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Abstract

We investigate the effect of a Heaviside cut-off on the front propagation dynamics of the so-called Burgers-Fisher-
Kolmogoroff-Petrowskii-Piscounov (Burgers-FKPP) advection-reaction-diffusion equation. We prove the existence
and uniqueness of a “critical” travelling front solution in the presence of a cut-off in the reaction kinetics and the
advection term, and we derive the leading-order asymptotics for the speed of propagation of the front in dependence
on the advection strength and the cut-off parameter. Our analysis relies on geometric techniques from dynamical
systems theory and specifically, on geometric desingularisation, which is also known as “blow-up”.

1 Introduction
Partial differential equations (PDEs) of reaction-diffusion type are frequently derived from discrete many-particle
systems in the large-scale limit as the number N of particles becomes infinite. However, discrepancies are observed
between the propagation speeds of front solutions that are found numerically in the underlying many-particle systems
and the corresponding speeds in the reaction-diffusion equations derived in the limit as N → ∞ [1, 2, 3]. To remedy
these discrepancies, Brunet and Derrida [4] introduced a cut-off in the resulting reaction kinetics; for a general
reaction-diffusion equation with reaction kinetics f (u), their modification takes the form

∂u
∂ t

=
∂ 2u
∂x2 + f (u)ψ(u,ε), (1.1)

where the cut-off function ψ a priori only has to satisfy ψ(u,ε) ≡ 1 when u > ε and ψ(u,ε) < 1 for u < ε . Here,
u = u(x, t), with x ∈ R and t ≥ 0. The motivation in [4] was that, in N-particle systems, no reaction can take place
if the particle density is below some threshold value 1

N = ε ≪ 1. Applying the method of matched asymptotics, they
showed that for Fisher reaction kinetics f (u) = u(1− u) [5] in (1.1) and a Heaviside cut-off H(u− ε), with H ≡ 0
when u < ε , the shift in the propagation speed c of the front connecting the homogeneous rest states u = 1 and u = 0
that is due to a cut-off is, to leading order, given by ∆c = 2− c = π2

(lnε)2 +O[(lnε)−3].

The above asymptotics has been derived rigorously by Dumortier et al. [6] for a more general class of scalar
reaction-diffusion equations and a broad family of cut-off functions. They applied geometric desingularisation,
or “blow-up” [7, 8], to construct propagating front solutions to Equation (1.1) as heteroclinic connections in the
corresponding first-order system of ordinary differential equations (ODEs) after transformation to a co-moving frame.
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Geometric desingularisation has since been applied successfully in the study of numerous other reaction-diffusion
equations with a cut-off [6, 9, 10, 11, 12]. A well-developed alternative approach for determining the leading-order
shift in the propagation speed due to a cut-off relies on a variational principle [13, 14, 15, 16].

In this article, we extend the results of [6, 9, 10, 11, 12] to a family of advection-reaction-diffusion equations of the
form

∂u
∂ t

+g(u)
∂u
∂x

=
∂ 2u
∂x2 + f (u), (1.2)

with the advection term g(u) ∂u
∂x describing the directed transport of u. As far as we are aware, the impact of a

cut-off on front propagation in advection-reaction-diffusion equations of the type in (1.2) has not been studied before.
Specifically, we consider the following equation,

∂u
∂ t

+ ku
∂u
∂x

=
∂ 2u
∂x2 +u(1−u), (1.3)

which is known as Burgers-Fisher-Kolmogorov-Petrowskii-Piscounov (Burgers-FKPP) equation [17, 18, 19, 20];
here, ku is the transport velocity, with k > 0 a real parameter. Equation (1.3) is a special case of the generalised
FKPP equation, see [21], which models competing genotypes in a population and which has found applications in
a variety of fields that include fluid dynamics, population modelling, and chemical kinetics. It hence serves as a
prototypical model that illustrates the interaction between advection, reaction, and diffusion mechanisms in more
general advection-reaction-diffusion equations of the type in (1.2). In particular, it realises a pushed front propagation
regime which is not present in standard reaction-diffusion with Fisher reaction kinetics.

To study travelling wave solutions to (1.3), we introduce the travelling wave variable ξ = x− ct, where c denotes the
propagation speed. Setting U(ξ ) = u(x, t), we obtain the travelling wave equation

−cU ′+ kUU ′ =U ′′+U(1−U), (1.4)

subject to the boundary conditions U(−∞) = 1 and U(∞) = 0. The corresponding solution defines a front for the
Burgers-FKPP equation, (1.3), which connects the two rest states u = 1 and u = 0.

Defining V =U ′ in (1.4), we obtain the first-order system

U ′ =V,

V ′ =−cV + kUV −U(1−U),
(1.5)

which has equilibria at Q− := (1,0) and Q+ := (0,0). Clearly, heteroclinic orbits for (1.5) and front solutions to (1.3)
are equivalent. The following result can be found in [22], where the existence of travelling front solutions to (1.3) is
shown rigorously.

Theorem 1. [22, Theorem 4.1] Equation (1.5) admits a heteroclinic connection between Q− and Q+ for c ≥ ccrit,
where

ccrit =

{
2 if k ≤ 2,
k
2 +

2
k if k > 2.

(1.6)

Moreover, the corresponding front solution to (1.3) is pulled when k ≤ 2 and pushed when k > 2. For k ≥ 2 and
ccrit =

k
2 +

2
k , the heteroclinic orbit for (1.5) is given explicitly by V (U) =− k

2U(1−U).

As is the case for standard reaction-diffusion, Equation (1.1), advection should give no contribution when u< ε
(
= 1

N

)
,

where N is the total number of particles in the underlying many-particle system [23]. Hence, it seems plausible that a
cut-off should multiply both the reaction kinetics f (u) and the advection term g(u) ∂u

∂x in (1.2). Our aim in this article
is hence to prove an analogue of Theorem 1 for the Burgers-FKPP equation with a Heaviside cut-off H(u− ε),

∂u
∂ t

+ ku
∂u
∂x

H(u− ε) =
∂ 2u
∂x2 +u(1−u)H(u− ε), (1.7)
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where k > 0 and ε > 0 is the cut-off parameter, as before. Our focus on the Burgers-FKPP equation is further motivated
by the fact that, even in the simple Burgers-type advection-diffusion equation [24]

∂u
∂ t

+ ku
∂u
∂x

=
∂ 2u
∂x2 , (1.8)

a cut-off impacts on front propagation and the corresponding speed: it is well-known that Equation (1.8) admits a
travelling front solution connecting the rest states u = 1 and u = 0 which propagates with the unique speed c = k

2 . One
can then show that introduction of a Heaviside cut-off function H(u− ε) in (1.8), whence

∂u
∂ t

+ ku
∂u
∂x

H(u− ε) =
∂ 2u
∂x2 , (1.9)

induces the shift ∆c = k
2 ε2 in the front propagation speed which can be derived either by matched asymptotics or via

an adaptation of the approach developed in this article.

Our main result can be formulated as follows.

Theorem 2. Let ε ∈ [0,ε0), with ε0 > 0 sufficiently small, and let k > 0. Then, there exists a unique, k-dependent
propagation speed c(ε) such that Equation (1.7) admits a unique critical front solution connecting the rest states u = 1
and u = 0. Moreover, c(ε) = c(0)−∆c(ε), where c(0) = limε→0+ c(ε) = ccrit is the critical speed in the absence of a
cut-off, see Theorem 1, with

∆c(ε) =


π2

(lnε)2 if k ≤ 2,

2
k1+8/k2

(k2−4)4/k2

Γ(1+4/k2)Γ(1−4/k2)
ε1−4/k2

if k > 2,
(1.10)

to leading order in ε .

Here and in the following, Γ(·) denotes the standard Gamma function [25, Section 6.1].

In particular, Theorem 2 hence implies that the front propagation speed in (1.3) is reduced by inclusion of a (Heaviside)
cut-off.

Remark 3. The above result is similar to that for the Nagumo equation with cut-off obtained in [10], which also
realises pulled and pushed front propagation regimes in dependence on a control parameter. Correspondingly, the
correction to the front propagation speed found in the pulled regime is again of the order O[(lnε)−2], whereas in the
pushed regime, it is proportional to a fractional power of ε .

Remark 4. While our choice of Heaviside cut-off in Equation (1.7) is mostly made for analytical tractability, we
indicate in Section 4 below how Theorem 2 can be extended to more general choices of cut-off function ψ(u,ε).

