(d−1) for some constant c > 0. Since

∇·mA∪B is essentially bounded on A∪B, the volume integral in (3.18) converges uniformly to the
corresponding volume integral of HA∪B(x) as δ → 0, cf. e.g. [Scha, Proposition 12].

On compact subsets of the smooth portions of ∂A, the surface integrals converge uniformly; on
the remaining parts of ∂A, one has convergence in L1(∂A), cf. [Scha, Lemma 11]. The limit of

H
(δ)
A∪B is HA∪B(x) =

1
2(H

+
A∪B +H−

A∪B)(x), where H+
A∪B and H−

A∪B are the outer and inner trace
of HA∪B on ∂A with respect to A. By the transition condition in (3.2) and since HA∪B = −∇uA∪B,
we have (H+

A∪B(x) − H−
A∪B(x)) · nA(x) = −γ(mB − mA) · nA(x) for almost every x ∈ ∂A, with

mB = 0 on ∂A \ (∂A ∩ ∂B). Hence, HA∪B(x) =
γ
2 ((mA −mB) · nA)(x)nA(x) +H−

A∪B(x) almost

everywhere on ∂A and in L1(∂A) [Scha, Theorem 13].
Since ∇ ·mA ∈ L∞(A) and mA · nA ∈ L∞(∂A), we can take the limit as δ → 0 in (3.17), which

implies

lim
δ→0

lim
ℓ→∞

Flong(ℓ,δ) =

∫

A
(−∇ ·mA)HA∪B dx+

∫

∂A
(mA · nA)H

−
A∪B dsx

+
γ

2

∫

∂A
(mA · nA)

(
(mA −mB) · nA

)
nA dsx.

(3.19)

Moreover, since ∇HA∪B ∈ L1(A) by [Scha, Theorem 16], an integration by parts in (3.19) gives
(3.14). �

Remark 3.3. (a) A comparison of (3.14) and (3.1) shows

Flong(A,B) = FBr(A,B)−
γ

2

∫

∂A∩∂B
(mA · nA)(mB · nA)nA dsx.

(b) If, moreover, mA and mB are constant magnetization fields, (3.7) yields

F
long
const(A,B) = FBr

const(A,B)−
γ

2

∫

∂A∩∂B
(mA · nA)(mB · nA)nA dsx

= −γ

∫

∂A
(mA · nA)(x) C

∫

∂B
(mB · nB)(y)∇N(x− y) dsy dsx.

(3.20)

(c) Note that Flong does not depend on the specific choice of ϕ(δ). Given the definition of Flim,

which is independent of ϕ(δ), it follows that Fshort also has to be independent of ϕ(δ). �
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Next, we consider the short range contribution Fshort to the limit force:

Theorem 3.4. Under Assumption A, Fshort(A,B) := lim
δ→0

lim
ℓ→∞

Fshort(ℓ,δ)(A,B) exists, and there

holds

Fshort(A,B) =
1

2

d∑

i,j,p=1

(Sij1p, . . . , Sijdp)

∫

∂A∩∂B
(mA)i(mB)j(nA)p dsx,(3.21)

where (mA)i, (mB)j and (nA)p denote the i-th, j-th, and p-th component of the vectors mA, mB

and nA, respectively, and mB is the outer trace of mB on ∂A with respect to A. Moreover,

Sijkp := −γ lim
δ→0

lim
ℓ→∞

∑

z∈Bδ(0)∩
1

ℓ
L\{0}

(
∂i∂jP

(δ)
k (z)

)
zp

1

ℓd
.(3.22)

Remark 3.4. Note that the sum in (3.22) depends neither on the magnetizations nor on the
geometries of the magnets, but only on the underlying lattice L. In particular, (Sijkp)i,j,k,p=1,...,d

is not identically zero in general. See [Sch05] for a discussion of the values of Sijkp for d = 3 and
of the corresponding additional force terms, cf. also [PPS]. For d = 2, an analogous discussion is
given in Appendix A. �

Proof of Theorem 3.4. First, note that ∂i∂jP
(δ)
k (x − y) in (3.12) grows like |x − y|−(d+1) and thus

is hypersingular. This difficulty can be dealt with as follows: A change of variables via y = x + z
and a reorganization of the sum yield

F
short(ℓ,δ)
k = γ

∑

x∈A∩ 1

ℓ
L

∑

y∈B∩ 1

ℓ
L

∂i∂jP
(δ)
k (x− y)

(
m

(ℓ)
A

)
i
(x)

(
m

(ℓ)
B

)
j
(y)

= γ
∑

x∈A∩ 1

ℓ
L

∑

z∈Bδ(0)∩
1

ℓ
L\{0}

x+z∈B

∂i∂jP
(δ)
k (−z)

(
m

(ℓ)
A

)
i
(x)

(
m

(ℓ)
B

)
j
(x+ z)

= −γ
∑

z∈Bδ(0)∩
1

ℓ
L\{0}

∂i∂jP
(δ)
k (z)

∑

x∈Az∩
1

ℓ
L

(
m

(ℓ)
A

)
i
(x)

(
m

(ℓ)
B

)
j
(x+ z)

with Az :=
{
x ∈ A

∣∣x+ z ∈ B
}
, where we have again used the summation convention.

