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Abstract

We investigate the effect of a Heaviside cut-off on the front propagation dynamics of the so-called Burgers-Fisher-
Kolmogoroff-Petrowskii-Piscounov (Burgers-FKPP) advection-reaction-diffusion equation. We prove the existence
and uniqueness of a “critical” travelling front solution in the presence of a cut-off in the reaction kinetics and the
advection term, and we derive the leading-order asymptotics for the speed of propagation of the front in dependence
on the advection strength and the cut-off parameter. Our analysis relies on geometric techniques from dynamical
systems theory and specifically, on geometric desingularisation, which is also known as “blow-up”.

1 Introduction

Partial differential equations (PDEs) of reaction-diffusion type are frequently derived from discrete many-particle
systems in the large-scale limit as the number N of particles becomes infinite. However, discrepancies are observed
between the propagation speeds of front solutions that are found numerically in the underlying many-particle systems
and the corresponding speeds in the reaction-diffusion equations derived in the limit as N — oo [[1} 2| [3]. To remedy
these discrepancies, Brunet and Derrida [4] introduced a cut-off in the resulting reaction kinetics; for a general
reaction-diffusion equation with reaction kinetics f(u), their modification takes the form

d 92
o= 5 H W we), (L)

where the cut-off function W a priori only has to satisfy y(u,€) =1 when u > € and y(u,€) < 1 for u < €. Here,

u = u(x,t), with x € R and r > 0. The motivation in [4] was that, in N-particle systems, no reaction can take place

if the particle density is below some threshold value % = €& < 1. Applying the method of matched asymptotics, they

showed that for Fisher reaction kinetics f(u) = u(1 —u) [5]] in and a Heaviside cut-off H(u — ¢€), with H =0

when u < g, the shift in the propagation speed c of the front connectzing the homogeneous rest states u = 1 and u =0
T

that is due to a cut-off is, to leading order, given by Ac =2 —c¢ = e + O[(Ing)~3].

The above asymptotics has been derived rigorously by Dumortier et al. [6]] for a more general class of scalar
reaction-diffusion equations and a broad family of cut-off functions. They applied geometric desingularisation,
or “blow-up” [[7, [8]], to construct propagating front solutions to Equation (I.I)) as heteroclinic connections in the
corresponding first-order system of ordinary differential equations (ODEs) after transformation to a co-moving frame.
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Geometric desingularisation has since been applied successfully in the study of numerous other reaction-diffusion
equations with a cut-off 6, 9} |10, 11, |12]]. A well-developed alternative approach for determining the leading-order
shift in the propagation speed due to a cut-off relies on a variational principle [[13} 14} 15} |16].

In this article, we extend the results of [6} 9} |10l |11} |[12] to a family of advection-reaction-diffusion equations of the

form 5 5 5
ou ow_ou 1.2
5, a5 =55 +fw), (1-2)

with the advection term g(u)% describing the directed transport of u. As far as we are aware, the impact of a
cut-off on front propagation in advection-reaction-diffusion equations of the type in (I.2)) has not been studied before.
Specifically, we consider the following equation,

u du d%u

or Thugy = g el -, 4

which is known as Burgers-Fisher-Kolmogorov-Petrowskii-Piscounov (Burgers-FKPP) equation [[17, |18} |19, [20];
here, ku is the transport velocity, with k > 0 a real parameter. Equation (I.3) is a special case of the generalised
FKPP equation, see [21]], which models competing genotypes in a population and which has found applications in
a variety of fields that include fluid dynamics, population modelling, and chemical kinetics. It hence serves as a
prototypical model that illustrates the interaction between advection, reaction, and diffusion mechanisms in more
general advection-reaction-diffusion equations of the type in (I.2). In particular, it realises a pushed front propagation
regime which is not present in standard reaction-diffusion with Fisher reaction kinetics.

To study travelling wave solutions to (T.3)), we introduce the travelling wave variable & = x — ct, where ¢ denotes the
propagation speed. Setting U (&) = u(x,1), we obtain the travelling wave equation

—ceU' +kUU' =U" +U(1-U), (1.4)

subject to the boundary conditions U(—e<) = 1 and U(ec) = 0. The corresponding solution defines a front for the
Burgers-FKPP equation, @]), which connects the two rest states u = 1 and u = 0.

Defining V = U’ in (T:4), we obtain the first-order system

U =v, (15)
V= —cV+kUV—-U(1-U), ’
which has equilibria at Q~ := (1,0) and Q" := (0,0). Clearly, heteroclinic orbits for (T.3]) and front solutions to (T-3)
are equivalent. The following result can be found in [22]], where the existence of travelling front solutions to (T.3)) is
shown rigorously.

Theorem 1. [22, Theorem 4.1] Equation (I.3) admits a heteroclinic connection between Q~ and Q7 for ¢ > cqit

where
2 ifk<2
Corit = -7 1.6
et {’gﬁ if k> 2. (16)

Moreover, the corresponding front solution to (T.3) is pulled when k < 2 and pushed when k > 2. For k > 2 and
Cerit = 5 + 2, the heteroclinic orbit for (T:3) is given explicitly by V(U) = —5U(1-U).

As is the case for standard reaction-diffusion, Equation (I.1J), advection should give no contribution when u < 8( = ﬁ),

where N is the total number of particles in the underlying many-particle system [23]]. Hence, it seems plausible that a
cut-off should multiply both the reaction kinetics f(u) and the advection term g(u) % in (T.Z). Our aim in this article
is hence to prove an analogue of Theorem for the Burgers-FKPP equation with a Heaviside cut-off H(u — €),

du du d’u
E—i—kuaH(u—s)zﬁﬁ-u(l—u)H(u—s), (1.7



where k > 0 and € > 0 is the cut-off parameter, as before. Our focus on the Burgers-FKPP equation is further motivated
by the fact that, even in the simple Burgers-type advection-diffusion equation [24]]

du Tk du d*u
ke = =,
ot dx  dx?
a cut-off impacts on front propagation and the corresponding speed: it is well-known that Equation (I.8) admits a
travelling front solution connecting the rest states # = 1 and u = 0 which propagates with the unique speed ¢ = % One
can then show that introduction of a Heaviside cut-off function H (« — €) in (I.8)), whence
du du d%u
—tku—Hu—¢)= = 1.9
g TR Hu—e) =55, (1.9)
induces the shift Ac = %82 in the front propagation speed which can be derived either by matched asymptotics or via
an adaptation of the approach developed in this article.

(1.8)

Our main result can be formulated as follows.

Theorem 2. Let € € [0,&), with & > 0 sufficiently small, and let k > 0. Then, there exists a unique, k-dependent
propagation speed c(€) such that Equation (I.7)) admits a unique critical front solution connecting the rest states u = 1
and u = 0. Moreover, c(€) = ¢(0) — Ac(g), where ¢(0) = limg_,o+ ¢(€) = ¢t 18 the critical speed in the absence of a
cut-off, see Theorem [I] with

71'2 .
W if k S 2,

2 (K2 —4)*/¥ a2
K118/ T(1+4/R2)T(1-4/K7) o itk>2,

Ac(e) = (1.10)

to leading order in €.
Here and in the following, I'(-) denotes the standard Gamma function [25, Section 6.1].

In particular, Theorem 2 hence implies that the front propagation speed in (I.3)) is reduced by inclusion of a (Heaviside)
cut-off.