Remark 5. We note that (1.7) does not conserve mass due to the reaction kinetics u(1− u)H(u− ε). However, the
advection and diffusion terms can be written in mass conservation form as follows,

∂u
∂ t

+
∂

∂x
Fε(u) = u(1−u)H(u− ε),

where

Fε(u) = k
∫ u

0
σH(σ − ε)dσ − ∂u

∂x
=

{
k
2 (u

2 − ε2)− ∂u
∂x if u > ε,

− ∂u
∂x if u < ε.

The article is organised as follows: in Section 2, we apply geometric desingularisation (blow-up) to construct a
singular heteroclinic orbit Γ for Equation (1.7). In Section 3, we show that Γ persists for ε sufficiently small, therefore
establishing Theorem 2, and we provide numerical verification of our results. Finally, in Section 4, we discuss our
findings and outline future related work.

3



2 Geometric desingularisation

Introducing the travelling wave variable ξ = x − ct and writing u(x, t) = U(ξ ) in (1.7), we obtain the system of
equations

U ′ =V,

V ′ =−cV + kUV H(U − ε)−U(1−U)H(U − ε),

ε
′ = 0

(2.1)

in analogy to (1.5), where the (U,V )-subsystem has been extended by the trivial equation for the cut-off parameter ε .
We introduce the following blow-up transformation (geometric desingularisation) at the origin in (2.1), which serves
to desingularise the non-smooth transition between the outer and inner regions in {U = ε}:

U = r̄ū, V = r̄v̄, and ε = r̄ε̄. (2.2)

Here, (ū, v̄, ε̄) ∈ S2
+ := {(ū, v̄, ε̄) | ū2 + v̄2 + ε̄2 = 1}∩{ε̄ ≥ 0}, with r̄ ∈ [0,r0] for r0 > 0 sufficiently small.

As in [6, 8, 10, 26], we will analyse (2.1) in two coordinate charts, K1 and K2, which are obtained by setting ū =
1 and ε̄ = 1 in (2.2), respectively. The rescaling chart K2 will cover the “inner region” where U < ε , while the
phase-directional chart K1 will allow us to describe the dynamics in the “outer” region, with U > ε . The transition
between the two regions, at {U = ε}, will be realised in the overlap domain between these coordinate charts. We will
construct the singular (in ε) heteroclinic orbit Γ for (2.1) by combining appropriate portions thereof in the two charts.
As will become apparent, the uniqueness of the “critical” propagating front in Theorem 2 is a consequence of the fact
that a unique choice of c yields a persistent heteroclinic connection between Q− = (1,0) and Q+ = (0,0).

Remark 6. For any object □ in (U,V,ε)-space, we denote the corresponding blown-up object by □. Moreover, in
chart Ki, with i = 1,2, that object will be denoted by □i.

2.1 Dynamics in chart K2 (“Inner region”)
In this subsection, we construct the portion Γ2 of the singular heteroclinic orbit Γ in chart K2. Setting ε̄ = 1 in (2.2),
we have the transformation

U = r2u2, V = r2v2, and ε = r2, (2.3)

which we apply to (2.1) to obtain the system of equations

u′2 = v2,

v′2 =−cv2 + kr2u2v2H(u2 −1)−u2(1− r2u2)H(u2 −1),
r′2 = 0.

(2.4)

We consider (2.4) in the inner region where U < ε , which is equivalent to u2 < 1, by (2.3). Therefore, H(u2 −1)≡ 0,
which implies that (2.4) reduces to

u′2 = v2,

v′2 =−cv2,

r′2 = 0.
(2.5)

We define the line of equilibria ℓ+2 = {(0,0,r2) | r2 ∈ [0,r0]} for (2.5). Here, we are particularly interested in the
point Q+

2 = (0,0,0) ∈ ℓ+2 , which is found by taking the singular limit as r2 → 0+ on ℓ+2 . (While Equation (2.5) admits
equilibria for any u2 ∈ (0,1), we only consider u2 = 0, which corresponds to the point Q+ before blow-up.) The
eigenvalues of the linearisation of (2.5) about Q+

2 are −c and 0 (double), where the second zero eigenvalue is due to
the trivial r2-equation. Taking r2 → 0+ in (2.5), we find the system

u′2 = v2,

v′2 =−c(0)v2,
(2.6)
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Figure 1: Geometry and dynamics in chart K2.

where we have used that c → c(0) = ccrit as r2(= ε)→ 0+ and ccrit is as defined in Theorem 1.

We can solve for the stable manifold W s
2 (Q

+
2 ) of Q+

2 by writing

dv2

du2
=−c(0),

which we can integrate under the condition that v2(0) = 0; the unique solution is given by

Γ2 : v2(u2) =−c(0)u2.

Therefore, invoking again Theorem 1, we can write

Γ2 : v2(u2) =

{
−2u2 if k ≤ 2,
−
( k

2 +
2
k

)
u2 if k > 2.

(2.7)

We emphasise that Γ2 is linear in u2 for both k ≤ 2 and k > 2; while the corresponding slope is k-dependent in the
latter case, by (1.6), that difference is immaterial for the dynamics.

Next, we introduce the entry section

Σ
in
2 = {(1,v2,r2) | (v2,r2) ∈ [−v0,0]× [0,r0]}, (2.8)

which is the equivalent of the hyperplane {U = ε} in chart K2, to describe the transition of the orbit Γ2 between
the inner and outer regions; here, v0 > 0 is an appropriately chosen constant. We define the entry point into K2 as
Pin

2 = Γ2 ∩Σin
2 = (1,−c(0),0), where Pin

2 = (1,−2,0) for k ≤ 2 and Pin
2 =

(
1,−

( k
2 +

2
k

)
,0
)

for k > 2, by (2.7). The
geometry in chart K2 is illustrated in Figure 1. The singular orbit Γ2 (in blue), which corresponds to the stable manifold
W s

2 (Q
+
2 ) of the equilibrium at the origin, intersects the entry section Σin

2 in Pin
2 . For r2 ∈ (0,r0], Γ2 will perturb to the

stable manifold W s
2 (ℓ

+
2 ) (in red) of the line of equilibria ℓ+2 (in yellow).
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2.2 Dynamics in chart K1 (“Outer region”)
In this subsection, we will analyse the dynamics of Equation (2.1) in the phase-directional chart K1. Our aim is to
construct the singular orbit Γ1, which is the continuous extension of Γ2, as defined in (2.7), to K1.

Setting ū = 1 in (2.2), we have
U = r1, V = r1v1, and ε = r1ε1, (2.9)

which we apply to (2.1) in the outer region where U > ε to find

r′1 = r1v1,

v′1 =−cv1 + kr1v1H(1− ε1)− (1− r1)H(1− ε1)− v2
1,

ε
′
1 =−ε1v1.

(2.10)

Here, H(1− ε1) ≡ 1 due to ε1 < 1 in chart K1. The system of equations in (2.10) has a line of equilibria at ℓ−1 =
{(1,0,ε1) | ε1 ∈ [0,ε0]} which corresponds to the steady state at Q− before blow-up. As other equilibria of (2.10)
depend on k, we will discuss them systematically in Sections 2.2.1 and 2.2.2 below. The point Q−

1 = (1,0,0) ∈ ℓ−1 is
obtained in the limit as ε1 → 0+.

Since ε = r1ε1, we will have to consider both r1 → 0 and ε1 → 0 in the singular limit of ε = 0. We will denote
the corresponding portions of the singular orbit Γ1 in the invariant planes {r1 = 0} and {ε1 = 0} by Γ

+
1 and Γ

−
1 ,

respectively.

We introduce the exit section
Σ

out
1 = {(r1,v1,1) | (r1,v1) ∈ [0,r0]× [−v0,0]} (2.11)

to track Γ
+
1 as it leaves chart K1; here, v0 > 0 is defined as in (2.8). Clearly, Σout

1 is equivalent to the entry section Σin
2

in chart K2 after transformation to K1: as the change of coordinates κ21 : K2 → K1 between the two charts is given by

κ21 : r1 = r2u2, v1 = v2u−1
2 , and ε1 = u−1

2 , (2.12)

we have κ21(Σ
in
2 ) = Σout

1 . Correspondingly, we can write Pout
1 = (0,−c(0),1) = κ21(Pin

2 ) for the exit point in Σout
1 ,

where Pin
2 = (1,−c(0),0), as before.

In contrast to chart K2, the singular geometry and dynamics in K1 are qualitatively different for k ≤ 2 and k > 2, in that
the corresponding phase portraits will not be topologically equivalent. Therefore, we consider these regimes in (2.1)
separately.

2.2.1 Pulled front propagation: k ≤ 2

We note that, when k ≤ 2, the propagation speed c reduces to c(0) = 2 = ccrit when either r1 → 0+ or ε1 → 0+, recall
Theorem 1. In addition to the line of equilibria ℓ−1 , we have an equilibrium at P1 = (0,−1,0). A simple calculation
shows the following result.