Note that the volume of Az is of the order z, which suggests that the resulting sum will be
singular. Since the unit cell which is associated to a lattice point in Az may not be contained in
Az, the number of points in Az cannot be naively compared with the volume of Az. However,
this obstacle can be circumvented by exploiting the lattice structure. To that end, we require the
following result [Schb, Proposition 1]:

Proposition 3.5. Let A and B satisfy Assumption A. Fix 0 < δ ≪ 1 and z ∈ Bδ(0) ∩
1
ℓL\{0}.

Moreover, let f : Az → R be Lipschitz continuous. Then, there exists an ℓ0 ∈ N such that for all

ℓ ≥ ℓ0,
∣∣∣∣
1

ℓd

∑

x∈Az∩
1

ℓ
L\{0}

f(x)−

∫

∂A∩∂B
f(x)(nA(x) · z)+dsx

∣∣∣∣ ≤ C|z|
4

3 .(3.23)

Here, (·)+ := max{0, ·}, and the constant C only depends on sup(f), on the Lipschitz constant of

f , and on the geometries of A and B. �

11



With f(x) = (mA)i(x)(mB)j(x + z), it follows from Proposition 3.5 and from the Lipschitz
continuity of mA and mB that

F
short(ℓ,δ)
k = −γ

∑

z∈Bδ(0)∩
1

ℓ
L\{0}

∂i∂jP
(δ)
k (z)

1

ℓd

∫

∂A∩∂B
(mA)i(x)(mB)j(x)(nA(x) · z)+ dsx(3.24)

to leading order. The higher-order terms in (3.24) converge to zero if one first takes the limit as
ℓ → ∞ and then the limit as δ → 0:

∑

z∈Bδ(0)∩
1

ℓ
L\{0}

∣∣∂i∂jP (δ)
k (z)

∣∣|z| 43 1

ℓd
≤ c

∑

z∈Bδ(0)∩
1

ℓ
L\{0}

|z|−(d+1)|z|
4

3

1

ℓd

ℓ→∞
−−−→ c

∫

Bδ(0)
|z|−d+ 1

3 dz ≤ cδ
1

3 .

Given the symmetry properties of the kernel P
(δ)
k and the fact that z ∈ Bδ(0) ∩

1
ℓL \ {0} implies

−z ∈ Bδ(0) ∩
1
ℓL \ {0} (since L is a Bravais lattice), we obtain

∑

z∈Bδ(0)∩
1

ℓ
L\{0}

∂i∂jP
(δ)
k (z)(nA(x) · z)+ =

1

2

∑

z∈Bδ(0)∩
1

ℓ
L\{0}

∂i∂jP
(δ)
k (z)(nA(x) · z).(3.25)

Thus, substituting (3.25) into (3.24), we find

F
short(ℓ,δ)
k = −

γ

2

∑

z∈Bδ(0)∩
1

ℓ
L\{0}

∂i∂jP
(δ)
k (z)zp

1

ℓd

∫

∂A∩∂B
(mA)i(x)(mB)j(x)(nA)p(x) dsx

up to terms of higher order. The convergence of the sum in (3.22) follows from [Sch05, Lemma 5]
for d = 3 and from [Schb, Theorem 13] for d = 2, respectively. Hence, we finally obtain (3.21). �

Corollary 3.6. Under Assumption A, Flim(A,B) as introduced in (3.13) is well-defined, and there

holds

Flim(A,B) = Flong(A,B) + Fshort(A,B).(3.26)

�

Remark 3.5. For constant magnetization fields mA and mB, Equation (3.26) reads

Flim
const(A,B) = F

long
const(A,B) + Fshort

const(A,B)

= F
long
const(A,B) +

1

2

d∑

i,j,p=1

(Sij1p, . . . , Sijdp)(mA)i(mB)j

∫

∂A∩∂B
(nA)p dsx.