Remark 3. The above result is similar to that for the Nagumo equation with cut-off obtained in [10], which also
realises pulled and pushed front propagation regimes in dependence on a control parameter. Correspondingly, the
correction to the front propagation speed found in the pulled regime is again of the order &[(Ing)~?], whereas in the
pushed regime, it is proportional to a fractional power of €.

Remark 4. While our choice of Heaviside cut-off in Equation (1.7) is mostly made for analytical tractability, we
indicate in Section E]below how Theorem can be extended to more general choices of cut-off function y(u,€).

Remark 5. We note that (I.7) does not conserve mass due to the reaction kinetics u(1 — u)H (u — €). However, the
advection and diffusion terms can be written in mass conservation form as follows,

d d
a—lj—i—aFg(u) =u(l—u)H(u—e¢),

where

du %(uz—ez)—% ifu>e,
dx

"U
Fg(u):k/0 oH(o—¢€)do— — = " ou fu<e
. o :

The article is organised as follows: in Section [2] we apply geometric desingularisation (blow-up) to construct a
singular heteroclinic orbit I" for Equation (I.7)). In Section[3] we show that I" persists for € sufficiently small, therefore
establishing Theorem [2] and we provide numerical verification of our results. Finally, in Section 4] we discuss our
findings and outline future related work.



2  Geometric desingularisation

Introducing the travelling wave variable §& = x — ¢t and writing u(x,7) = U(§) in (I.7), we obtain the system of
equations

U'=v,
V= —cV+kUVH(U —¢€)—U(1 —U)H(U —¢), @.1)
=0

in analogy to (I.3), where the (U, V )-subsystem has been extended by the trivial equation for the cut-off parameter €.
We introduce the following blow-up transformation (geometric desingularisation) at the origin in (2.1IJ), which serves
to desingularise the non-smooth transition between the outer and inner regions in {U = €}:

U=#i, V=75, and &=FE. (2.2)
Here, (ii,7,&) € S := {(@,7,&) | @® + 7> + &> = 1} N {& > 0}, with 7 € [0, r¢] for ry > 0 sufficiently small.

As in [6, |8, |10, |26], we will analyse @) in two coordinate charts, K7 and K>, which are obtained by setting i =
1 and & =1 in (2.2), respectively. The rescaling chart K, will cover the “inner region” where U < €, while the
phase-directional chart K; will allow us to describe the dynamics in the “outer” region, with U > €. The transition
between the two regions, at {U = €}, will be realised in the overlap domain between these coordinate charts. We will
construct the singular (in €) heteroclinic orbit I" for by combining appropriate portions thereof in the two charts.
As will become apparent, the uniqueness of the “critical” propagating front in Theorem 2]is a consequence of the fact
that a unique choice of ¢ yields a persistent heteroclinic connection between O~ = (1,0) and Q% = (0,0).

Remark 6. For any object [J in (U, V, €)-space, we denote the corresponding blown-up object by . Moreover, in
chart K;, with i = 1,2, that object will be denoted by [J;.

2.1 Dynamics in chart K; (‘“Inner region”)

In this subsection, we construct the portion I'; of the singular heteroclinic orbit I" in chart K. Setting € =1 in (2.2)),
we have the transformation
U=nu, V=nrnwn, and &=r, 2.3)

which we apply to (2.1)) to obtain the system of equations

l/tlz =V,

Vh = —cvp +krauavoH (uy — 1) —up (1 — rpup ) H (up — 1), 2.4)
/

rz :0

We consider (2.4) in the inner region where U < &, which is equivalent to up < 1, by (2.3). Therefore, H(up — 1) =0,
which implies that (2.4) reduces to

/

U, =Vva,

Vh = —cva, 2.5)
I

r2 —O

We define the line of equilibria £; = {(0,0,r2) | r» € [0,r¢]} for 2:3). Here, we are particularly interested in the
point Q5 = (0,0,0) € £;, which is found by taking the singular limit as r, — 0" on 3. (While Equation (2.3) admits
equilibria for any u; € (0,1), we only consider up = 0, which corresponds to the point Q1 before blow-up.) The
eigenvalues of the linearisation of about Q5 are —c and 0 (double), where the second zero eigenvalue is due to
the trivial r,-equation. Taking r, — 0™ in (2.3)), we find the system

V2,

Uy =
2.6
vy = —c(0)vy, (2.6)
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Figure 1: Geometry and dynamics in chart K.

where we have used that ¢ — ¢(0) = c¢ri as r2(= €) — 0 and ¢y, is as defined in Theorem
We can solve for the stable manifold W (Q5) of 0 by writing

dva
du2

= _C(O)a
which we can integrate under the condition that v,(0) = 0; the unique solution is given by

I: Vz(uz) = —C(O)uz.

Therefore, invoking again Theorem[I} we can write

—2142 lfk<27
Lo < 2.7
) {—<§+z>u2 it>2, N

We emphasise that I'; is linear in uy for both & < 2 and k > 2; while the corresponding slope is k-dependent in the
latter case, by (I.6), that difference is immaterial for the dynamics.

Next, we introduce the entry section

Zizn = {(1,\/2,}’2) | (VQ,VQ) S [—Vo,O] X [0, r()]}7 (2.8)

which is the equivalent of the hyperplane {U = €} in chart Kj, to describe the transition of the orbit I', between
the inner and outer regions; here, vop > 0 is an appropriately chosen constant. We define the entry point into K3 as
P =T, NIN = (1,—-¢(0),0), where Pi" = (1,-2,0) for k <2 and Pi" = (1,— (4 + 2),0) for k > 2, by @-7). The
geometry in chart K is illustrated in Figure[I} The singular orbit I'; (in blue), which corresponds to the stable manifold
W;(Qz+ ) of the equilibrium at the origin, intersects the entry section Zizn in Pzi“. For ry € (0,rp], I'> will perturb to the
stable manifold Wy (é;) (in red) of the line of equilibria £ (in yellow).



2.2 Dynamics in chart K; (‘““Outer region”)

In this subsection, we will analyse the dynamics of Equation (2.1) in the phase-directional chart K;. Our aim is to
construct the singular orbit I'j, which is the continuous extension of I';, as defined in (2.7), to Kj.

Setting i = 1 in 2.2)), we have
U=r, V=rv, and E=ré&, (2.9)

which we apply to (2.1)) in the outer region where U > € to find

ry=rvi,
Vi = —cvi+krviH(1— &) — (1—r)H(1 — &) =i, (2.10)
8{ = —&V.

Here, H(1 — &) = 1 due to & < 1 in chart Kj. The system of equations in (2.10) has a line of equilibria at ¢, =
{(1,0,€;) | & € [0,&]} which corresponds to the steady state at O~ before blow-up. As other equilibria of (2.10)
depend on k, we will discuss them systematically in Sections andbelow. The point @ = (1,0,0) € ¢ is
obtained in the limit as & — 0.

Since € = r1€;, we will have to consider both r; — 0 and £ — 0 in the singular limit of € = 0. We will denote
the corresponding portions of the singular orbit I'y in the invariant planes {r; = 0} and {& =0} by I'f and I},
respectively.

We introduce the exit section
9% = {(r1,v1,1) | (r1,v1) € [0,70] X [=0,0]} 2.11)

to track F}L as it leaves chart K ; here, vo > 0 is defined as in (2.8). Clearly, Z{" is equivalent to the entry section Zi2“
in chart K> after transformation to Kj: as the change of coordinates k»; : K» — K| between the two charts is given by

K21 : ry =nuy, V= Vzuz_l, and € = uz_l, (2.12)

we have K (Zin) = £t Correspondingly, we can write P = (0,—c(0),1) = Ky (Pi") for the exit point in Z9",
where P}" = (1, —¢(0),0), as before.