Lemma 7. The eigenvalues of the linearisation of (2.10) at P1 are given by −1, 0, and 1, with corresponding
eigenvectors (1,k−1,0)T ,(0,1,0)T , and (0,0,1)T , respectively.

We first outline the construction of Γ
+
1 . Taking r1 → 0+ in (2.10), we obtain

v′1 =−2v1 −1− v2
1,

ε
′
1 =−ε1v1,

(2.13)

which we can write as
dv1

dε1
=

(v1 +1)2

ε1v1
. (2.14)
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To find a solution to Equation (2.14) so that the orbit Γ
+
1 connects to Γ2 in the section Σout

1 = κ21(Σ
in
2 ), we require

v1(1) =−c(0) =−2(= v2(1)), by (2.12). The corresponding (unique) solution is given by

Γ
+
1 : v1(ε1) =−

1+W0
( e

ε1

)
W0
( e

ε1

) , (2.15)

where W0 denotes the Lambert W function [27], which is defined as the solution to W0(z)eW0(z) = z. We note that
Γ
+
1 → P1 = (0,−1,0) as ε1 → 0+, which completes the construction.

To construct Γ
−
1 , we take ε1 → 0+ in (2.10), which yields

r′1 = r1v1,

v′1 =−2v1 + kr1v1 − (1− r1)− v2
1.

(2.16)

Clearly, (2.16) is equivalent to the unmodified first-order system in (2.1) with c = c(0) after blow-down, i.e., after
transformation to the original (U,V,ε)-space before the blow-up:

U ′ =V,

V ′ =−2V + kUV −U(1−U).
(2.17)

While we cannot explicitly solve (2.17) for k < 2, the following two results imply the existence of the orbit Γ
−
1 . The

first of these is obtained by simple linearisation.

Lemma 8. The origin Q+ in (2.17) is a degenerate stable node with eigenvalue −1 (double) and eigenvector (−1,1)T ,

while the equilibrium at Q− = (1,0) is a saddle point with eigenvalues k−2±
√

k2−4k+8
2 and corresponding eigenvectors(

1
2

(
2− k±

√
8−4k+ k2

)
,1
)T

.

Next, we show that (2.17) admits a trapping region for k < 2; the proof is inspired by [22, Theorem 2.1].

Proposition 9. The curves {V = 0} and {V =−U(1−U)} form a trapping region T for the flow of Equation (2.17)
when k < 2. Moreover, the curve {V =−U(1−U)} is invariant under the flow of (2.17) when k = 2.

Proof. Substitution of V = 0 into (2.17) gives

U ′ = 0,
V ′ =−U(1−U),

(2.18)

which implies (0,1) · (0,−U(1−U))T = −U(1−U) < 0 due to 0 < U < 1. Similarly, substituting V = V (U) =
−U(1−U) into (2.17), we obtain

U ′ =−U(1−U),

V ′ =U(1−U)(1− kU)
(2.19)

and (−V ′(U),1) · (U ′,V ′)T = −(k − 2)U2(1−U) > 0 when k < 2, which also implies that V (U) = −U(1−U) is
invariant under the flow of (2.17) when k = 2.
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Figure 2: Geometry and dynamics in chart K1 for k ≤ 2.

Since the trapping region T contains only the two equilibria Q− and Q+, and since the divergence of the vector field
in (2.17) is negative for U ∈ [0,1) and all V , there are no periodic orbits in T . Hence, there must exist a heteroclinic
connection between Q− and Q+. That connection must pass through the negative V -plane and is consistent with the
stability properties of Q∓ stated in Lemma 8. It follows that the flow of (2.16) must enter an equivalent trapping
region T1 in chart K1. The closed region T1 is bounded by the lines {r1 = 0}, {v1 = 0}, and {v1 = r1−1} in the plane
{ε1 = 0}. Therefore, we can conclude that the orbit Γ

−
1 exists and is forward asymptotic to P1. Defining the section

Σ
in
1 = {(r0,v1,ε1) | (v1,ε1) ∈ [−v0,0]× [0,1]}, (2.20)

with v0 > 0 as in (2.8), we see that the point of intersection Pin
1 = Γ

−
1 ∩Σin

1 is given by Pin
1 = (r0,vin

1 ,0), where vin
1 >−1,

as vin
1 ∈ [r0 −1,0] by the proof of Proposition 9.

Hence, the construction of Γ1 = Γ
−
1 ∪P1 ∪Γ

+
1 is complete in the case where k ≤ 2; see Figure 2 for an illustration of

the geometry in chart K1 in that case. The portions Γ
−
1 and Γ

+
1 (in blue) of Γ1 are forward and backward asymptotic,

respectively, to the equilibrium at P1 and intersect the sections Σin
1 and Σout

1 in Pin
1 and Pout

1 , respectively. For ε1 ∈ (0,ε0],
Γ1 will perturb to the unstable manifold W u

1 (ℓ
−
1 ) (in red) of the line of equilibria ℓ−1 .

2.2.2 Pushed front propagation: k > 2

We now consider the singular dynamics in chart K1 in the pushed propagation regime where k > 2. In analogy to the
pulled regime, ℓ−1 is still a line of equilibria for (2.10). Since, however, c → c(0) = k

2 +
2
k as r1 → 0+, the point P1 is

no longer an equilibrium for (2.10). Instead, we have two equilibria, at P̂1 =
(
0,− k

2 ,0
)

and P̌1 =
(
0,− 2

k ,0
)
, which

undergo a saddle-node bifurcation as k → 2+. We are interested in the strong stable eigendirection of the linearisation
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about the origin in (1.5), i.e., in the absence of a cut-off. Since the heteroclinic orbit V (U) =− k
2U(1−U) is the union

of the unstable manifold W u(Q−) of Q− and the strong stable manifold W ss(Q+) of Q+, we restrict our attention to
P̂1. The point P̌1 corresponds to the weak stable eigendirection at the origin in (1.5), which is not relevant here.

The following lemma summarises the stability properties of P̂1.

Lemma 10. The eigenvalues of the linearisation of (2.10) at P̂1 =
(
0,− k

2 ,0
)

are given by − k
2 , k

2 −
2
k , and k

2 , with
corresponding eigenvectors

( 2
k ,1,0

)T , (0,1,0)T , and (0,0,1)T , respectively.

We again first construct the portion Γ
+
1 of Γ1. Taking r1 → 0+ in (2.10), we obtain

v′1 =−
( k

2
+

2
k

)
v1 −1− v2

1,

ε
′
1 =−ε1v1,

(2.21)

which we rewrite as
dv1

dε1
=

1+
( k

2 +
2
k

)
v1 + v2

1

ε1v1
.

Solving by separation of variables, we find

ln
|k+2v1|k

2

|kv1 +2|4
= (lnε1 +α)(k2 −4),

where α is a constant of integration. Exponentiating both sides in the above equation, we have

(k+2v1)
k2

(kv1 +2)4 = α
′
ε

k2−4
1 , (2.22)

with α ′ =±eα(k2−4).

We choose α ′ so that the orbit Γ
+
1 connects to Γ2 in the section Σout

1 = κ21(Σ
in
2 ). Thus, we require v1(1) = −c(0) =

−
( k

2 +
2
k

)
(= v2(1)), which is satisfied for α ′ = (−4/k)k2

(k2/2)4 .

Finally, we note that Γ
+
1 is backward asymptotic to P̂1. Taking ε1 → 0+, we conclude that

(k+2v1)
k2

(kv1 +2)4 → 0 (2.23)

must hold, which is only true when v1 →− k
2 . Hence, the construction of Γ

+
1 is complete.
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Figure 3: Geometry and dynamics in chart K1 for k > 2.

Next, we consider the portion Γ
−
1 of Γ1. The limit as ε1 → 0+ in (2.10) gives the system of equations

r′1 = r1v1,

v′1 =−
( k

2
+

2
k

)
v1 + kr1v1 − (1− r1)− v2

1,
(2.24)

which is equivalent to (2.1) after blow-down.

Lemma 11. For r1 ∈ (0,1] the system of equations in (2.24) admits an explicit orbit that is given by

Γ
−
1 : v1(r1) =− k

2
(1− r1), (2.25)

with v1(1) = 0.

Proof. Recall that when k ≥ 2 and c(0) = 2
k +

k
2 = ccrit, we have an explicit orbit for (2.1) that is given by V (U) =

− k
2U(1−U), see Theorem 1. Transformation to chart K1, with v = r1v1 and u = r1, yields the result.