(3.27)

If, additionally, A and B are nested, i.e., if ∂A ∩ ∂B = ∂A holds, Fshort
const(A,B) vanishes, since an

integration by parts shows
∫
∂A∩∂B(nA)p dsx =

∫
A ∂p1 dx = 0 in that case. �

Next, we summarize a few concluding remarks on the force formulae F, FBr, and Flim, which
will be useful for our numerical experiments and the interpretation thereof, see [PPS].

Remark 3.6. (a) A change in the sign of the magnetization of one body changes the sign of
the forces. Moreover, observe that the law of “actio equals reactio” holds for all formulae under
consideration, cf. [Sch02, Appendix B].
(b) In (2.4), (3.7) and (3.27), the norm of the forces scales like the product of the norms of
the magnetizations, since we assume the magnetizations to be constant fields on the two bodies,
respectively. �
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We end this section with a remark on how Assumption A on the magnetic domains A and B
can be generalized.

Remark 3.7. In the present setting, Assumption A is primarily required to ensure that the
results of [Schb, Scha] can be applied. There, A and B are assumed to be Lipschitz domains with
piecewise C1,1 boundaries, cf. [Schb, Definition 2] for a precise definition. Moreover, additional,
rather technical conditions are imposed. For the sake of brevity, we only outline those conditions
here and refer to [Schb] and [Scha] for details.

(1) A ∪B satisfies an outer cone property [Schb, Assumption A1];
(2) ∂A, ∂B, and ∂A ∪ ∂B satisfy a so-called non-degeneracy condition (S) that controls the

number of isolated points which have the same tangent vector, cf. [Schb, Definition 3];
(3) ∂A ∩ ∂B satisfies a so-called neighborhood estimate which allows one to bound volumes of

tubes about relative boundaries of portions of ∂A ∩ ∂B, see [Schb, Definition 4].

In particular, these requirements are satisfied if A and B are polygonal Lipschitz domains with
finitely many corners or edges. For further examples of domains satisfying the requirements (1)–
(3), the reader is referred to [Sch05, p. 236].

If the above weaker assumptions on A and B are imposed instead of Assumption A, we obtain
Theorems 3.1, 3.3, and 3.4 as well as the corresponding corollaries in an analogous manner. Finally,
we emphasize that the restriction to d = 2 and d = 3 is made for physical reasons only, and that
our mathematical analysis is valid in any dimension greater or equal than two.

Acknowledgment. The research of NP was supported partly by the Austrian Science Fund FWF
under grant P15274 and partly by the U.S. National Science Foundation under grant DMS-0109427.
Part of this work was performed while AS was affiliated with the Institute of Analysis, Dynamics,
and Modeling at the University of Stuttgart. Moreover, AS was supported by the RTN network
MRTN-CT-2004-50522.

Appendix A. Evaluation of Sijkp for d = 2

In this appendix, we evaluate Sijkp as defined in (3.22) for d = 2. We prove that (Sijkp)i,j,k,p=1,2

is not identically zero in general; cf. [Sch02] for the analogous result when d = 3. As mentioned in

Section 3 already, Sijkp does not depend on the specific choice of ϕ(δ). This allows us to reformulate
Sijkp so that it can be conveniently evaluated numerically.

Rescaling z ∈ L by ℓ and taking into account that −z ∈ L, one can show [Schb, Theorem 13]

Sijkp = −γ lim
δ→0

lim
ℓ→∞

∑

z∈Bℓδ(0)∩L\{0}

(
∂i∂jP

(ℓδ)
k (z)

)
zp = −γ lim

n→∞

∑

z∈Bn(0)∩L\{0}

(
∂i∂jP

(n)
k (z)

)
zp,

(A.1)

where we have used the fact that ∂kN is homogeneous of degree −1 when d = 2, cf. Remark 3.2.

Now, recall that there holds P
(n)
k = ϕ(n)∂kN for any sequence {ϕ(n)}n∈N of functions which

satisfy (3.11). In particular, one can choose a sequence of one-dimensional functions φn ∈ D(R)

with φn|{t<n/2} = 1 and φn|{t>n} = 0 and define ϕ(n)(z) := φn(|z|). Then, ∂kϕ
(n)(z) = φ′

n(|z|)
zk
|z| ,

and a somewhat lengthy but elementary calculation gives

−∂i∂jP
(n)
k (z) =

γ

2π

(
−

2

|z|4
φn(|z|) +

1

|z|3
φ′
n(|z|)

)

︸ ︷︷ ︸
=:f(|z|)

(
δijzk + δikzj + δjkzi

)

+
γ

2π

( 8

|z|2
φn(|z|)−

5

|z|
φ′
n(|z|) + φ′′

n(|z|)
)

︸ ︷︷ ︸
=:g(|z|)

zizjzk
|z|4

.