In contrast to chart K>, the singular geometry and dynamics in K are qualitatively different for k <2 and k > 2, in that
the corresponding phase portraits will not be topologically equivalent. Therefore, we consider these regimes in (2. 1))
separately.

2.2.1 Pulled front propagation: k <2

We note that, when k < 2, the propagation speed c¢ reduces to ¢(0) = 2 = ¢ when either r; — 0% or gg = 0T, recall
Theorem |1} In addition to the line of equilibria ¢, , we have an equilibrium at P; = (0,—1,0). A simple calculation
shows the following result.

Lemma 7. The eigenvalues of the linearisation of (2.10) at P, are given by —1, 0, and 1, with corresponding
eigenvectors (1,k—1,0)7,(0,1,0)7, and (0,0,1)7, respectively.

We first outline the construction of I'{". Taking r; — 0" in (2:10), we obtain

Vi=—-2v1—1—vi,
, (2.13)
8] - _8] Vi,
which we can write as )
d 1
dvi _ (1) (2.14)

d&‘] &1V



To find a solution to Equation (2.14) so that the orbit I'} connects to I'; in the section I = i (i), we require
vi(1) = —¢(0) = =2(=v,(1)), by (2.12). The corresponding (unique) solution is given by

1+W()(é)

If:vi(e)=—
1 Vl( 1) WO(é)

) (2.15)

where Wy denotes the Lambert W function [27]], which is defined as the solution to Wy (z)eWO(Z) = z. We note that
Ff — Py = (0,—1,0) as & — 0™, which completes the construction.

To construct I';, we take £, — 0" in (2.10), which yields

ry=rvi,
) ) (2.16)
vi==2vi+krivi—(1—r1)—vy.

Clearly, (2.16) is equivalent to the unmodified first-order system in (2.I) with ¢ = ¢(0) after blow-down, i.e., after
transformation to the original (U,V, €)-space before the blow-up:

U'=v,

2.17
VI = 2V 4+kUV —U(1-U). @17

While we cannot explicitly solve (2.17) for k < 2, the following two results imply the existence of the orbit I'; . The
first of these is obtained by simple linearisation.

Lemma 8. The origin Q in (2.17) is a degenerate stable node with eigenvalue —1 (double) and eigenvector (—1,1)7,
k=24 k2 —4k+

while the equilibrium at 9~ = (1,0) is a saddle point with eigenvalues fg and corresponding eigenvectors
T

(ke vE—a+R),1) .

Next, we show that (2.17)) admits a trapping region for k < 2; the proof is inspired by [22 Theorem 2.1].

Proposition 9. The curves {V =0} and {V = —U(1 —U)} form a trapping region .7 for the flow of Equation (2.17)
when k < 2. Moreover, the curve {V = —U(1 —U)} is invariant under the flow of (2.17) when k = 2.

Proof. Substitution of V = 0 into (2.17) gives

v=0, (2.18)
V' =—U(1-U), '
which implies (0,1)-(0,—~U(1—U))T = -U(1-U) <0 due to 0 < U < 1. Similarly, substituting V = V(U) =
—U(1—-U) into (2.17), we obtain

U =-U(1-U),

V' =U(1-U)(1-kU) 19

and (—=V'(U),1)- (U",V)T = —(k—2)U?(1 —U) > 0 when k < 2, which also implies that V(U) = ~U(1 —U) is
invariant under the flow of (2.17) when k = 2. O



\4

U1

Y

1

Figure 2: Geometry and dynamics in chart K for k < 2.

Since the trapping region .7 contains only the two equilibria @~ and Q, and since the divergence of the vector field
in is negative for U € [0, 1) and all V, there are no periodic orbits in 7. Hence, there must exist a heteroclinic
connection between O~ and Q. That connection must pass through the negative V-plane and is consistent with the
stability properties of QF stated in Lemma It follows that the flow of (2.16) must enter an equivalent trapping
region .7 in chart K. The closed region .77 is bounded by the lines {r; = 0}, {v; =0}, and {v; = r; — 1} in the plane
{&1 = 0}. Therefore, we can conclude that the orbit I';” exists and is forward asymptotic to P;. Defining the section

iln = {(V(),Vl,gl) ‘ (Vl,gl) S [—V(],O] X [071]}7 (220)

with vp > 0 as in (2.8), we see that the point of intersection Plin =I7 ﬂZil“ is given by Plin = (r, viln, 0), where viln >—1,
as vi* € [ro — 1,0] by the proof of Proposition@

Hence, the construction of I'y =T"y UP U FT is complete in the case where k < 2; see Figure for an illustration of
the geometry in chart K in that case. The portions I'; and I'{” (in blue) of I'y are forward and backward asymptotic,
respectively, to the equilibrium at P and intersect the sections Ziln and 2" in Plin and P, respectively. For € € (0, &),
I'; will perturb to the unstable manifold W' (¢;") (in red) of the line of equilibria ¢ .

2.2.2 Pushed front propagation: k > 2

We now consider the singular dynamics in chart K; in the pushed propagation regime where k > 2. In analogy to the
pulled regime, ¢; is still a line of equilibria for (Z-I0). Since, however, ¢ — ¢(0) = £ +2 as r; — 0%, the point P, is
no longer an equilibrium for @]) Instead, we have two equilibria, at 151 = (07 —%,O) and f’l = (O, —%,O), which
undergo a saddle-node bifurcation as k — 2. We are interested in the strong stable eigendirection of the linearisation



about the origin in (I.3)), i.e., in the absence of a cut-off. Since the heteroclinic orbit V(U) = — %U (1-=U) is the union
of the unstable manifold W"(Q~) of O~ and the strong stable manifold W (Q™) of O, we restrict our attention to
Py. The point P; corresponds to the weak stable eigendirection at the origin in (T.3)), which is not relevant here.

The following lemma summarises the stability properties of P;.
Lemma 10. The eigenvalues of the linearisation of (2.10) at P = (O7 —%,O) are given by —%, § — %, and %, with
corresponding eigenvectors (%, l,O)T, (0,1,0)7, and (0,0, 1)7, respectively.

We again first construct the portion I'{” of I'y. Taking r; — 0T in (2.10), we obtain

k2
/ — _(Z = _ 1 _ 2
V1 (2+k)v1 Vi 2.21)
8{ = —&vy,
which we rewrite as P
ﬂ: 1+(§+;)v1+v%
de E1Vi '
Solving by separation of variables, we find
2
|k +2v; [ )
In— = (lng  +a)(k” —4
n|kV1+2‘4 (n 1+ )( )7
where « is a constant of integration. Exponentiating both sides in the above equation, we have
k+2v)¥
(k+2vy) . gl (2.22)
(kv +2)
with o/ = ek =4,
We choose &' so that the orbit I’ connects to I'; in the section " = k; (Zi). Thus, we require vi (1) = —c(0) =
. . . — k2
— (54 2)(=v2(1)), which is satisfied for o’ = ((1372)4 :
Finally, we note that FT is backward asymptotic to P;. Taking & — 0T, we conclude that
2
(k+42v1)k
(kv1 + 2)4 ( )

must hold, which is only true when v; — fg. Hence, the construction of Ff is complete.



r1

Figure 3: Geometry and dynamics in chart K; for & > 2.