We conclude that Γ
−
1 is forward asymptotic to P̂1 and backward asymptotic to Q−

1 . Moreover, Pin
1 = Γ

−
1 ∩ Σin

1 =(
r0,

k
2 (r0 −1),0

)
, which completes the construction of the singular orbit Γ1 in the case where k > 2. The geometry in

chart K1 is illustrated in Figure 3 in that case.
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2.3 Singular orbit Γ

We now combine the results of the previous two subsections to define the singular orbit Γ in (ū, v̄, ε̄)-space.

Proposition 12. For any k > 0, there exists a singular heteroclinic orbit Γ for Equations (2.4) and (2.10) that connects
Q−

1 to Q+
2 .

Proof. We first consider the case where k ≤ 2, i.e., the pulled front propagation regime, which is analogous to the
standard FKPP equation with a cut-off [6]. The orbit Γ2 given by v2(u2) = −2u2, see (2.7), connects to Q+

2 and
intersects Σin

2 in Pin
2 = (1,−2,0). Next, we apply the change of coordinates in (2.12) to find κ21

(
Pin

2
)
= Pout

1 =
(0,−2,1). By construction, Γ

+
1 passes through Pout

1 and is backward asymptotic to P1, see (2.15). Similarly, Γ
−
1

is forward asymptotic to P1 and backward asymptotic to Q−
1 , by Proposition 9. Therefore, we can now write Γ as the

union of Γ
−
1 , Γ

+
1 , and Γ2 with Q−

1 , P1, and Q+
2 in blown-up phase space, which proves the result for k ≤ 2.

Next, we consider the case where k > 2, corresponding to the pushed propagation regime. Here, Γ2 is given by
v2(u2) = −

( k
2 +

2
k

)
u2, see (2.7), which again connects to Q+

2 and intersects Σin
2 in Pin

2 =
(
1,−

( k
2 +

2
k

)
,0
)
. Applying

the change of coordinates in (2.12), we find κ21
(
Pin

2
)
= Pout

1 =
(
0,−

( k
2 +

2
k

)
,1
)
. We know that Γ

+
1 , constructed in

(2.22), passes through Pout
1 and is backward asymptotic to P̂1 =

(
0,− k

2 ,0
)
. Similarly, Γ

−
1 , defined in (2.25), is forward

asymptotic to P̂1 and backward asymptotic to Q−
1 . Therefore, we can write Γ as the union of the orbits Γ

−
1 , Γ

+
1 , and Γ2

with Q−
1 , P̂1, and Q+

2 in blown-up space, which shows the result for k > 2.

3 Proof of Theorem 2
In this section, we prove our main result, Theorem 2. We first show that the singular orbit Γ, which is obtained from
the orbit Γ constructed in Section 2 after blow-down, persists for ε sufficiently small in Equation (2.1). Then, we
derive the leading-order asymptotics of the correction ∆c(ε) to the critical speed c(0) = ccrit that is due to the cut-off.
Finally, we illustrate our results numerically.

3.1 Persistence of Γ

The following result implies the existence of a unique front propagation speed c(ε) for which there exists a critical
heteroclinic orbit in (2.1). While the proof is similar to that of [6, Proposition 3.1], we give it here for completeness.

Proposition 13. For ε ∈ (0,ε0), with ε0 sufficiently small, k > 0, and c close to c(0), there exists a critical heteroclinic
connection between Q− and Q+ in Equation (2.1) for a unique speed c(ε) which depends on k. Furthermore, there
holds c(ε)≤ c(0).

Proof. We first analyse (2.4) in the inner region, where U < ε . In particular, we are interested in the stable manifold
W s

2 (ℓ
+
2 ), which is given explicitly by v2(u2) = −c(r2)u2 when r2(= ε) > 0, for general values of c. For r2 fixed,

W s
2 (ℓ

+
2 ) intersects Σin

2 in the point (1,vin
2 ,r2), where vin

2 =−c(ε). From the definition of the blow-up transformation in
(2.2), we have that V in = vin

2 ε =−c(ε)ε ≲ 0, which implies ∂V in

∂c =−ε .

We now consider the outer region, where U > ε . For general c, the dynamics in that region are governed by

U ′ =V,

V ′ =−cV + kUV −U(1−U),
(3.1)

recall (1.5). The intersection of the unstable manifold W u(Q−) of Q− with {U = ε} can be written as the graph of an
analytic function V out(c,ε), with ∂V out

∂c > 0. A standard phase plane argument shows that V out(c,ε) must be O(1) and
negative for c ≲ c(0), which implies V in >V out.

Finally, we consider the case where c = c(0) and ε > 0. First, we take k < 2, in which case c(0) = 2. The trapping
region argument in Proposition 9 then shows that V is bounded between the curves {V = 0} and {V = −U(1−U)}
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and, hence, that V out ≥−ε(1−ε) in {U = ε}. Therefore, we can conclude that V in =−2ε <−ε(1−ε)≤V out for any
ε > 0. Next, we take k ≥ 2, in which case the singular heteroclinic orbit is known explicitly as V (U) =− k

2U(1−U).
Therefore, we can write V out(c(0),ε) =− k

2 ε(1− ε), which again implies V in =−
( k

2 +
2
k

)
ε <− k

2 ε(1− ε) =V out for
any ε > 0.

We conclude by observing that W s(Q+) and W u(Q−) must intersect in {U = ε} for a unique value of c(ε) ≲ c(0),
which follows from the implicit function theorem and the fact that ∂V out

∂c − ∂V in

∂c > 0.

It follows from Proposition 13 that a Heaviside cut-off reduces the critical front propagation speed in Equation (1.3);
correspondingly, ∆c(ε) = c(0)− c(ε) must be positive for ε sufficiently small.

3.2 Leading-order asymptotics of ∆c

In this subsection, we derive the asymptotics of the correction ∆c to c(0) to leading order in ε . Again, we distinguish
between the pulled and pushed front propagation regimes in (2.1).

3.2.1 Pulled front propagation: k ≤ 2

We first consider the case where k ≤ 2. Recall that the dynamics in chart K1 are governed by the system of equations
in (2.10). Our aim is to approximate the transition map Π1 : Σin

1 → Σout
1 under the flow of (2.10) for ε ∈ (0,ε0), with

ε0 > 0 sufficiently small.

To that end, we first shift the equilibrium at P1 = (0,−1,0) to the origin via the transformation V1 = v1 +1, and we set
c = c(0)−∆c = 2−η2. With these transformations, we can write (2.10) as

r′1 =−r1(1−V1),

V ′
1 = (2−η

2)(1−V1)− kr1(1−V1)−1+ r1 − (1−V1)
2,

ε
′
1 = ε1(1−V1).

(3.2)

Rescaling “time” by dividing out a positive factor of 1 −V1 from the right-hand sides in (3.2), noting that the
ε1-equation decouples, and appending the trivial equation for η , we obtain

ṙ1 =−r1,

V̇1 =−η
2 +

(1− k)r1 + kr1V1 −V 2
1

1−V1
,

η̇ = 0,

(3.3)

where the overdot denotes differentiation with respect to the new independent variable ζ .

Remark 14. The rescaling of “time” in (3.2) is implicitly defined via (1−V1(ξ ))
d

dζ
= d

dξ
, and merely affects the

parametrisation of solutions while leaving the phase portrait unchanged.

We have the following result, which can be shown in close analogy to [6, Proposition 3.2].

Lemma 15. There exists a normal form transformation (r1,V1,η) → (S(r1,V1,η),W (r1,V1,η),η) that transforms
Equation (3.3) to

Ṡ =−S,

Ẇ =−η
2 − W 2

1−W
,

η̇ = 0.

(3.4)

That transformation respects the invariance of {r1 = 0} and {η = η0}, for any η0 ∈ R.

Proof. The statement follows from [28, Theorem 1].
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We note that the only resonant terms in (3.3) are of the form V n
1 , for n ≥ 2. Therefore, all other terms can be removed

via a sequence of smooth near-identity transformations.

The normal form in (3.4) is identical to the one stated in [6, Equation (34)]. Moreover, the analysis in [6] shows that
the correction ∆c to c(0) is given by η2 = π2

(lnε)2 +O[(lnε)−3] to leading order, as well as that it is independent of

the transformed coordinates W in and W out of the entry and exit points Pin
1 and Pout

1 , respectively, following the normal
form transformation in Lemma 15. We note that both W in and W out are well-defined by Proposition 9 and our analysis
in chart K2, in which the point Pin

2 and, therefore, also the point Pout
1 , is known explicitly.