(A.2)

13



Moreover, by the definition of φn, there holds

f(|z|) =

{
γ
2π

2
|z|4

if |z| ≤ n
2 ,

0 if |z| ≥ n
and g(|z|) =

{
− γ

2π
8

|z|2
if |z| ≤ n

2 ,

0 if |z| ≥ n.

By (A.2), ∂i∂jP
(n)
k (z) is symmetric in the indices i, j, and k. Hence, only four types of terms in

(A.1) need to be considered,

S
(n)
iiik and S

(n)
ikkk(A.3)

as well as

S
(n)
iikk and S

(n)
kkkk,(A.4)

where i 6= k. The sums in (A.3) are antisymmetric in zi and zero if zi = 0. Therefore, the two
terms in (A.3) turn out to be zero for all n ∈ N if L is the square lattice Z

2. Consequently, the
limit in (A.1) is then also zero. As for (A.4), the terms that occur in the sums in (A.1) are given
by

f(|z|)z2k + g(|z|)
z2i z

2
k

|z|4
and 3f(|z|)z2k + g(|z|)

z4k
|z|4

,

respectively, and are symmetric in all components of z. Our aim is to show that these terms cannot
be zero simultaneously, at least if L = Z

2. To that end, we split the sum over all lattice vectors in
the ball Bn = Bn(0) into a sum over all lattice vectors in Bn \Bn/2 and a sum over Bn/2 = Bn/2(0).
A change of variables yields

∑

z∈Bn\Bn/2∩L

(
∂i∂j(ϕ

(n)∂kN)(z)
)
zp =

∑

z∈B1\B1/2∩
1

n
L

(
∂i∂j(ϕ

(1)∂kN)(z)
)
zp

1

n2
,(A.5)

where we have again made use of the fact that ∂kN is homogeneous of degree −1 when d = 2.
The right hand side of (A.5) is a Riemann sum and converges to

∫
B1\B1/2

(
∂i∂j(ϕ

(1)∂kN)(z)
)
zp dz

as n → ∞. Let ν denote the outer normal to ∂(B1 \ B1/2). Then, given the definition of ϕ(1), an
integration by parts shows that

∫

B1\B1/2

(
∂i∂j(ϕ

(1)∂kN)(z)
)
zp dz

=

∫

∂(B1\B1/2)

{
νi(z)

(
∂j
(
ϕ(1)∂kN

)
(z)

)
zp − νj(z)

(
ϕ(1)∂kN

)
(z)δip

}
dsz

= −

∫

∂B1/2

{ zi
|z|

(
∂j∂kN(z)

)
zp −

zj
|z|

∂kN(z)δip

}
dsz

=
γ

2π

∫

∂B1/2

{zizp
|z|3

(
δjk − 2

zjzk
|z|2

)
−

zjzk
|z|3

δip

}
dsz.

This implies
∫

B1\B1/2

(
∂k∂k(ϕ

(1)∂kN)(z)
)
zk dz = −

γ

2π

∫

∂B1/2

2
z4k
|z|5

dsz = −
3γ

4
for i = j = k = p

and
∫

B1\B1/2

(
∂i∂i(ϕ

(1)∂kN)(z)
)
zk dz = −

γ

2π

∫

∂B1/2

2
z2i z

2
k

|z|5
dsz = −

γ

4
for i = j 6= k = p.
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It remains to evaluate

s
(n)
ιιkk := −

∑

z∈Bn/2∩L\{0}

(
∂ι∂ι∂kN(z)

)
zk

for ι = k and ι 6= k, respectively. Since N is the fundamental solution of Laplace’s equation, there

holds
∑2

ι=1 s
(n)
ιιkk = 0. Hence, s

(n)
iikk = −s

(n)
kkkk for every n ∈ N. By Theorem 3.4 and the preceding

analysis, we know that s
(n)
iikk and s

(n)
kkkk converge in R as n → ∞. We define

S := lim
n→∞

s
(n)
kkkk = −

γ

2π
lim
n→∞

∑

z∈Bn/2∩L\{0}

2z2k
|z|4

(
3− 4

z2k
|z|2

)
,(A.6)

which gives limn→∞ s
(n)
iikk = −S. Finally,

Skkkk = S +
3γ

4
and Siikk = −S +

γ

4
.

Consequently, Skkkk and Siikk cannot be simultaneously zero, and it follows that the tensor S =
(Sijkp)i,j,k,p=1,2 is not identically zero. In particular, if L = Z

2, a brute-force numerical computation
shows S ≈ γ

2π2.50765.
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