Next, we consider the portion I of I'j. The limit as & — 07 in (Z.10) gives the system of equations

ry=ri,
v’l:—(g—l—z)vl—kknvl—(l—rl)—v%, 229
which is equivalent to (2.1)) after blow-down.
Lemma 11. For r; € (0,1] the system of equations in (2.24) admits an explicit orbit that is given by
I V1(r1)=—§(1—r1)7 (2.25)

with v (1) =0.

Proof. Recall that when k > 2 and ¢(0) = % + % = Cerit» We have an explicit orbit for (Z.I)) that is given by V(U) =
—%U (1-U), see Theorem Transformation to chart Ky, with v = r;v| and u = ry, yields the result. O

We conclude that I']” is forward asymptotic to Py and backward asymptotic to 07 . Moreover, Plin =17 ﬂZil“ =

(r07 %(ro — l),O), which completes the construction of the singular orbit I'j in the case where k > 2. The geometry in
chart K is illustrated in Figure [3]in that case.

10



2.3 Singular orbit T

We now combine the results of the previous two subsections to define the singular orbit I in (i, 7, €)-space.

Proposition 12. For any k > 0, there exists a singular heteroclinic orbit I" for Equations (2:4) and (2:10) that connects
0, t0 Q5.

Proof. We first consider the case where k < 2, i.e., the pulled front propagation regime, which is analogous to the
standard FKPP equation with a cut-off [6]. The orbit I, given by vy (uz) = —2uy, see (2.7), connects to Q;r and
intersects ' in Pi" = (1,—2,0). Next, we apply the change of coordinates in (2:12) to find Ky (P") = PP =
(0,—2,1). By construction, I'{" passes through P and is backward asymptotic to Py, see (2.13). Similarly, I';
is forward asymptotic to Py and backward asymptotic to O, by Proposition @ Therefore, we can now write I" as the
union of I'}, FT, and I'; with Q7, Py, and Q; in blown-up phase space, which proves the result for k < 2.

Next, we consider the case where k > 2, corresponding to the pushed propagation regime. Here, I'; is given by
vo(up) = — (% + %)ug, see (277), which again connects to Q5 and intersects £ in Pi" = (1, — (% + %) ,0). Applying
the change of coordinates in 2-12)), we find &y (Pi") = PP = (0,— (4 +2),1). We know that '}, constructed in
(2.22)), passes tPrough PP and is backward asymptotic to P = (O, — % , 0). §imilaﬂy, '], defined in (2.25)), is forward
asymptotic to P; and backward asymptotic to Q| . Therefore, we can write I" as the union of the orbits I'}, 1"1*, and I
with O, 131, and Q; in blown-up space, which shows the result for k > 2. O

3 Proof of Theorem

In this section, we prove our main result, Theorem@ We first show that the singular orbit I', which is obtained from
the orbit T constructed in Section [2| after blow-down, persists for € sufficiently small in Equation (2-I). Then, we
derive the leading-order asymptotics of the correction Ac(€) to the critical speed ¢(0) = ¢ that is due to the cut-off.
Finally, we illustrate our results numerically.

3.1 Persistence of I

The following result implies the existence of a unique front propagation speed c(&) for which there exists a critical
heteroclinic orbit in (2.1). While the proof is similar to that of [6, Proposition 3.1], we give it here for completeness.

Proposition 13. For € € (0, &), with & sufficiently small, k > 0, and ¢ close to ¢(0), there exists a critical heteroclinic
connection between O~ and Q" in Equation (2.I)) for a unique speed c(€) which depends on k. Furthermore, there
holds ¢(g) < ¢(0).

Proof. We first analyse (2.4) in the inner region, where U < €. In particular, we are interested in the stable manifold
W5 (£3), which is given explicitly by v2(u2) = —c(r2)uz when ra(= €) > 0, for general values of c. For r, fixed,
Ws (£; ) intersects X3 in the point (1,vi', ), where v = —c(€). From the definition of the blow-up transformation in

[22), we have that V" = vil'e = —c(e)e < 0, which implies 2 = —&.
We now consider the outer region, where U > €. For general ¢, the dynamics in that region are governed by
U =V,

3.1
Vi=—cV+kUV -U(1-U), G0

recall (I.5)). The intersection of the unstable manifold W"(Q~) of O~ with {U = €} can be written as the graph of an
analytic function V°"(c, €), with ag—zut > 0. A standard phase plane argument shows that V°"(c, &) must be (1) and
negative for ¢ < ¢(0), which implies V" > Vout,

Finally, we consider the case where ¢ = ¢(0) and &€ > 0. First, we take k < 2, in which case ¢(0) = 2. The trapping
region argument in Proposition [9] then shows that V' is bounded between the curves {V =0} and {V = -U(1 —U)}
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and, hence, that Vo' > —¢(1 —¢) in {U = €}. Therefore, we can conclude that V" = —2¢ < —&(1—€) < V" for any
€ > 0. Next, we take k > 2, in which case the singular heteroclinic orbit is known explicitly as V (U) = —% (1-0).
Therefore, we can write V°"(c(0),€) = —4&(1 —¢), which again implies V" = —(§ + 2)e < —4e(1 — &) = V" for

any € > 0.

We conclude by observing that W(Q™1) and W"(Q ™) must intersect in {U = €} for a unique value of c(g) < ¢(0),
which follows from the implicit function theorem and the fact that ag: agcl" > 0. O

It follows from Proposition [T3]that a Heaviside cut-off reduces the critical front propagation speed in Equation (I.3));
correspondingly, Ac(€) = ¢(0) — ¢(€) must be positive for € sufficiently small.

3.2 Leading-order asymptotics of Ac

In this subsection, we derive the asymptotics of the correction Ac to ¢(0) to leading order in €. Again, we distinguish
between the pulled and pushed front propagation regimes in (2.1).

3.2.1 Pulled front propagation: k£ <2

We first consider the case where k < 2. Recall that the dynamics in chart K; are governed by the system of equations
in (Z:10). Our aim is to approximate the transition map IT; : X" — Z¢"* under the flow of (2.10) for € € (0, &), with
& > 0 sufficiently small.

To that end, we first shift the equilibrium at P, = (0, —1,0) to the origin via the transformation V; = v + 1, and we set
¢ = ¢(0) — Ac = 2 —n?%. With these transformations, we can write (2.10) as
V/l = —r1(1 — Vl),
Vi=2-n)(1-V))—krf(1=V))=14r —(1-V})?, (3.2)
g =¢e(1-V)).

Rescaling “time” by dividing out a positive factor of 1 —V; from the right-hand sides in (3:2)), noting that the
€1-equation decouples, and appending the trivial equation for 71, we obtain

r.l:_rlv

) 1—k kr Vi — V2

V= —n24 ¢ )"1+V”‘ L, (33)
— Vi

n=0,

where the overdot denotes differentiation with respect to the new independent variable &.

Remark 14. The rescaling of “time” in (3.2) is implicitly defined via (1 —V; (&))< i = dg’ and merely affects the
parametrisation of solutions while leaving the phase portrait unchanged.

We have the following result, which can be shown in close analogy to [[6, Proposition 3.2].

Lemma 15. There exists a normal form transformation (r,V;,n) — (S(r1,V1,n),W(r1,V1,n),n) that transforms
Equation (3.3) to

§=-8,

. w2

W:_"Q_?W’ (3.4)
I =0.