In summary, we find the same correction ∆c as in [6] for the pulled propagation regime, i.e., when k ≤ 2, which
completes the proof of Theorem 2 in that case.

Remark 16. Setting k = 0 in Theorem 2, we recover the main result from [6, Theorem 1.1], as is to be expected.

3.2.2 Pushed front propagation: k > 2

The pushed propagation regime where k > 2 is significantly more involved algebraically than the pulled regime
discussed in the previous subsection.

Our aim is again to approximate the transition map Π1 : Σin
1 → Σout

1 under the flow of (2.10). Now, the point P̂1 =(
0,− k

2 ,0
)

is shifted to the origin via the transformation V1 = v1 +
k
2 ; moreover, we write c = c(0)−∆c = k

2 +
2
k −∆c.

The resulting system of equations is given by

r′1 =−r1

( k
2
−V1

)
,

V ′
1 =−∆c

( k
2
−V1

)
+ r1

(
1− k2

2
+ kV1

)
+
( k

2
− 2

k

)
V1 −V 2

1 ,

ε
′
1 = ε1

( k
2
−V1

)
.

(3.5)

Next, we rescale “time” by a (positive) factor of k
2 −V1, with

( k
2 −V1(ξ )

) d
dζ

= d
dξ

, which yields

ṙ1 =−r1,

V̇1 =−∆c+
r1
(
1− k2

2 + kV1
)
+
( k

2 −
2
k

)
V1 −V 2

1
k
2 −V1

,

ε̇1 = ε1.

(3.6)

We note that the equation for ε1 in (3.6) again decouples. Finally, we separate the r1-dependent terms in the V1-equation
in (3.6), and we append the trivial equation for ∆c:

ṙ1 =−r1,

V̇1 =−∆c+ r1
1− k2

2 + kV1
k
2 −V1

+

( k
2 −

2
k

)
V1 −V 2

1
k
2 −V1

,

∆̇c = 0.

(3.7)

For the linearisation of (3.7) at the origin, we obtain the eigenvalues −1, 1− 4
k2 , and 0. It is straightforward to show

that the monomial r1V j
1 in (3.7) can only be resonant for integer-valued j = 2−4/k2

1−4/k2 . In particular, the lowest-order

resonance is realised at order 4, since 1(−1)+3
(
1− 4

k2

)
= 1− 4

k2 when k = 2
√

2, corresponding to the fourth-order
monomial r1V 3

1 . To approximate Π1, we hence first derive a normal form for (3.7) by eliminating all non-resonant
r1-dependent terms via a sequence of near-identity transformations.
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Lemma 17. There exists a sequence of smooth transformations that transforms Equation (3.7) to

ṙ1 =−r1,

Ẇ =−∆c+

( k
2 −

2
k

)
W −W 2

k
2 −W

+O(r1W j),

∆̇c = 0,

(3.8)

with j ≥ 3. Specifically, that sequence is composed of the transformation V1 = k
2 r1 + Z in (3.7), followed by the

near-identity transformation Z =W + 4
k2 r1W and, finally, a sequence of smooth near-identity transformations.

Proof. The existence of such a transformation follows from standard normal form theory [29], as the lowest-order
potentially resonant monomial in (3.7) is of the form r1V 3

1 for k = 2
√

2. All higher-order non-resonant terms can be
removed by a sequence of smooth near-identity transformations.

Next, we approximate P̃in
1 and P̃out

1 , which are the entry and exit points in Σin
1 and Σout

1 , respectively, under Π1, to a
sufficiently high order in ∆c, ε , and r0. We first show the following preparatory result.

Lemma 18. For U and V defined as in (1.5), U ∈ [0,U0] with U0 > 0 sufficiently small, and any k ≥ 2, there holds

∂V
∂c

(U,c(0)) =

{U(1−U+lnU)
U−1 if k = 2,

k2

k2+4U
4

k2 (1−U)2F1
(
1+ 4

k2 ,
4
k2 ,2+

4
k2 ,1−U

)
if k > 2,

(3.9)

where 2F1 is the hypergeometric function, see, e.g., [25, Section 15].

Proof. We rewrite (1.5) with U as the independent variable,

V
dV
dU

=−cV + kUV −U(1−U). (3.10)

Differentiation with respect to c gives

∂V
∂c

∂V
∂U

+V
∂

∂c
∂V
∂U

=−V − c
∂V
∂c

+ kU
∂V
∂c

. (3.11)

Evaluating at V (U,c(0)) =− k
2U(1−U) and making use of ∂V

∂U (U,c(0)) =− k
2 (1−2U), we find

d
dU

(
∂V
∂c

(U,c(0))
)
=−1+

4
k2

1
U(1−U)

∂V
∂c

(U,c(0)). (3.12)

We note that (3.12) is an ordinary differential equation for ∂V
∂c (U,c(0)) in the variable U . For k = 2, the unique solution

that remains bounded as U → 1− is given by

∂V
∂c

(U,c(0)) =
U(1−U + lnU)

U −1
.

For k > 2, we can solve (3.12) by variation of constants, which gives

∂V
∂c

(U,c(0)) = β (1−U)
− 4

k2 U
4

k2 +(1−U)
− 4

k2 U
4

k2
[
−
∫ U

1
(1− s)

4
k2 s−

4
k2 ds

]
,

for some constant of integration β that is to be determined. We require that ∂V
∂c (U,c(0))→ 0 when U → 1−. Therefore,

β = 0, since the second term goes to zero by L’Hôpital’s Rule. Next, we make the substitution s = 1−σ , which gives

∂V
∂c

(U,c(0)) = (1−U)
− 4

k2 U
4

k2

∫ 1−U

0
σ

4
k2 (1−σ)

− 4
k2 dσ . (3.13)
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The integral in (3.13) is of the form of an Incomplete Beta function, see [25, Section 6.6], which is defined by the
expression

Bx(a,b) :=
∫ x

0
σ

a−1(1−σ)b−1dσ .

Setting x = 1−U , a = 1+ 4
k2 , and b = 1− 4

k2 , we can write ∂V
∂c (U,c(0)) in terms of B1−U

(
1+ 4

k2 ,1− 4
k2

)
. Finally, the

relation [25, Equation 6.6.8 and Section 15]

Bx(a,b) = a−1xa
2F1(a,1−b,a+1,x)

implies
∂V
∂c

(U,c(0)) =
k2

k2 +4
U4/k2

(1−U)2F1
(
1+4/k2,4/k2,2+4/k2,1−U

)
, (3.14)

which completes the proof.

Lemma 19. For k > 2 and ∆c and ε sufficiently small, the points P̃in
1 =

(
r0,W in, ε

r0

)
and P̃out

1 = (ε,W out,1) satisfy

W in = ν(r0)∆c+O(∆c2,r4/k2

0 ∆c) and W out =−2
k
+∆c− k

2
ε +O(ε2), (3.15)

where

ν(r0) =− k2

k2 +4
r4/k2−1

0 (1− r0)2F1
(
1+4/k2,4/k2,2+4/k2,1− r0

)
. (3.16)

Proof. Recall that, by (2.2), r1v1 = r2v2, which implies vout
1 = vin

2 = −c(ε) = −
( k

2 +
2
k

)
+∆c. As the point P1 was

shifted to the origin via the transformation V1 = v1 +
k
2 , we have V out

1 = − 2
k +∆c. The normal form transformation

given by Lemma 17 implies that W = V1 − k
2 r1 +O(r1V1). Moreover, r1 = ε in Σout

1 ; therefore, W out = − 2
k +∆c−

k
2 ε +O(ε2).

We now consider W in. As W u(Q−) is analytic in U and c, we can write

V (U,c) =
∞

∑
j=0

1
j!

∂ jV
∂c j (U,c(0))(−∆c) j

=− k
2

U(1−U)− k2

k2 +4
U4/k2

(1−U)2F1
(
1+4/k2,4/k2,2+4/k2,1−U

)
∆c+O(∆c2),

by Lemma 18. Next, we make use of U = r1, V = r1v1, and the fact that r1 = r0 in Σin
1 , as well as of the transformation

V1 = v1 +
k
2 , to obtain

V in
1 =

k
2

r0 −
k2

k2 +4
r4/k2−1

0 (1− r0)2F1
(
1+4/k2,4/k2,2+4/k2,1− r0

)
∆c+O(∆c2).

Finally, since W =V1 − k
2 r1 +O(r1V1), we have

W in =− k2

k2 +4
r4/k2−1

0 (1− r0)2F1
(
1+4/k2,4/k2,2+4/k2,1− r0

)
∆c+O(∆c2,r4/k2

0 ∆c)

= ν(r0)∆c+O(∆c2,r4/k2

0 ∆c),

(3.17)

where ν(r0) is as defined in (3.16). In particular, the invariance of {W = 0} for ∆c= 0 in the normal form, Equation (3.8),
implies that the error term in (3.17) has to be proportional to ∆c, as stated.
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Remark 20. Lemma 19 implies that W in and W out are both negative for ∆c and r0 sufficiently small. In particular,
ν(r0), as defined in (3.16), is negative, which follows from the identity 2F1(a,b,c,1) =

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) ; see, e.g., [25,

Equation 15.1.20]. Incidentally, that identity is valid for ℜ(c− a− b) > 0 which, for a = 1+ 4/k2, b = 4/k2, and
c = 2+4/k2, is equivalent to requiring k > 2.

Instead of integrating the “full” normal form in (3.8) to determine the leading-order asymptotics of ∆c(ε), we will
consider the simplified equations that are obtained by omitting the higher-order O(r1W j)-terms with j ≥ 3 therein:

˙̂W =−∆c+

( k
2 −

2
k

)
Ŵ −Ŵ 2

k
2 −Ŵ

. (3.18)

We now show that, to leading order, the asymptotics of ∆c(ε) is not affected by the omission of the O(r1W j)-terms
in (3.8). In our proof, we make the a priori assumption that ∆c = O

(
ε1−4/k2)

, which we then show to be consistent in
Proposition 23.

Lemma 21. Let ζ ∈ [0,ζ out], with W in and W out defined as in Lemma 19, let k > 2, and let ε ∈ (0,ε0), with ε0 > 0
sufficiently small. Then, for W in =W (0) = Ŵ in, we have∣∣W out −Ŵ out∣∣= O(εκ),

where κ > 1
2 .

Proof. Considering the difference between the equations for W and Ŵ in (3.8) and (3.18), respectively, and multiplying
the result with W −Ŵ , we find

∣∣W (ζ )−Ŵ (ζ )
∣∣2 ≤ ∣∣W in −Ŵ in∣∣2 +2

∫
ζ

0

[∣∣∣∣ (k−4/k)W −2W 2

k−2W
− (k−4/k)Ŵ −2Ŵ 2

k−2Ŵ

∣∣∣∣+C|r1W j|
]∣∣W −Ŵ

∣∣ds,

where C is a generic constant. For ζ ∈ [0,ζ out] and k > 2, the integral term I in the above inequality is estimated as

I ≤ 2
∫

ζ

0

∣∣W −Ŵ
∣∣2∣∣∣∣∣54 − 4

(k−2W )(k−2Ŵ )

∣∣∣∣∣ds+C
∫

ζ

0
|r1W j|2 ds,

where we have used Young’s inequality. Since
∣∣∣ 5

4 −
4

(k−2W )(k−2Ŵ )

∣∣∣ is monotonic for W,Ŵ ∈ [W out,W in], and since

W out = − 2
k +∆c− k

2 ε +O(ε2) by Lemma 19, with ∆c = O(ε1−4/k2
) positive, there exists ε0 > 0 sufficiently small

such that − 2
k ≤W out for ε ∈ (0,ε0). Therefore, we can estimate

∣∣∣ 5
4 −

4
(k−2W )(k−2Ŵ )

∣∣∣≤ 5
4 −

4
(k+4/k)2 ≤ 5

4 −
1
k2 .

Thus, taking W in =W (0) = Ŵ in, we have

∣∣W (ζ )−Ŵ (ζ )
∣∣2 ≤ 2

(
5
4
− 1

k2

)∫
ζ

0

∣∣W −Ŵ
∣∣2 ds+C

∫
ζ

0
|r1W j|2 ds.

An application of the Grønwall inequality then yields

∣∣W (ζ )−Ŵ (ζ )
∣∣2 ≤Ce2

(
5
4−

1
k2

)
ζ

∫
ζ

0
|r1W j|2 ds. (3.19)

Next, we write |r1W j|= |(r1W ) j |
r j−1
1

= |r1W | j

r j−1
0

e( j−1)ζ . To estimate r1W , we consider

(r1W )′ =−r1W + r1W ′ =−r1∆c− r1

2
kW

k
2 −W

[1+O(r1W j)].
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Setting y := r1W , making use of r1(ζ ) = r0e−ζ , and denoting F(ζ ) ≡ F(r1(ζ ),W (ζ )) = 2/k
k/2−W (ζ )

[
1 +O(r1(ζ )

W (ζ ) j)
]
, we can write the above as y′ =−r0e−ζ ∆c− yF(ζ ). Solving by variation of constants, with y(0) = r0W in =

r0∆cω(∆c,r0) for ω(∆c,r0) = ν(r0)+O(∆c,r4/k2

0 ), recall Lemma 19, we find

y(ζ ) = r0∆ce−
∫ ζ

0 F(s)ds
[
ω(∆c,r0)−

∫
ζ

0
exp
(
− s+

∫ s

0
F(σ)dσ

)
ds
]

= r0∆ce−
∫ ζ

0 F(s)ds
[

ω(∆c,r0)−1+ e−ζ exp
(∫ ζ

0
F(σ)dσ

)
−
∫

ζ

0
e−s exp

(∫ s

0
F(σ)dσ

)
F(s)ds

]
.

Here, the second line follows from integration by parts. Since − 2
k ≤W out, and since W ∈ [W out,W in], we can estimate

1
1+k2/4 ≤ F(ζ ) for ζ ∈ [0,ζ out] and r0 sufficiently small. Similarly, for every fixed k > 2, there exists µ such that

k2 > µ > 4, which implies F(ζ )≤ µ

k2 for ε and r0 sufficiently small.

Hence, and since ω(∆c,r0) is negative for ∆c and r0 sufficiently small, by Remark 20, we find

|y(ζ )| ≤ r0∆ce
− 1

1+k2/4
ζ

[
1−ω(∆c,r0)+ e−(1−µ/k2)ζ +

µ

k2

∫
ζ

0
e−(1−µ/k2)s ds

]
. (3.20)

Since the term in square brackets in (3.20) is bounded for ζ ∈ [0,∞), we find that

|(r1W )(ζ out)| ≤C∆cε

1
1+k2/4 ,

where ζ out =− ln ε

r0
, as before.

Therefore, we can estimate∫
ζ out

0
|r1W j|2 ds ≤C

∫
ζ out

0

(
∆cε

1
1+k2/4

)2 j e( j−1)s

r j−1
0

ds ≤C
(

∆cε

1
1+k2/4

)2 j
ε
−( j−1) = O

(
ε

2 j(1−4/k2)+ 2 j
1+k2/4

− j+1)
, (3.21)

where we have made use of ∆c = O
(
ε1−4/k2)

. Finally, we recall that the r1W j-terms in (3.7) can only be resonant for

integer-valued j = 2−4/k2

1−4/k2 , which implies that (3.21) is of the order O
(

ε

3k4+16k2−32
k2(k2+4)

)
. Furthermore, the exponential term

in (3.19) satisfies e2
(

5
4−

1
k2

)
ζ out

= O
(
ε2/k2−5/2

)
. Combining the above, we conclude that |W out −Ŵ out| = O(εκ(k)),

where κ(k) = k4+16k2−48
2k2(k2+4) . We note that κ(k)> 1

2 for k ∈ (2,∞), with limk→∞ κ(k) = 1
2 . Hence, it follows that

∣∣W out −
Ŵ out

∣∣= O(εκ)→ 0 as ε → 0 with κ > 1
2 , as stated.

We can now solve (3.18) by separation of variables,

−2kW + k2

−2kW 2 +W (k2 +2∆ck−4)−∆ck2 dW = dζ , (3.22)

where we have omitted overhats from Ŵ for simplicity of notation. Integration of (3.22) gives

ζ
out −ζ

in − 1
2

ln
∣∣−2kW 2 +(k2 +2k∆c−4)W − k2

∆c
∣∣∣∣∣W out

W in

−
k2

2 +2− k∆c√
(k2 +2k∆c−4)2 −8k3∆c

× ln
∣∣∣∣−4kW + k2 +2k∆c−4−

√
(k2 +2k∆c−4)2 −8k3∆c

−4kW + k2 +2k∆c−4+
√

(k2 +2k∆c−4)2 −8k3∆c

∣∣∣∣∣∣∣∣W out

W in
= 0.

(3.23)
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Recall that, as ε1(ζ ) =
ε

r0
eζ , we have ζ in = 0 and ζ out =− ln ε

r0
in (3.23). Moreover, by Lemma 19,

W in = ν(r0)∆c+O(∆c2,r4/k2

0 ∆c) and W out =−2
k
+∆c− k

2
ε +O(ε2).