That transformation respects the invariance of {r; = 0} and {n = 19}, for any 19 € R.

Proof. The statement follows from [28, Theorem 1]. O
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We note that the only resonant terms in (3.3)) are of the form V|', for n > 2. Therefore, all other terms can be removed
via a sequence of smooth near-identity transformations.

The normal form in (3.4)) is identical to the one stated in [6, Equation (34)]. Moreover, the analysis in [6] shows that

the correction Ac to ¢(0) is given by n? = —Z + ¢|[(Ing)~3] to leading order, as well as that it is independent of

(In 8)
the transformed coordinates Wi and W°Ut of the entry and exit points Pln and P", respectively, following the normal
form transformation in Lemma. We note that both W™ and W°" are Well deﬁned by Proposmon@ and our analysis
in chart K>, in which the point P2m and, therefore, also the point P{", is known explicitly.

In summary, we find the same correction Ac as in [6]] for the pulled propagation regime, i.e., when k < 2, which
completes the proof of Theorem [2]in that case.

Remark 16. Setting k = 0 in Theorem @ we recover the main result from [6, Theorem 1.1], as is to be expected.

3.2.2 Pushed front propagation: k > 2

The pushed propagation regime where k > 2 is significantly more involved algebraically than the pulled regime
discussed in the previous subsection.

Our aim is again to approximate the transition map IT; : Zi* — X% under the flow of 2.10). Now, the point | =
(O, 75,0) is shifted to the origin via the transformation V| = v| + %; moreover, we write ¢ = ¢(0) — Ac = % + % —Ac.
The resulting system of equations is given by

i=n(3-v)
rh=—-r(=—
1 r 2 1)

k K? k
W:4A457%)+n<kmz+mﬂ+(777»47W, (3.5)
8/—8(5 V)

1 — ¢l ) 1]-

Next, we rescale “time” by a (positive) factor of & — Vi, with (& —V;(&)) % = %, which yields

r.l:_rla

. - 4iv)+ (A -2y —vP

VIZ—AC+r1( 2 ]1() (2 k) 1= 17 (36)
1=V

91281.

We note that the equation for € in (3.6) again decouples. Finally, we separate the r;-dependent terms in the V;-equation
in (3.6), and we append the trivial equation for Ac:

ry=—ri,

. 124 (K=2)v—v2

Vi = —Ac+r—2 ‘+(2 kk)l L (3.7)
i idl gl

Ac=0.

For the linearisation of (3.7) at the origin, we obtain the eigenvalues —1, 1 — k2 ,and 0. It is straightforward to show
2—4/k>
1-4/K2"

resonance is realised at order 4, since 1(—1) + 3 (1 —) =1- k2 when k = 2+/2, corresponding to the fourth-order

that the monomial r1V1j in (3.7) can only be resonant for integer—valued j= In particular, the lowest-order

monomial r1V13. To approximate IT;, we hence first derive a normal form for (3.7) by eliminating all non-resonant
r1-dependent terms via a sequence of near-identity transformations.
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Lemma 17. There exists a sequence of smooth transformations that transforms Equation (3.7) to

’:l =T,
k 2 2
k_2yw_w ‘
W= —Ac+ ( k") +O(r W), (3.8)
E_w
2
Ac =0,

with j > 3. Specifically, that sequence is composed of the transformation V| = %rl +Z in (3.7), followed by the
near-identity transformation Z = W + ];izrl W and, finally, a sequence of smooth near-identity transformations.

Proof. The existence of such a transformation follows from standard normal form theory [29], as the lowest-order
potentially resonant monomial in (3.7)) is of the form r1V13 for k = 21/2. All higher-order non-resonant terms can be
removed by a sequence of smooth near-identity transformations. O

Next, we approximate 13}“ and 1310“‘, which are the entry and exit points in I and X", respectively, under ITj, to a
sufficiently high order in Ac, &, and ro. We first show the following preparatory result.

Lemma 18. For U and V defined as in (I.3)), U € [0,Up] with Up > 0 sufficiently small, and any k > 2, there holds

U(1-U+InU) i = 9
v TU-1 k=2,
—(U,c(0)) = 4 U G2
3c( ) {k21‘24l)k2(I—U)2F1(1+,:‘z;,fza2+,:‘271 ) ifk>2,

where »F is the hypergeometric function, see, e.g., [25 Section 15].

Proof. We rewrite (I.3) with U as the independent variable,

dv
— =—cV+kUV-U(1-U). 3.10
VdU cV+kUV-U(1-U) (3.10)
Differentiation with respect to ¢ gives
av v d dv av av
—_— —=—=-V—-c— —-—. A1
acou Vacou = V" “ac TG GAD

Evaluating at V(U,¢(0)) = —%U(l —U) and making use of %(U,C(O)) = —%(1 —2U), we find

& (Grweon) =1+ 5w o, G.12)

We note that (3.12) is an ordinary differential equation for %—‘C/ (U,c(0)) in the variable U. For k = 2, the unique solution
that remains bounded as U — 17 is given by

oV U(1—U+1nU)

S U.e(0) =

For k > 2, we can solve (3.12) by variation of constants, which gives
av

TC(U’C(O)) =B _U)_I%Uk% +(1 _U)_’%U’;iz [—/IU(I —s)%s_%ds],

for some constant of integration f3 that is to be determined. We require that %—‘C/ (U,c(0)) = 0 when U — 1. Therefore,
B =0, since the second term goes to zero by L’Hopital’s Rule. Next, we make the substitution s = 1 — &, which gives

av _4 4 rI2U 4 _4
S U,e(0) = (1-U) k2Uk2/ 6 (1—0) ¥ do. (3.13)
0
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The integral in m is of the form of an Incomplete Beta function, see [25, Section 6.6], which is defined by the
expression

X
Bu(a,b) = / c“(1- ) do.
0

Settingx=1-U,a=1+ 2, andb=1- k2’ we can write 2V 2 (U,c(0)) in terms of By _y (1 +
relation [25, Equation 6.6. 8 and Section 15]

%,1—2). Finally, the

B(a,b) =a 'x",F (a,1 —b,a+1,x)

implies
oV e 2 402 2 14
E(UW(O)) = k2+4U (1—-U)Fi (1+4/k*,4/k*,2+4/k*,1-U), (3.14)
which completes the proof. ]

Lemma 19. For k > 2 and Ac and ¢ sufficiently small, the points P“1 (ro, win —) and Pout (e, W™ 1) satisfy

. 2 k
Wit = v(rg)Ac+ O(AC, ro/ Ac) and W= ~z +Ac— 58—}— O(€?), (3.15)
where
_ K A= 2 42 2
V(r())— k2+4 o (1—r0)2F1(1+4/k ,4//{ ,2+4/k 71—7‘0). (3.16)

Proof. Recall that, by (2.2), rivi = rava, which 1mphes Wt = 2“ =—c(e)=— (% + %) + Ac. As the point P; was
shifted to the origin via the transformation V| = v, + , we have VO“t % + Ac. The normal form transformation
given by Lemma |17|implies that W =V} — %rl +0 (erl). Moreover, r; = € in X{"; therefore, W' = —% +Ac —
ket 0(?)
5 )

We now consider Wi, As WY(Q™) is analytic in U and ¢, we can write

= 19V :

= —_ — J

V(U,c) j;)j! 57 (Usc(0)(=Ac)
=—§ (1-U)— k2k 4U4/k2(1—U)2F1(1+4/k2,4/k2,2+4/k2,1—U)Ac+ﬁ(Acz),

by Lemma. Next we make use of U = r, V = ry vy, and the fact that r; = ry in ', as well as of the transformation
Vi=w + £ 5, to obtain

k K -
yin = X 4/k2—1

20 x40 (1=ro)2F1 (14+4/K2,4/K,2+4/k*,1 = ro) Ac + O (Ac?).

Finally, since W = V| — %rl + 0(r V1), we have

K 4o 2 412 2 2 4/k
1— Fi(14+4/k°,4/k,2+4/k*,1 —rg)Ac+ O (A A
210 (1—ro)oFy (1+4/k*,4/k*,2+4/ ro)Ac+ O(Ac c) a1

= v(ro)Ac+ G (A, Ac),

Wi]’]:_

where Vv (ry) is as defined in (3.16). In particular, the invariance of {W = 0} for Ac = 0 in the normal form, Equation (3.8),
implies that the error term in (3:17) has to be proportional to Ac, as stated. O

15



Remark 20. Lemma [19|implies that W™ and W°" are both negative for Ac and ry sufficiently small. In particular,
v(rp), as defined in (3.16), is negative, which follows from the identity »Fj (a,b,c,1) = %; see, e.g., [25,

Equation 15.1.20]. Incidentally, that identity is valid for R(c —a — b) > 0 which, fora = 1+4/ K b= 4/ k%, and
¢ =2+4/k?, is equivalent to requiring k > 2.

Instead of integrating the “full” normal form in (3.8) to determine the leading-order asymptotics of Ac(g), we will
consider the simplified equations that are obtained by omitting the higher-order &'(r;W/)-terms with j > 3 therein:

)i

. k_ _
W=—Ac+ G - (3.18)
—-W

S ES )

We now show that, to leading order, the asymptotics of Ac() is not affected by the omission of the &'(ryW/)-terms
in @ In our proof, we make the a priori assumption that Ac = & (81_4/ kz) , which we then show to be consistent in
Proposition 23]

Lemma 21. Let { € [0,{, with W and W' defined as in Lemmal19] let k > 2, and let € € (0, &), with & > 0
sufficiently small. Then, for W™ = W (0) = W™, we have

|W0ut7W0ut| _ ﬁ(g’(),
where K > %

Proof. Considering the difference between the equations for W and W in (3.8) and (3.18), respectively, and multiplying
the result with W — W, we find

(k—4/0W —2W>  (k—4/k)W —2W>
k—2w k—2W

W) - WP < wr-wP 2 [ Wl [w - W] s

where C is a generic constant. For § € [0,{"] and k > 2, the integral term .# in the above inequality is estimated as

4
(k—2W)(k—2W)

¢ a5 4 iy
s<2 [Cw-wp|; - as+C [ inwiP ds,
0 0

where we have used Young’s inequality. Since ’% - m’ is monotonic for W,W € W, Win], and since

Wit = —2 4 Ac— ke + 0(£?) by Lemma , with Ac = €@(g!~#/¥") positive, there exists & > 0 sufficiently small

5 4 |54 5_ 1
4 (k—2W)(k—2W)| — 4 (k+4/k)? — 4 K

such that —% < WO for € € (0,&). Therefore, we can estimate ‘

Thus, taking Wit = W (0) = Wi, we have

_ ¢ ¢
|W(C)W(C)|2§2(ik12>/o W[ dsc [ InwiPas.

An application of the Grgnwall inequality then yields

~ 5.1 ¢ )
W) -W(©)| < el kz)C/ [r W[ ds. (3.19)
0
Next, we write |r|W/| = WIJ# = ‘”j—v,vl‘je(f’%. To estimate r| W, we consider
n o
2w )
(r1W)' = 7r1W+r1W’ =—riAc—n Kk,W[l +ﬁ(r1W])].
2
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Setting y := W, making use of ri(§) = roe¢, and denoting F({) = F(r({),W({)) = k/22/v/l</(€> [1+0(ri(0)

W(£)7)], we can write the above as y' = —roe " Ac —yF({). Solving by variation of constants, with y(0) = rgW" =

roAc @(Ac, rg) for o(Ac,ry) = v(rp) + O(Ac, rg/kz), recall Lemma we find
\ ¢ s
y(&) = roAce™ s F0)ds {w(Ac, r0) —/ exp (—s+/ F(o) dG)ds]
0 0
¢ ¢ s
— roAce™ Jo FO)ds {w(Ac,ro) — e Cexp ( / F(o)do) - / eexp / F(G)dG>F(s)ds] .
0 0 0

Here the second line follows from integration by parts. Since —% < WO and since W € [W°“‘7Wi“], we can estimate
1+k2 7 < F(§) for ¢ €[0,£°"] and ro sufficiently small. Similarly, for every fixed k > 2, there exists i such that

k> > u > 4, which implies F(¢) < £ for € and ry sufficiently small.

= k2
Hence, and since @ (Ac, rg) is negative for Ac and r sufficiently small, by Remark we find

_ 1
y()] < roAce res o(Ac,ro) +e 1~ “/"25+“/ —(-w/R)s 4 s}. (3.20)

Since the term in square brackets in (3.20) is bounded for § € [0,0), we find that

1
|(rW)(E™)] < CAce 423,

where (%" = —In % as before.
Therefore, we can estimate
COUI . COU[ % 2 (,1 1) . . 1 2 ii .
/ MW/ ds < C/ (Ace 1+k2/4) ]ejilds < C(Ace 1+k2/4) e U= = ﬁ(szl(l RARARET ﬁl), (3.21)
0 0 T,
0
where we have made use of Ac = & (81_4/ kz). Finally, we recall that the r{W/-terms in (3.7) can only be resonant for

3k4+16k% 32
integer-valued j = ff 4§k2 , which implies that (3:21)) is of the order ﬁ’( K2 (k2 +4) ) . Furthermore, the exponential term
out A~
n (3:19) satisfies e 2(i-) e _ = 0/(2/¥5/2). Combining the above, we conclude that [Wo — Wou| = g (gxk)),
where k(k) = % We note that (k) > 1 for k € (2,c0), with limy_.. k(k) = 1. Hence, it follows that |wout —
W] = 0(e¥) — 0 as € — 0 with k > 1, as stated. O

We can now solve (3.18)) by separation of variables,

—2kW + k2
—2kW2+W (k% +2Ack — 4) — Ack?

dw =d¢, (3.22)

where we have omitted overhats from W for simplicity of notation. Integration of (3.22) gives

out

-
GO = § = S In| = 2UW? 4 (K + 2kAc — )W — PAc||

K 42— kAc
V(K24 2kAc — 4)2 = 8I3Ac (3.23)
—4kW + K2+ 2kAc — 4 — /(K2 + 2kAc — 4)2 — 8i3Ac| |7

—4kW + k2 +2kAc — 4+ /(K2 + 2kAc — 4)2 — 8k3Ac

X In =0.

win
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£66 t— _In£i
Recall that, as & ({) = e , we have " = 0 and £ n .t in (3:23). Moreover, by Lemma ,

. 2 2 k
W =v(rg)Ac+ ﬁ’(Acz,rg/k Ac) and W= ~z +Ac— 58—}— O(€?).

We now proceed as follows: given (3.23)), we derive a necessary condition on Ac which will determine the leading-order
asymptotics thereof in €.