We now proceed as follows: given (3.23), we derive a necessary condition on ∆c which will determine the leading-order
asymptotics thereof in ε .

We begin by substituting our estimates for W in and W out into the first logarithmic term in (3.23), which gives

1
2

ln
∣∣−2k(W in)

2
+(k2 +2k∆c−4)W in − k2

∆c
∣∣

=
1
2

ln
∣∣(k2 −4)ν(r0)∆c− k2

∆c+O(∆c2,r4/k2

0 ∆c)
∣∣ (3.24)

and
1
2

ln
∣∣−2k(W out)

2
+(k2 +2k∆c−4)W out − k2

∆c
∣∣

=
1
2

ln
∣∣−2k+O(∆c,ε)

∣∣, (3.25)

respectively.

Now, we expand the rational function multiplying the second logarithmic term in (3.23) as

−
k2

2 +2− k∆c√
(k2 +2k∆c−4)2 −8k3∆c

=− k2 +4
2(k2 −4)

− 16k3

(k2 −4)3 ∆c+O(∆c3), (3.26)

and we write the argument of the logarithm therein as

−4kW + k2 +2k∆c−4−
√

(k2 +2k∆c−4)2 −8k3∆c

−4kW + k2 +2k∆c−4+
√

(k2 +2k∆c−4)2 −8k3∆c

=−1+2
−4kW + k2 +2k∆c−4

−4kW + k2 +2k∆c−4+
√

(k2 +2k∆c−4)2 −8k3∆c
.

(3.27)

Substituting the estimate for W in into (3.27), we have

−1+2
(−4kν(r0)+2k)∆c+ k2 −4

−4kν(r0)∆c+ k2 +2k∆c−4+
√
(k2 +2k∆c−4)2 −8k3∆c

+O(∆c2,r4/k2

0 ∆c)

=

[
2k3

(k2 −4)2 − 2kν(r0)

k2 −4

]
∆c+O(∆c2,r4/k2

0 ∆c).

(3.28)

Similarly, we can use our estimate for W out in (3.27) to obtain

−1+2
4+ k2

2k2 +O(∆c,ε) =
4
k2 +O(∆c,ε). (3.29)

Summarising the above calculations, we can write (3.23) as

− ln
ε

r0
+

1
2

ln
∣∣(k2 −4)ν(r0)∆c− k2

∆c+O(∆c2,r4/k2

0 ∆c)
∣∣− 1

2
ln |−2k+O(∆c,ε)|

−
[

k2 +4
2(k2 −4)

+O(∆c)
][

− ln
∣∣∣∣[ 2k3

(k2 −4)2 − 2kν(r0)

k2 −4

]
∆c+O(∆c2,r4/k2

0 ∆c)
∣∣∣∣

+ ln
∣∣∣∣ 4
k2 +O(∆c,ε)

∣∣∣∣]= 0.

(3.30)
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Now, we exponentiate (3.30) to obtain

(
ε

r0

)2

=
[k2 − (k2 −4)ν(r0)]∆c+O(2)

2k+O(1)
×

([ 2k3

(k2−4)2 −
2kν(r0)
k2−4

]
∆c+O(2)

4
k2 +O(1)

) k2+4
k2−4

, (3.31)

where O(1) denotes terms that are of at least order 1 in ∆c and ε , while O(2) stands for terms of at least order 2 in ∆c

and r4/k2

0 . Solving for ∆c in (3.31), we obtain

∆c = α(k)ε1− 4
k2 [1+o(1)], (3.32)

where

α(k) =
1

r1−4/k2

0

[
k2 − (k2 −4)ν(r0)

] (2k)1/2(1−4/k2)
[
2(k2 −4)2

]1/2(1+4/k2)

k3/2(1+4/k2)
. (3.33)

For future reference, we label the r0-dependent contribution to α(k) as

δ (r0) = r1−4/k2

0

[
k2 − (k2 −4)ν(r0)

]
. (3.34)

In spite of the function ν(r0), as defined in Lemma 19, being dependent on r0, that dependence must cancel, as the
choice of r0 in the definition of Σin

1 is arbitrary. Therefore, we can take the limit as r0 → 0+ in (3.34).

Lemma 22. The function δ defined in Equation (3.34) satisfies

lim
r0→0+

δ (r0) = (k2 −4)Γ(1+4/k2)Γ(1−4/k2), (3.35)

where k > 2.

Proof. We begin by writing δ (r0) as

δ (r0) = r1−4/k2

0 k2 +
k2

k2 +4
(k2 −4)(1− r0)2F1

(
1+4/k2,4/k2,2+4/k2,1− r0

)
, (3.36)

using the definition of ν(r0) from Lemma 19. Taking r0 → 0+, we find

lim
r0→0+

δ (r0) =
k2

k2 +4
(k2 −4) 2F1

(
1+4/k2,4/k2,2+4/k2,1

)
=

k2 −4
1+4/k2

Γ(2+4/k2)Γ(1−4/k2)

Γ(1)Γ(2)

= (k2 −4)Γ(1+4/k2)Γ(1−4/k2).

(3.37)

Here, we have used the identities 2F1(a,b,c,1)=
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) [25, Equation 15.1.20] and Γ(2+4/k2)= (1+4/k2)Γ(1+

4/k2), as well as the fact that Γ(1) = 1 = Γ(2), which completes the proof.

Proposition 23. Let ε ∈ (0,ε0), with ε0 > 0 sufficiently small, and let k > 2. Then, the function ∆c defined in
Theorem 2 satisfies

∆c(ε) =
2

k1+8/k2

(k2 −4)4/k2

Γ(1+4/k2)Γ(1−4/k2)
ε

1−4/k2
[1+o(1)]. (3.38)

Proof. The statement follows directly from Lemma 22 and Equations (3.32) and (3.33).
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Hence, the proof of Theorem 2 is complete in the pushed front propagation regime, which is realised for k > 2 in (2.1).

Remark 24. We note that ε1−4/k2 → ε0 = 1 as k → 2+ in (3.38), i.e., as we approach the pulled propagation regime.
L’Hôpital’s Rule shows that the corresponding coefficient tends to 0 in that limit, which is consistent with Theorem 2,
as the correction ∆c is logarithmic in ε for k ≤ 2.

Remark 25. A simplification of the general expression for ∆c in Equation (3.38) is achieved for specific values of
k in (2.1); e.g., k = 2

√
2 gives c(ε) = c(0)−∆c(ε) =

√
2+ 1√

2
− 1

π
ε1/2[1+ o(1)]. Similarly, for k = 4, we have

c(ε) = 5
2 −

4√3
π

ε3/4[1+o(1)].

3.3 Numerical verification
In this subsection, we verify the asymptotics in Theorem 2 by calculating numerically the error incurred by approximating
c(ε) with the corresponding first-order expansion (in ε), which we denote by ĉ(ε); for k = 4, e.g., we have ĉ(ε) =
5
2 −

4√3
π

ε3/4. The numerical value of c(ε) is obtained by integrating Equation (2.1) and storing the final value of
U = Ufinal(c) obtained after a sufficiently large number of time steps. We then minimise |Ufinal(c)|, taking ĉ(ε) as
our initial value of c. Our findings are illustrated in Figure 4 for k ∈ {1, 3

2 ,2
√

2,4}, where we have used a double
logarithmic scale, with ε ∈ [10−4,10−2]. Figure 4 suggests that the next-order correction to c(ε) will be of the order
O[(lnε)−3] for k = 1 and k = 3

2 , whereas it will be O(ε) for k = 2
√

2 and O(ε3/2) for k = 4.

4 Discussion
In this article, we have proven the existence of “critical” travelling front solutions to the Burgers-FKPP equation with
a Heaviside cut-off multiplying both the reaction kinetics and the advection term, recall Equation (1.7). Moreover, we
have rigorously derived the leading order ε-asymptotics of the unique front propagation speed c(ε). To the best of our
knowledge, the effects of a cut-off on advection-reaction-diffusion equations of the type in (1.2) have not been studied
before.

For k ≤ 2, the front is pulled and behaves as the pulled fronts with a cut-off considered, e.g., in [6, 10], with the
correction to the front propagation speed being negative and of the order O[(lnε)−2]. When k > 2, the front is
pushed, and the correction to the speed of propagation is also negative, and proportional to a fractional power of ε ,
again in analogy to the pushed fronts in reaction-diffusion equations with a cut-off analysed in [10]. While the proof of
Theorem 2 in the pulled propagation regime where k ≤ 2 closely follows the proof of [6, Theorem 1], we have included
it for completeness. The analysis of the pushed regime, with k > 2, is significantly more involved algebraically and
relies on a modification of the approach developed in [9, 10, 11]. Our main analytical contribution in this article can
be found in Section 3, where we adapt techniques from both [6] and [9, 10, 11] to derive the asymptotics in (1.10).