We begin by substituting our estimates for Wi and W into the first logarithmic term in (3.23), which gives

1 ) )
S|~ (W) + (k2 + 2kAc — 4) W™ — PAc|

X (3.24)
= S In|( —4)v(ro)Ac KA+ (A, Y€ )|

and
1
5n| - k(W) 4 (K2 + 2kAc — 4)WO — IPAc|
(3.25)

1
= E1ny —2k+ O (Ac,€)],
respectively.

Now, we expand the rational function multiplying the second logarithmic term in (3.23) as

L 12— kAc B4 16k
VR +2%Ac— 42 —8kKAc  2(k2—4) (K —4)]

and we write the argument of the logarithm therein as

Ac+ O(A), (3.26)

—dkW + k2 4 2kAc — 4 — /(K + 2kAc — 4)? — 8k3Ac
—4kW + K2 + 2kAc — 4+ +/ (K2 + 2kAc — 4)2 — 8K3Ac
5 —4kW + k2 + 2kAc — 4
—4kW + k2 + 2kAc — 4+ /(K2 + 2kAc — 4)2 — 8k3Ac

(3.27)

Substituting the estimate for Wit into (3.27), we have

(—4kv(ro) +2k)Ac +k* —
—4kv(rg)Ac+ k2 + 2kAc — 4+ \/ (k% + 2kAc — 4)2 — 8k3Ac
213 2kv(r0)

_ 2 4/k
= (k274)2 2 Ac+ O(Act, Ac).

—1+2

+O(A?, 7, 47K Ac)
(3.28)

Similarly, we can use our estimate for W in (3.27) to obtain

44K

—14+2——
+ 2k2

+O(Ac,€) = — + O(Ac,€). (3.29)

4
2
Summarising the above calculations, we can write (3:23) as

1 1
“mEy + 5 In[ (k2 =)V (r0)Ac — A+ O (A%, 1 4/ 8¢)| = 5 In| = 2k+ O (ac.e)
ry
K +4
2

_ 2 4/k
7(/8 >y Ac+ O(Act, Ac) (3.30)

+ ﬁ(Ac)} ~In

|0

26 2kv(ro)
(K—42 k-4

h + O(Ac,€)

+In 2
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Now, we exponentiate (3.30) to obtain

<8>2— 2 — (& —4)v(r)|Ac+0(2) [(1825&)2 Zkv(m)}A AN 3.31)
" 2%+ 6(1) E+o |

where ¢/(1) denotes terms that are of at least order 1 in Ac and €, while &'(2) stands for terms of at least order 2 in Ac
2
and rg/ **Solving for Ac in (331)), we obtain

4

Ac=a(k)e' @ [1+o(1)], (3.32)

where .
alh) = 1 (Zk)1/2(174/k2) [Z(kz _4)2] 1/2(1+4/k%) 53

— T1_4/k2 5 .
ré 4/k K2 — (k2 — 4)v(ro)] K3/2(14+4/K2)
For future reference, we label the ro-dependent contribution to a (k) as

8(ro) = r(1)74/k2 [k — (k* —4)v(r0)]. (3.34)

In spite of the function v(ry), as defined in Lemma being dependent on ry, that dependence must cancel, as the
choice of ry in the definition of X} is arbitrary. Therefore, we can take the limit as ro — 0™ in (3.34).

Lemma 22. The function § defined in Equation (3.34) satisfies

lim 8(rg) = (K> —4)T(14+4/k*)T(1 —4/k?), (3.35)

r0~>0+
where k > 2.
Proof. We begin by writing 8(rp) as

k2
k244

S(ro) = ri ¥k 4 (K2 —4)(1 = ro)aFi (1 +4/K2,4/K2 2+ 4 /K21 — 1p), (3.36)

using the definition of v(rg) from Lemma|[19] Taking ro — 0, we find

. k*
Jim 8(ro) = g 2R (1 4/ 4/ 2 +4/k2.1)
K —4 TQ+4/K*)(1—4/k%) (3.37)
T 1+4/k2 L(1)r(2)

= (> =41 4+4/K)T(1 —4/k?).

Here, we have used the identities ,F| (a,b,c, 1) = EEE)Z# [25, Equation 15.1.20] and I'(2 +4/k?) = (1+4/k*)T(1+

4/k?), as well as the fact that T'(1) = 1 = I'(2), which completes the proof. O

Proposition 23. Let € € (0,&), with & > 0 sufficiently small, and let k > 2. Then, the function Ac defined in
Theorem 2] satisfies

2 (k2 - 4)4/k2 1—-4/k?
Ae) = e T g el (3.38)
Proof. The statement follows directly from Lemma 22]and Equations (3.32) and (3:33). O
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Hence, the proof of Theorem [2]is complete in the pushed front propagation regime, which is realised for k > 2 in (2.1)).

Remark 24. We note that ¢! ~#/¥ — ¢0 = 1 as k — 2* in (B:38), i.e., as we approach the pulled propagation regime.
L’Hopital’s Rule shows that the corresponding coefficient tends to 0 in that limit, which is consistent with Theorem [2]
as the correction Ac is logarithmic in € for £ < 2.

Remark 25. A simplification of the general expression for Ac in Equation (3.38) is achieved for specific values of
k in @I); e.g., k = 2v/2 gives c(g) = ¢(0) — Ac(e) = V2 + % — Lel2[1 +o(1)]. Similarly, for k = 4, we have

c(e) =3 — LB 414o(1)].

T

3.3 Numerical verification

In this subsection, we verify the asymptotics in Theorem[2]by calculating numerically the error incurred by approximating
c(&) with the corresponding first-order expansion (in €), which we denote by é(¢); for k = 4, e.g., we have é(¢) =

% - ?83/ 4. The numerical value of c(€) is obtained by integrating Equation (1)) and storing the final value of
U = Ufinal(c) obtained after a sufficiently large number of time steps. We then minimise |Ugnq (¢)|, taking é(€) as
our initial value of c¢. Our findings are illustrated in Figure E for k € {1, %,2\5,4}, where we have used a double
logarithmic scale, with € € [10’4, 1072]. Figure@] suggests that the next-order correction to c¢(€) will be of the order
Ol(Ing)~3] fork=1and k = %, whereas it will be @(¢) for k = 2v/2 and &(£3/2) for k = 4.

4 Discussion

In this article, we have proven the existence of “critical” travelling front solutions to the Burgers-FKPP equation with
a Heaviside cut-off multiplying both the reaction kinetics and the advection term, recall Equation (I.7). Moreover, we
have rigorously derived the leading order e-asymptotics of the unique front propagation speed ¢(€). To the best of our
knowledge, the effects of a cut-off on advection-reaction-diffusion equations of the type in (I.2)) have not been studied
before.

For k < 2, the front is pulled and behaves as the pulled fronts with a cut-off considered, e.g., in [6} [10], with the
correction to the front propagation speed being negative and of the order &[(In€)~2]. When k > 2, the front is
pushed, and the correction to the speed of propagation is also negative, and proportional to a fractional power of &g,
again in analogy to the pushed fronts in reaction-diffusion equations with a cut-off analysed in [10]. While the proof of
Theorem[2]in the pulled propagation regime where k < 2 closely follows the proof of [6, Theorem 1], we have included
it for completeness. The analysis of the pushed regime, with k > 2, is significantly more involved algebraically and
relies on a modification of the approach developed in [9} |10} |11]]. Our main analytical contribution in this article can
be found in Section 3] where we adapt techniques from both [6] and [9, 10, [11] to derive the asymptotics in (I.10).

It is important to emphasise that the blow-up technique is applied in the present context to remedy a discontinuity in
the governing equations, rather than a loss of hyperbolicity, as is typically the case in applications of blow-up [8, 26].
Given that the regularisation of piecewise smooth systems via the alternative methodology developed in [30] typically
results in a singular perturbation problem, it may be feasible to adapt that well-established methodology to our setting;
see [31] for a specific application.

It may be possible to calculate higher-order terms in € in the expansion of ¢(€) in the pushed regime; however, to
do so, one must solve for ‘;/T‘//(U ,¢(0)) (j > 2) via the procedure outlined in Lemma|18] We note that the procedure
will fail for general pulled fronts with k < 2, as the front is not explicitly known in those cases, preventing us from
calculating Wi to a sufficiently high order to determine higher-order terms in c(€). However, at the boundary between
the pushed and pulled regimes, when k = 2, the front is known explicitly, as is ‘3—‘; (U,c(0)), see Lemma Hence,
one could approximate W™ to a sufficiently high order, which may make it possible to determine the next term in the
expansion of ¢(€) when k = 2.

By retracing the proof of Theorem[2] one can show that the leading-order correction to the front speed is independent of
whether or not the advection term in Equation (I.7) is multiplied with the cut-off function H(u — €). That observation
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is supported by the motivating example of the Burgers equation with a cut-off, Equation (I.9)), where the correction to
the front speed is given by Ac(e) = £¢? to leading order. As both (Ing)~2 and &' ~#/ ¥ are of lower order compared

to €2, it is to be expected that a cut-off in the advection term will not affect the leading-order asymptotics of Ac(&).
Since the requisite argument is very similar to the proof of Theorem[2] we outline it in Appendix [A]

In Theorem 2| we have restricted to a Heaviside cut-off function H(u — €) in Equation (I.7); that restriction appears
reasonable, as the Heaviside cut-off cancels the reaction kinetics and the advection term exactly when no particles
are present in the underlying N-particle system. One can instead introduce a general cut-off function y/(u,€) in
which satisfies w(u,€) = 1 when u > € and y(u,e) < 1 for u < e. Equation (I.I) with Fisher reaction kinetics and
a general cut-off has been considered in [6], while a linear cut-off function was studied explicitly in [11]. In the
context of Equation (I.7), one can show that to leading order, Ac = ln’(r% in the pulled propagation regime for a wide
range of cut-off functions which includes the Heaviside cut-off [|6]. Hence, the leading-order asymptotics of Ac is
then universal, as was also the case in [6]. In the pushed regime, one again obtains Ac = & (81’4/ kz); however, it is
not possible to calculate explicitly the corresponding leading-order coefficient for a general cut-off function v, since
explicit knowledge of the entry point in chart K5 is required. In particular, that coefficient will be cut-off-dependent

then, in contrast to the pulled propagation regime, as is also the case in [6} |10, 32].

Finally, we note that Theorem [2] can be extended to advection-reaction-diffusion equations with a more general
advection term,

du L, ou %u n
E-ﬁ-ku EH(M—E)Zﬁ—&—u(l—u)H(u—S), 4.1)
where n > 2 is integer-valued. For € = 0, Equation (4.1)) admits a pulled front for k < n+1 and ¢ > 2, whereas for

k > n+1, there exists a pushed front solution for ¢ > % + % which can be shown in analogy to the proof of

Theorem (1| via the approach outlined in [22]. For ¢ = % + %1, the sought-after front corresponds, in a co-moving

frame, to the heteroclinic orbit V(U) = — %U (1—=U"). Due to the increased algebraic complexity, we leave the study
of the impact of a cut-off on Equation (.1)) for the future. However, we note that, as the front is explicitly known in the
pushed regime, it is likely that the leading-order correction to the propagation speed c(€) can be calculated explicitly

for all k > 0.

A Proof of Theorem |2 without cut-off in advection

Here, we briefly show that Theorem 2] remains equally valid for the advection-reaction-diffusion-equation

du du  Ju
E+ku$:ﬁ+u(lfu)H(u78), (A1)

in which the advection term ku% is not affected by the cut-off. The corresponding first-order system then reads

U'=v,
V= —yW+kUV —U(1—U)H(U —¢), (A2)
e=0,

where the travelling wave variable is now defined by & = x — ¥, with 7 the front propagation speed. The analysis
of (A.2) again relies on the blow-up transformation in (2.2). We observe that (1.7) and (A.I) are identical for u > €;
therefore, it suffices to study (A.2) in the rescaling chart K, only, which is again defined by (2.3):

u’z =V,
Vh = =Y+ krauavy, (A3)
rh=0.

By taking € = r, — 0" and solving for v;(u;), we obtain (2.7), i.e., the singular orbit I'; in K; is given as before. By
the above, we can conclude that Proposition [12]holds for (A.T).
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It remains to consider the persistence of I" for (A-I). We can solve (A3) explicitly for general y and &(= r;) > 0 to
obtain '

W5 (63) 2 va(uz) = —yur + EVZM%- (A.4)
The point of intersection of Wy (¢ ) with £ is given by Pi" = (1,vi', &), where vi = —y+ %8. From the definition of
(2, it follows that V" = vile = —ye + £€2. One can now prove a similar result to Proposition for (A72), where
¢(0) = cerit is again defined as in Theorem

Proposition 26. For € € (0, &), with & sufficiently small, k > 0, and ¥ close to ¢(0), there exists a critical heteroclinic
connection between 0~ and Q7 in Equation (A-2) for a unique speed y(€) which depends on k. Furthermore, there
holds (&) < ¢(0).

The proof is similar to that of Proposition the only difference being that Vi = —ce is replaced by V" = vizns =

—ve+ %82. In spite of that difference, the argument from the proof of Proposition|13|carries over verbatim.

The remainder of the analysis in Section[3|equally translates to Equation (A.T). The sole difference concerns the point
PPt = (g,W°"" 1), where W°" is derived from v5'. We have the following result on the leading-order asymptotics of
Wout.

Lemma 27. For k > 2 and € and Ay sufficiently small, the point PP" = (g, W', 1) satisfies
out 2 2
w :—%—kﬁ(Ay,e ), (A.5)
where y(€) = ¢(0) — Ay.

Proof. Equation (A.5) follows from the definition of Vi" for (A.2) and the sequence of transformations defined in
Lemma[[7] O

In Section [3.2.1} i.e., in the pulled regime, we found that the leading-order asymptotics of Ac is independent of W
and W°'; therefore, we can conclude that Theoremholds for Equation @ when k < 2, i.e., that Ay = Ac to leading
order.

As the asymptotics of W for (A-T) in Lemma[27] differs from that in Lemma|[19at &'(¢), and as only the constant
term —% is required to derive the leading-order asymptotics of Ac, we can conclude that Theoremholds for (AI) in

the pushed front propagation regime where k > 2.

In Figure 5| we compare the propagation speeds c(€) and y(¢) for (I.7) and (@), respectively. We find that |c(g) —
v(€)| is of higher order than |c(€) — é(€)|, which we plot in red for comparison. For example, for k = 4, the propagation
speeds c(€) and y(¢) differ approximately at order & (89/ %), whereas the difference between the propagation speed
c(e) for and its leading-order approximation &(€), given in Theorem is of the order &(&%/?).
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