It is important to emphasise that the blow-up technique is applied in the present context to remedy a discontinuity in
the governing equations, rather than a loss of hyperbolicity, as is typically the case in applications of blow-up [8, 26].
Given that the regularisation of piecewise smooth systems via the alternative methodology developed in [30] typically
results in a singular perturbation problem, it may be feasible to adapt that well-established methodology to our setting;
see [31] for a specific application.

It may be possible to calculate higher-order terms in ε in the expansion of c(ε) in the pushed regime; however, to
do so, one must solve for ∂ jV

∂c j (U,c(0)) ( j ≥ 2) via the procedure outlined in Lemma 18. We note that the procedure
will fail for general pulled fronts with k < 2, as the front is not explicitly known in those cases, preventing us from
calculating W in to a sufficiently high order to determine higher-order terms in c(ε). However, at the boundary between
the pushed and pulled regimes, when k = 2, the front is known explicitly, as is ∂V

∂c (U,c(0)), see Lemma 18. Hence,
one could approximate W in to a sufficiently high order, which may make it possible to determine the next term in the
expansion of c(ε) when k = 2.

By retracing the proof of Theorem 2, one can show that the leading-order correction to the front speed is independent of
whether or not the advection term in Equation (1.7) is multiplied with the cut-off function H(u− ε). That observation
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Figure 4: Error of the approximation of c(ε) by ĉ(ε) for k ∈ {1, 3
2 ,2

√
2,4} and ε ∈ [10−4,10−2].
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is supported by the motivating example of the Burgers equation with a cut-off, Equation (1.9), where the correction to
the front speed is given by ∆c(ε) = k

2 ε2 to leading order. As both (lnε)−2 and ε1−4/k2
are of lower order compared

to ε2, it is to be expected that a cut-off in the advection term will not affect the leading-order asymptotics of ∆c(ε).
Since the requisite argument is very similar to the proof of Theorem 2, we outline it in Appendix A.

In Theorem 2, we have restricted to a Heaviside cut-off function H(u− ε) in Equation (1.7); that restriction appears
reasonable, as the Heaviside cut-off cancels the reaction kinetics and the advection term exactly when no particles
are present in the underlying N-particle system. One can instead introduce a general cut-off function ψ(u,ε) in (1.7)
which satisfies ψ(u,ε) ≡ 1 when u > ε and ψ(u,ε) < 1 for u < ε . Equation (1.1) with Fisher reaction kinetics and
a general cut-off has been considered in [6], while a linear cut-off function was studied explicitly in [11]. In the
context of Equation (1.7), one can show that to leading order, ∆c = π2

ln(ε)2 in the pulled propagation regime for a wide
range of cut-off functions which includes the Heaviside cut-off [6]. Hence, the leading-order asymptotics of ∆c is
then universal, as was also the case in [6]. In the pushed regime, one again obtains ∆c = O(ε1−4/k2

); however, it is
not possible to calculate explicitly the corresponding leading-order coefficient for a general cut-off function ψ , since
explicit knowledge of the entry point in chart K2 is required. In particular, that coefficient will be cut-off-dependent
then, in contrast to the pulled propagation regime, as is also the case in [6, 10, 32].

Finally, we note that Theorem 2 can be extended to advection-reaction-diffusion equations with a more general
advection term,

∂u
∂ t

+ kun ∂u
∂x

H(u− ε) =
∂ 2u
∂x2 +u(1−un)H(u− ε), (4.1)

where n ≥ 2 is integer-valued. For ε = 0, Equation (4.1) admits a pulled front for k ≤ n+ 1 and c ≥ 2, whereas for
k > n+ 1, there exists a pushed front solution for c ≥ k

n+1 +
n+1

k , which can be shown in analogy to the proof of
Theorem 1 via the approach outlined in [22]. For c = k

n+1 +
n+1

k , the sought-after front corresponds, in a co-moving
frame, to the heteroclinic orbit V (U) =− k

n+1U(1−Un). Due to the increased algebraic complexity, we leave the study
of the impact of a cut-off on Equation (4.1) for the future. However, we note that, as the front is explicitly known in the
pushed regime, it is likely that the leading-order correction to the propagation speed c(ε) can be calculated explicitly
for all k > 0.

A Proof of Theorem 2 without cut-off in advection
Here, we briefly show that Theorem 2 remains equally valid for the advection-reaction-diffusion-equation

∂u
∂ t

+ ku
∂u
∂x

=
∂ 2u
∂x2 +u(1−u)H(u− ε), (A.1)

in which the advection term ku ∂u
∂x is not affected by the cut-off. The corresponding first-order system then reads

U ′ =V,

V ′ =−γV + kUV −U(1−U)H(U − ε),

ε
′ = 0,

(A.2)

where the travelling wave variable is now defined by ξ = x− γt, with γ the front propagation speed. The analysis
of (A.2) again relies on the blow-up transformation in (2.2). We observe that (1.7) and (A.1) are identical for u > ε;
therefore, it suffices to study (A.2) in the rescaling chart K2 only, which is again defined by (2.3):

u′2 = v2,

v′2 =−γv2 + kr2u2v2,

r′2 = 0.
(A.3)

By taking ε = r2 → 0+ and solving for v2(u2), we obtain (2.7), i.e., the singular orbit Γ2 in K2 is given as before. By
the above, we can conclude that Proposition 12 holds for (A.1).
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It remains to consider the persistence of Γ for (A.1). We can solve (A.3) explicitly for general γ and ε(= r2) > 0 to
obtain

W s
2 (ℓ

+
2 ) : v2(u2) =−γu2 +

k
2

r2u2
2. (A.4)

The point of intersection of W s
2 (ℓ

+
2 ) with Σin

2 is given by Pin
2 = (1,vin

2 ,ε), where vin
2 =−γ + k

2 ε. From the definition of
(2.2), it follows that V in = vin

2 ε = −γε + k
2 ε2. One can now prove a similar result to Proposition 13 for (A.2), where

c(0) = ccrit is again defined as in Theorem 1.

Proposition 26. For ε ∈ (0,ε0), with ε0 sufficiently small, k > 0, and γ close to c(0), there exists a critical heteroclinic
connection between Q− and Q+ in Equation (A.2) for a unique speed γ(ε) which depends on k. Furthermore, there
holds γ(ε)≤ c(0).

The proof is similar to that of Proposition 13, the only difference being that V in = −cε is replaced by V in = vin
2 ε =

−γε + k
2 ε2. In spite of that difference, the argument from the proof of Proposition 13 carries over verbatim.

The remainder of the analysis in Section 3 equally translates to Equation (A.1). The sole difference concerns the point
Pout

1 = (ε,W out,1), where W out is derived from vin
2 . We have the following result on the leading-order asymptotics of

W out.

Lemma 27. For k > 2 and ε and ∆γ sufficiently small, the point Pout
1 = (ε,W out,1) satisfies

W out =−2
k
+O(∆γ,ε2), (A.5)

where γ(ε) = c(0)−∆γ.

Proof. Equation (A.5) follows from the definition of V in for (A.2) and the sequence of transformations defined in
Lemma 17.

In Section 3.2.1, i.e., in the pulled regime, we found that the leading-order asymptotics of ∆c is independent of W in

and W out; therefore, we can conclude that Theorem 2 holds for Equation (A.1) when k ≤ 2, i.e., that ∆γ = ∆c to leading
order.

As the asymptotics of W out for (A.1) in Lemma 27 differs from that in Lemma 19 at O(ε), and as only the constant
term − 2

k is required to derive the leading-order asymptotics of ∆c, we can conclude that Theorem 2 holds for (A.1) in
the pushed front propagation regime where k > 2.

In Figure 5, we compare the propagation speeds c(ε) and γ(ε) for (1.7) and (4.1), respectively. We find that |c(ε)−
γ(ε)| is of higher order than |c(ε)− ĉ(ε)|, which we plot in red for comparison. For example, for k = 4, the propagation
speeds c(ε) and γ(ε) differ approximately at order O(ε9/5), whereas the difference between the propagation speed
c(ε) for (1.7) and its leading-order approximation ĉ(ε), given in Theorem 2, is of the order O(ε3/2).
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Figure 5: Numerical difference between c(ε) and γ(ε) (green) for k = 4 and ε ∈ [10−4,10−2]; the error |c(ε)− ĉ(ε)|
is plotted for comparison (red).
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